#!/usr/bin/perl -w # # The contents of this file are subject to the Mozilla Public # License Version 1.1 (the "License"); you may not use this file # except in compliance with the License. You may obtain a copy of # the License at http://www.mozilla.org/MPL/ # # Software distributed under the License is distributed on an "AS # IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or # implied. See the License for the specific language governing # rights and limitations under the License. # # The Original Code is leak-soup.pl, released Oct 1, 2000. # # The Initial Developer of the Original Code is Netscape # Communications Corporation. Portions created by Netscape are # Copyright (C) 2000 Netscape Communications Corporation. All # Rights Reserved. # # Contributor(s): # Chris Waterson # Jim Roskind # # # A perl version of Patrick Beard's ``Leak Soup'', which processes the # stack crawls from the Boehm GC into a graph. # use 5.004; use strict; use Getopt::Long; use FileHandle; use IPC::Open2; # Collect program options $::opt_help = 0; $::opt_detail = 0; $::opt_fragment = 1.0; # Default to no fragment analysis $::opt_nostacks = 0; $::opt_nochildstacks = 0; $::opt_depth = 9999; $::opt_noentrained = 0; $::opt_noslop = 0; $::opt_showtype = -1; # default to listing all types $::opt_stackrefine = "C"; @::opt_stackretype = (); @::opt_stackskipclass = (); @::opt_stackskipfunc = (); @::opt_typedivide = (); GetOptions("help", "detail", "format=s", "fragment=f", "nostacks", "nochildstacks", "depth=i", "noentrained", "noslop", "showtype=i", "stackrefine=s", "stackretype=s@", "stackskipclass=s@", "stackskipfunc=s@", "typedivide=s@" ); if ($::opt_help) { die "usage: leak-soup.pl [options] --help Display this message --detail Provide details of memory sweeping from child to parents --fragment=ratio Histogram bucket ratio for fragmentation analysis # --nostacks Do not compute stack traces # --nochildstacks Do not compute stack traces for entrained objects # --depth= Only compute stack traces to depth of # --noentrained Do not compute amount of memory entrained by root objects --noslop Don't ignore low bits when searching for pointers --showtype= Show memory usage histogram for most-significant types --stackrefine={F|C} During stack based refinement, use 'F'ull name name or just 'C'lass --stackretype=type Use allocation stack to refine vague types like void* --stackskipclass=class When refining types, ignore stack frames from 'class' --stackskipfunc=func When refining types, ignore stack frames for 'func' --typedivide=type Subdivide 'type' based on objects pointing to each instance "; } # This is the table that keeps a graph of objects. It's indexed by the # object's address (as an integer), and refers to a simple hash that # has information about the object's type, size, slots, and allocation # stack. %::Objects = %{0}; # This will be a list of keys to (addresses in) Objects, that is sorted # It gets used to evaluate overlaps, calculate fragmentation, and chase # parent->child (interior) pointers. @::SortedAddresses = []; # This is the table that keeps track of memory usage on a per-type basis. # It is indexed by the type name (string), and keeps a tally of the # total number of such objects, and the memory usage of such objects. %::Types = %{0}; $::TotalSize = 0; # sum of sizes of all objects included $::Types{} # This is an array of leaf node addresses. A leaf node has no children # with memory allocations. We traverse them sweeping memory # tallies into parents. Note that after all children have # been swept into a parent, that parent may also become a leaf node. @::Leafs = @{0}; #---------------------------------------------------------------------- # # Decode arguments to override default values for doing call-stack-based # refinement of typename based on contents of the stack at allocation time. # # List the types that we need to refine (if any) based on allocation stack $::VagueType = { 'void*' => 1, }; # With regard to the stack, ignore stack frames in the following # overly vague classes. $::VagueClasses = { # 'nsStr' => 1, 'nsVoidArray' => 1, }; # With regard to stack, ignore stack frames with the following vague # function names $::VagueFunctions = { 'PL_ArenaAllocate' => 1, 'PL_HashTableFinalize(PLHashTable *)' => 1, 'PL_HashTableInit__FP11PLHashTableUiPFPCv_UiPFPCvPCv_iT3PC14PLHashAllocOpsPv' => 1, 'PL_HashTableRawAdd' => 1, '__builtin_vec_new' => 1, '_init' => 1, 'il_get_container(_IL_GroupContext *, ImgCachePolicy, char const *, _NI_IRGB *, IL_DitherMode, int, int, int)' => 1, 'nsCStringKey::Clone(void) const' => 1, 'nsCppSharedAllocator::allocate(unsigned int, void const *)' => 1, 'nsHashtable::Put(nsHashKey *, void *)' => 1, 'nsHashtable::nsHashtable(unsigned int, int)' => 1, 'nsMemory::Alloc(unsigned int)' => 1, 'nsMemoryImpl::Alloc(unsigned int)' => 1, }; sub init_stack_based_type_refinement() { # Move across stackretype options, or use default values if ($#::opt_stackretype < 0) { print "Default --stackretype options will be used (since none were specified)\n"; print " use --stackretype='nothing' to disable re-typing activity\n"; } else { foreach my $type (keys %{$::VagueType}) { delete ($::VagueType->{$type}); } if ($#::opt_stackretype == 0 && $::opt_stackretype[0] eq 'nothing') { print "Types will not be refined based on call stack\n"; } else { foreach my $type (@::opt_stackretype) { $::VagueType->{$type} = 1; } } } if (keys %{$::VagueType}) { print "The following type(s) will be refined based on call stacks:\n"; foreach my $type (sort keys %{$::VagueType}) { print " $type\n"; } print "Equivalent command line argument(s):\n"; foreach my $type (sort keys %{$::VagueType}) { print " --stackretype='$type'"; } print "\n\n"; if ($#::opt_stackskipclass < 0) { print "Default --stackskipclass options will be used (since none were specified)\n"; print " use --stackskipclass='nothing' to disable skipping stack frames based on class names\n"; } else { foreach my $type (keys %{$::VagueClasses}) { delete ($::VagueClasses->{$type}); } if ($#::opt_stackskipclass == 0 && $::opt_stackskipclass[0] eq 'nothing') { print "Types will not be refined based on call stack\n"; } else { foreach my $type (@::opt_stackskipclass) { $::VagueClasses->{$type} = 1; } } } if (keys %{$::VagueClasses}) { print "Stack frames from the following class(es) will not be used to refine types:\n"; foreach my $class (sort keys %{$::VagueClasses}) { print " $class\n"; } print "Equivalent command line argument(s):\n"; foreach my $class (sort keys %{$::VagueClasses}) { print " --stackskipclass='$class'"; } print "\n\n"; } if ($#::opt_stackskipfunc < 0) { print "Default --stackskipfunc options will be used (since none were specified)\n"; print " use --stackskipfunc='nothing' to disable skipping stack frames based on function names\n"; } else { foreach my $type (keys %{$::VagueFunctions}) { delete ($::VagueFunctions->{$type}); } if ($#::opt_stackskipfunc == 0 && $::opt_stackskipfunc[0] eq 'nothing') { print "Types will not be refined based on call stack\n"; } else { foreach my $type (@::opt_stackskipfunc) { $::VagueFunctions->{$type} = 1; } } } if (keys %{$::VagueFunctions}) { print "Stack frames from the following function(s) will not be used to refine types:\n"; foreach my $func (sort keys %{$::VagueFunctions}) { print " $func\n"; } print "Equivalent command line argument(s):\n"; foreach my $func (sort keys %{$::VagueFunctions}) { print " --stackskipfunc='$func'"; } print "\n\n"; } } } #---------------------------------------------------------------------- # # Read in the output from the Boehm GC or Trace-malloc. # sub read_boehm() { OBJECT: while (<>) { # e.g., 0x0832FBD0 (80) next OBJECT unless /^0x(\S+) <(.*)> \((\d+)\)/; my ($addr, $type, $size) = (hex $1, $2, $3); my $object = $::Objects{$addr}; if (! $object) { # Found a new object entry. Record its type and size $::Objects{$addr} = $object = { 'type' => $type, 'size' => $size }; } else { print "Duplicate address $addr contains $object->{'type'} and $type\n"; $object->{'dup_addr_count'}++; } # Record the object's slots my @slots; SLOT: while (<>) { # e.g., 0x00000000 last SLOT unless /^\t0x(\S+)/; my $value = hex $1; # Ignore low bits, unless they've specified --noslop $value &= ~0x7 unless $::opt_noslop; $slots[$#slots + 1] = $value; } $object->{'slots'} = \@slots; if (@::opt_stackretype && (defined $::VagueType->{$type})) { # Change the value of type of the object based on stack # if we can find an interesting calling function VAGUEFRAME: while (<>) { # e.g., _dl_debug_message[/lib/ld-linux.so.2 +0x0000B858] last VAGUEFRAMEFRAME unless /^(.*)\[(.*) \+0x(\S+)\]$/; my ($func, $lib, $off) = ($1, $2, hex $3); chomp; my ($class,,$fname) = split(/:/, $func); next VAGUEFRAME if (defined $::VagueFunctions->{$func} || defined $::VagueClasses->{$class}); # Refine typename and exit stack scan $object->{'type'} = $type . ":" . (('C' eq $::opt_stackrefine) ? $class : $func); last VAGUEFRAME; } } else { # Save all stack info if requested if (! $::opt_nostacks) { # Record the stack by which the object was allocated my @stack; FRAME: while (<>) { # e.g., _dl_debug_message[/lib/ld-linux.so.2 +0x0000B858] last FRAME unless /^(.*)\[(.*) \+0x(\S+)\]$/; my ($func, $lib, $off) = ($1, $2, hex $3); chomp; $stack[$#stack + 1] = $_; } $object->{'stack'} = \@stack; } } # Gotta check EOF explicitly... last OBJECT if eof; } } #---------------------------------------------------------------------- # # Read input # init_stack_based_type_refinement(); read_boehm; #---------------------------------------------------------------------- # # Do basic initialization of the type hash table. Accumulate # total counts, and basic memory usage (not including children) sub load_type_table() { # Reset global counter and hash table $::TotalSize = 0; %::Types = %{0}; OBJECT: foreach my $addr (keys %::Objects) { my $obj = $::Objects{$addr}; my ($type, $size, $swept_in, $overlap_count, $dup_addr_count) = ($obj->{'type'}, $obj->{'size'}, $obj->{'swept_in'}, $obj->{'overlap_count'},$obj->{'dup_addr_count'}); my $type_data = $::Types{$type}; if (! defined $type_data) { $::Types{$type} = $type_data = {'count' => 0, 'size' => 0, 'max' => $size, 'min' => $size, 'swept_in' => 0, 'swept' => 0, 'overlap_count' => 0, 'dup_addr_count' => 0}; } if (!$size) { $type_data->{'swept'}++; next OBJECT; } $::TotalSize += $size; $type_data->{'count'}++; $type_data->{'size'} += $size; if (defined $swept_in) { $type_data->{'swept_in'} += $swept_in; if ($::opt_detail) { my $type_detail_sizes = $type_data->{'sweep_details_size'}; my $type_detail_counts; if (!defined $type_detail_sizes) { $type_detail_sizes = $type_data->{'sweep_details_size'} = {}; $type_detail_counts = $type_data->{'sweep_details_count'} = {}; } else { $type_detail_counts = $type_data->{'sweep_details_count'}; } my $sweep_details = $obj->{'sweep_details'}; for my $swept_addr (keys (%{$sweep_details})) { my $swept_obj = $::Objects{$swept_addr}; my $swept_type = $swept_obj->{'type'}; $type_detail_sizes->{$swept_type} += $sweep_details->{$swept_addr}; $type_detail_counts->{$swept_type}++; } } } if (defined $overlap_count) { $type_data->{'overlap_count'} += $overlap_count; } if (defined $dup_addr_count) { $type_data->{'dup_addr_count'} += $dup_addr_count; } if ($type_data->{'max'} < $size) { $type_data->{'max'} = $size; } # Watch out for case where min is produced by a swept object if (!$type_data->{'min'} || $type_data->{'min'} > $size) { $type_data->{'min'} = $size; } } } #---------------------------------------------------------------------- sub print_type_table(){ if (!$::opt_showtype) { return; } my $line_count = 0; my $bytes_printed_tally = 0; # Display type summary information my @sorted_types = keys (%::Types); print "There are ", 1 + $#sorted_types, " types containing ", $::TotalSize, " bytes\n"; @sorted_types = sort {$::Types{$b}->{'size'} <=> $::Types{$a}->{'size'} } @sorted_types; foreach my $type (@sorted_types) { last if ($line_count++ == $::opt_showtype); my $type_data = $::Types{$type}; $bytes_printed_tally += $type_data->{'size'}; if ($type_data->{'count'}) { printf "%.2f%% ", $type_data->{'size'} * 100.0/$::TotalSize; print $type_data->{'size'}, "\t(", $type_data->{'min'}, "/", int($type_data->{'size'} / $type_data->{'count'}),"/", $type_data->{'max'}, ")"; print "\t", $type_data->{'count'}, " x "; } print $type; if ($type_data->{'swept_in'}) { print ", $type_data->{'swept_in'} sub-objs absorbed"; } if ($type_data->{'swept'}) { print ", $type_data->{'swept'} swept away"; } if ($type_data->{'overlap_count'}) { print ", $type_data->{'overlap_count'} range overlaps"; } if ($type_data->{'dup_addr_count'}) { print ", $type_data->{'dup_addr_count'} duplicated addresses"; } print "\n" ; if (defined $type_data->{'sweep_details_size'}) { my $sizes = $type_data->{'sweep_details_size'}; my $counts = $type_data->{'sweep_details_count'}; my @swept_types = sort {$sizes->{$b} <=> $sizes->{$a}} keys (%{$sizes}); for my $type (@swept_types) { printf " %.2f%% ", $sizes->{$type} * 100.0/$::TotalSize; print "$sizes->{$type} (", int($sizes->{$type}/$counts->{$type}) , ") $counts->{$type} x $type\n"; } print " ---------------\n"; } } if ($bytes_printed_tally != $::TotalSize) { printf "%.2f%% ", ($::TotalSize- $bytes_printed_tally) * 100.0/$::TotalSize; print $::TotalSize - $bytes_printed_tally, "\t not shown due to truncation of type list\n"; print "Currently only data on $::opt_showtype types are displayed, due to command \n", "line argument '--showtype=$::opt_showtype'\n\n"; } } #---------------------------------------------------------------------- # # Check for duplicate address ranges is Objects table, and # create list of sorted addresses for doing pointer-chasing sub validate_address_ranges() { # Build sorted list of address for validating interior pointers @::SortedAddresses = sort {$a <=> $b} keys %::Objects; # Validate non-overlap of memory my $prev_addr_end = -1; my $prev_addr = -1; my $index = 0; my $overlap_tally = 0; # overlapping object memory my $unused_tally = 0; # unused memory between blocks while ($index <= $#::SortedAddresses) { my $address = $::SortedAddresses[$index]; if ($prev_addr_end > $address) { print "Object overlap from $::Objects{$prev_addr}->{'type'}:$prev_addr-$prev_addr_end into"; my $test_index = $index; my $prev_addr_overlap_tally = 0; while ($test_index <= $#::SortedAddresses) { my $test_address = $::SortedAddresses[$test_index]; last if ($prev_addr_end < $test_address); print " $::Objects{$test_address}->{'type'}:$test_address"; $::Objects{$prev_addr}->{'overlap_count'}++; $::Objects{$test_address}->{'overlap_count'}++; my $overlap = $prev_addr_end - $test_address; if ($overlap > $::Objects{$test_address}->{'size'}) { $overlap = $::Objects{$test_address}->{'size'}; } print "($overlap bytes)"; $prev_addr_overlap_tally += $overlap; $test_index++; } print " [total $prev_addr_overlap_tally bytes]"; $overlap_tally += $prev_addr_overlap_tally; print "\n"; } $prev_addr = $address; $prev_addr_end = $prev_addr + $::Objects{$prev_addr}->{'size'} - 1; $index++; } #end while if ($overlap_tally) { print "Total overlap of $overlap_tally bytes\n"; } } #---------------------------------------------------------------------- # # Evaluate sizes of interobject spacing (fragmentation loss?) # Gather the sizes into histograms for analysis # This function assumes a sorted list of addresses is present globally sub generate_and_print_unused_memory_histogram() { print "\nInterobject spacing (fragmentation waste) Statistics\n"; if ($::opt_fragment <= 1) { print "Statistics are not being gathered. Use '--fragment=10' to get stats\n"; return; } print "Ratio of histogram buckets will be a factor of $::opt_fragment\n"; my $prev_addr_end = -1; my $prev_addr = -1; my $index = 0; my @fragment_count; my @fragment_tally; my $power; my $bucket_size; my $max_power = 0; my $tally_sizes = 0; while ($index <= $#::SortedAddresses) { my $address = $::SortedAddresses[$index]; my $unused = $address - $prev_addr_end; # handle overlaps gracefully if ($unused < 0) { $unused = 0; } $power = 0; $bucket_size = 1; while ($bucket_size < $unused) { $bucket_size *= $::opt_fragment; $power++; } $fragment_count[$power]++; $fragment_tally[$power] += $unused; if ($power > $max_power) { $max_power = $power; } my $size = $::Objects{$address}->{'size'}; $tally_sizes += $size; $prev_addr_end = $address + $size - 1; $index++; } $power = 0; $bucket_size = 1; print "Basic gap histogram is (max_size:count):\n"; while ($power <= $max_power) { if (! defined $fragment_count[$power]) { $fragment_count[$power] = $fragment_tally[$power] = 0; } printf " %.1f:", $bucket_size; print $fragment_count[$power]; $power++; $bucket_size *= $::opt_fragment; } print "\n"; print "Summary gap analysis:\n"; $power = 0; $bucket_size = 1; my $tally = 0; my $count = 0; while ($power <= $max_power) { $count += $fragment_count[$power]; $tally += $fragment_tally[$power]; print "$count gaps, totaling $tally bytes, were under "; printf "%.1f bytes each", $bucket_size; if ($count) { printf ", for an average of %.1f bytes per gap", $tally/$count, ; } print "\n"; $power++; $bucket_size *= $::opt_fragment; } print "Total allocation was $tally_sizes bytes, or "; printf "%.0f bytes per allocation block\n\n", $tally_sizes/($count+1); } #---------------------------------------------------------------------- # # Now thread the parents and children together by looking through the # slots for each object. # sub create_parent_links(){ my $min_addr = $::SortedAddresses[0]; my $max_addr = $::SortedAddresses[ $#::SortedAddresses]; #allow one beyond each object $max_addr += $::Objects{$max_addr}->{'size'}; print "Viable addresses range from $min_addr to $max_addr for a total of ", $max_addr-$min_addr, " bytes\n\n"; # Gather stats as we try to convert slots to children my $slot_count = 0; # total slots examined my $fixed_addr_count = 0; # slots into interiors that were adjusted my $parent_child_count = 0; # Number of parent-child links my $child_count = 0; # valid slots, discounting sibling twins my $child_dup_count = 0; # number of duplicate child pointers my $self_pointer_count = 0; # count of discarded self-pointers foreach my $parent (keys %::Objects) { # We'll collect a list of this parent object's children # by iterating through its slots. my @children; my %children_hash; my $self_pointer = 0; my @slots = @{$::Objects{$parent}->{'slots'}}; $slot_count += $#slots + 1; SLOT: foreach my $child (@slots) { # We only care about pointers that refer to other objects if (! defined $::Objects{$child}) { # check to see if we are an interior pointer # Punt if we are completely out of range next SLOT unless ($max_addr >= $child && $child >= $min_addr); # Do binary search to find object below this address my ($min_index, $beyond_index) = (0, $#::SortedAddresses + 1); my $test_index; while ($min_index != ($test_index = int (($beyond_index+$min_index)/2))) { if ($child >= $::SortedAddresses[$test_index]) { $min_index = $test_index; } else { $beyond_index = $test_index; } } # See if pointer is within extent of this object my $address = $::SortedAddresses[$test_index]; next SLOT unless ($child < $address + $::Objects{$address}->{'size'}); # Make adjustment so we point to the actual child precisely $child = $address; $fixed_addr_count++; } if ($child == $parent) { $self_pointer_count++; next SLOT; # Discard self-pointers } # Avoid creating duplicate child-parent links if (! defined $children_hash{$child}) { $parent_child_count++; # Add the parent to the child's list of parents my $parents = $::Objects{$child}->{'parents'}; if (! $parents) { $parents = $::Objects{$child}->{'parents'} = []; } $parents->[scalar(@$parents)] = $parent; # Add the child to the parent's list of children $children_hash{$child} = 1; } else { $child_dup_count++; } } @children = keys %children_hash; # Track tally of unique children linked $child_count += $#children + 1; $::Objects{$parent}->{'children'} = \@children; if (! @children) { $::Leafs[$#::Leafs + 1] = $parent; } } print "Scanning $#::SortedAddresses objects, we found $parent_child_count parents-to-child connections by chasing $slot_count pointers.\n", "This required $fixed_addr_count interior pointer fixups, skipping $child_dup_count duplicate pointers, ", "and $self_pointer_count self pointers\nAlso discarded ", $slot_count - $parent_child_count -$self_pointer_count - $child_dup_count, " out-of-range pointers\n\n"; } #---------------------------------------------------------------------- # For every leaf, if a leaf has only one parent, then sweep the memory # cost into the parent from the leaf sub sweep_leaf_memory () { my $sweep_count = 0; my $leaf_counter = 0; LEAF: while ($leaf_counter <= $#::Leafs) { my $leaf_addr = $::Leafs[$leaf_counter++]; my $leaf_obj = $::Objects{$leaf_addr}; my $parents = $leaf_obj->{'parents'}; next LEAF if (! defined($parents) || 1 != scalar(@$parents)); # We have only one parent, so we'll try to sweep upwards my $parent_addr = @$parents[0]; my $parent_obj = $::Objects{$parent_addr}; # watch out for self-pointers next LEAF if ($parent_addr == $leaf_addr); if ($::opt_detail) { foreach my $obj ($parent_obj, $leaf_obj) { if (!defined $obj->{'original_size'}) { $obj->{'original_size'} = $obj->{'size'}; } } if (defined $leaf_obj->{'sweep_details'}) { if (defined $parent_obj->{'sweep_details'}) { # merge details foreach my $swept_obj (keys (%{$leaf_obj->{'sweep_details'}})) { %{$parent_obj->{'sweep_details'}}->{$swept_obj} = %{$leaf_obj->{'sweep_details'}}->{$swept_obj}; } } else { # No parent info $parent_obj->{'sweep_details'} = \%{$leaf_obj->{'sweep_details'}}; } delete $leaf_obj->{'sweep_details'}; } else { # no leaf detail if (!defined $parent_obj->{'sweep_details'}) { $parent_obj->{'sweep_details'} = {}; } } %{$parent_obj->{'sweep_details'}}->{$leaf_addr} = $leaf_obj->{'original_size'}; } $parent_obj->{'size'} += $leaf_obj->{'size'}; $leaf_obj->{'size'} = 0; if (defined ($leaf_obj->{'swept_in'})) { $parent_obj->{'swept_in'} += $leaf_obj->{'swept_in'}; $leaf_obj->{'swept_in'} = 0; # sweep has been handed off to parent } $parent_obj->{'swept_in'} ++; # tally swept in leaf_obj $sweep_count++; # See if we created another leaf my $consumed_children = $parent_obj->{'consumed'}++; my @children = $parent_obj->{'children'}; if ($consumed_children == $#children) { $::Leafs[$#::Leafs + 1] = @$parents[0]; } } print "Processed ", $leaf_counter, " leaves sweeping memory to parents in ", $sweep_count, " objects\n"; } #---------------------------------------------------------------------- # # Subdivide the types of objects that are in our "expand" list # List types that should be sub-divided based on parents, and possibly # children # The argument supplied is a hash table with keys selecting types that # need to be "refined" by including the types of the parent objects, # and (when we are desparate) the types of the children objects. sub expand_type_names($) { my %TypeExpand = %{$_[0]}; my @retype; # array of addrs that get extended type names foreach my $child (keys %::Objects) { my $child_obj = $::Objects{$child}; next unless (defined ($TypeExpand{$child_obj->{'type'}})); foreach my $relation ('parents','children') { my $relatives = $child_obj->{$relation}; next unless defined @$relatives; # Sort out the names of the types of the relatives my %names; foreach my $relative (@$relatives) { %names->{$::Objects{$relative}->{'type'}} = 1; } my $related_type_names = join(',' , sort(keys(%names))); $child_obj->{'name' . $relation} = $related_type_names; # Don't bother with children if we have significant parent types last if (!defined ($TypeExpand{$related_type_names})); } $retype[$#retype + 1] = $child; } # Revisit all addresses we've marked foreach my $child (@retype) { my $child_obj = $::Objects{$child}; $child_obj->{'type'} = $TypeExpand{$child_obj->{'type'}}; my $extended_type = $child_obj->{'namechildren'}; if (defined $extended_type) { $child_obj->{'type'}.= "->(" . $extended_type . ")"; delete ($child_obj->{'namechildren'}); } $extended_type = $child_obj->{'nameparents'}; if (defined $extended_type) { $child_obj->{'type'} = "(" . $extended_type . ")->" . $::Objects{$child}->{'type'}; delete ($child_obj->{'nameparents'}); } } } #---------------------------------------------------------------------- # # Print out a type histogram sub print_type_histogram() { load_type_table(); print_type_table(); print "\n\n"; } #---------------------------------------------------------------------- # Provide a nice summary of the types during the process validate_address_ranges(); create_parent_links(); print "\nBasic memory use histogram is:\n"; print_type_histogram(); generate_and_print_unused_memory_histogram(); sweep_leaf_memory (); print "After doing basic leaf-sweep processing of instances:\n"; print_type_histogram(); { foreach my $typename (@::opt_typedivide) { my %expansion_table; $expansion_table{$typename} = $typename; expand_type_names(\%expansion_table); print "After subdividing <$typename> based on inbound (and somtimes outbound) pointers:\n"; print_type_histogram(); } } exit(); # Don't bother with SCCs yet. #---------------------------------------------------------------------- # # Determine objects that entrain equivalent sets, using the strongly # connected component algorithm from Cormen, Leiserson, and Rivest, # ``An Introduction to Algorithms'', MIT Press 1990, pp. 488-493. # sub compute_post_order($$$) { # This routine produces a post-order of the call graph (what CLR call # ``ordering the nodes by f[u]'') my ($parent, $visited, $finish) = @_; # Bail if we've already seen this node return if $visited->{$parent}; # We have now! $visited->{$parent} = 1; # Walk the children my $children = $::Objects{$parent}->{'children'}; foreach my $child (@$children) { compute_post_order($child, $visited, $finish); } # Now that we've walked all the kids, we can append the parent to # the post-order @$finish[scalar(@$finish)] = $parent; } sub compute_equivalencies($$$) { # This routine recursively computes equivalencies by walking the # transpose of the callgraph. my ($child, $table, $equivalencies) = @_; # Bail if we've already seen this node return if $table->{$child}; # Otherwise, append ourself to the list of equivalencies... @$equivalencies[scalar(@$equivalencies)] = $child; # ...and note our other equivalents in the table $table->{$child} = $equivalencies; my $parents = $::Objects{$child}->{'parents'}; foreach my $parent (@$parents) { compute_equivalencies($parent, $table, $equivalencies); } } sub compute_equivalents() { # Here's the strongly connected components algorithm. (Step 2 has been # done implictly by our object graph construction.) my %visited; my @finish; # Step 1. Compute a post-ordering of the object graph foreach my $parent (keys %::Objects) { compute_post_order($parent, \%visited, \@finish); } # Step 3. Traverse the transpose of the object graph in reverse # post-order, collecting vertices into %equivalents my %equivalents; foreach my $child (reverse @finish) { compute_equivalencies($child, \%equivalents, []); } # Now, we'll trim the %equivalents table, arbitrarily removing # ``redundant'' entries. EQUIVALENT: foreach my $node (keys %equivalents) { my $equivalencies = $equivalents{$node}; next EQUIVALENT unless $equivalencies; foreach my $equivalent (@$equivalencies) { delete $equivalents{$equivalent} unless $equivalent == $node; } } # Note the equivalent objects in a way that will yield the most # interesting order as we do depth-first traversal later to # output them. ROOT: foreach my $equivalent (reverse @finish) { next ROOT unless $equivalents{$equivalent}; $::Equivalents[$#::Equivalents + 1] = $equivalent; # XXX Lame! Should figure out function refs. $::Objects{$equivalent}->{'entrained-size'} = 0; } } # Do it! compute_equivalents(); #---------------------------------------------------------------------- # # Compute the size of each node's transitive closure. # sub compute_entrained($$) { my ($parent, $visited) = @_; $visited->{$parent} = 1; $::Objects{$parent}->{'entrained-size'} = $::Objects{$parent}->{'size'}; my $children = $::Objects{$parent}->{'children'}; CHILD: foreach my $child (@$children) { next CHILD if $visited->{$child}; compute_entrained($child, $visited); $::Objects{$parent}->{'entrained-size'} += $::Objects{$child}->{'entrained-size'}; } } if (! $::opt_noentrained) { my %visited; PARENT: foreach my $parent (@::Equivalents) { next PARENT if $visited{$parent}; compute_entrained($parent, \%visited); } } #---------------------------------------------------------------------- # # Converts a shared library and an address into a file and line number # using a bunch of addr2line processes. # sub addr2line($$) { my ($dso, $addr) = @_; # $::Addr2Lines is a global table that maps a DSO's name to a pair # of filehandles that are talking to an addr2line process. my $fhs = $::Addr2Lines{$dso}; if (! $fhs) { if (!(-r $dso)) { # bogus filename (that happens sometimes), so bail return { 'dso' => $dso, 'addr' => $addr }; } my ($in, $out) = (new FileHandle, new FileHandle); open2($in, $out, "addr2line --exe=$dso") || die "unable to open addr2line --exe=$dso"; $::Addr2Lines{$dso} = $fhs = { 'in' => $in, 'out' => $out }; } # addr2line takes a hex address as input... $fhs->{'out'}->print($addr . "\n"); # ...and'll return file:lineno as output if ($fhs->{'in'}->getline() =~ /([^:]+):(.+)/) { return { 'file' => $1, 'line' => $2 }; } else { return { 'dso' => $dso, 'addr' => $addr }; } } #---------------------------------------------------------------------- # # Dump the objects, using a depth-first traversal. # sub dump_objects($$$) { my ($parent, $visited, $depth) = @_; # Have we already seen this? my $already_visited = $visited->{$parent}; return if ($depth == 0 && $already_visited); if (! $already_visited) { $visited->{$parent} = 1; $::Total += $::Objects{$parent}->{'size'}; } my $parententry = $::Objects{$parent}; # Make an ``object'' div, which'll contain an ``object'' span, two # ``toggle'' spans, an invisible ``stack'' div, and the invisible # ``children'' div. print "
"; if ($already_visited) { print ""; } else { print ""; } printf "0x%x<%s>[%d]", $parent, $parententry->{'type'}, $parententry->{'size'}; if ($already_visited) { print ""; goto DONE; } if ($depth == 0) { print "($parententry->{'entrained-size'})" if $parententry->{'entrained-size'}; print " Children" if @{$parententry->{'children'}} > 0; } if (($depth == 0 || !$::opt_nochildstacks) && !$::opt_nostacks) { print " Stack"; } print ""; # Print stack traces print "
\n"; if (($depth == 0 || !$::opt_nochildstacks) && !$::opt_nostacks) { my $depth = $::opt_depth; FRAME: foreach my $frame (@{$parententry->{'stack'}}) { # Only go as deep as they've asked us to. last FRAME unless --$depth >= 0; # Stack frames look like ``mangled_name[dso address]'' $frame =~ /([^\]]+)\[(.*) \+0x([0-9A-Fa-f]+)\]/; # Convert address to file and line number my $mangled = $1; my $result = addr2line($2, $3); if ($result->{'file'}) { # It's mozilla source! Clean up refs to dist/include if (($result->{'file'} =~ s/.*\.\.\/\.\.\/dist\/include\//http:\/\/bonsai.mozilla.org\/cvsguess.cgi\?file=/) || ($result->{'file'} =~ s/.*\/mozilla/http:\/\/bonsai.mozilla.org\/cvsblame.cgi\?file=mozilla/)) { my $prevline = $result->{'line'} - 10; print "{'file'}\&mark=$result->{'line'}#$prevline\">$mangled
\n"; } else { print "$mangled ($result->{'file'}, line $result->{'line'})
\n"; } } else { print "$result->{'dso'} ($result->{'addr'})
\n"; } } } print "
"; # Recurse to children if (@{$parententry->{'children'}} >= 0) { print "
\n" if $depth == 0; foreach my $child (@{$parententry->{'children'}}) { dump_objects($child, $visited, $depth + 1); } print "
" if $depth == 0; } DONE: print "
\n"; } #---------------------------------------------------------------------- # # Do the output. # # Force flush on STDOUT. We get funky output unless we do this. $| = 1; # Header print " Object Graph "; { # Body. Display ``roots'', sorted by the amount of memory they # entrain. Because of the way we've sorted @::Equivalents, we should # get a nice ordering that sorts things with a lot of kids early # on. This should yield a fairly "deep" depth-first traversal, with # most of the objects appearing as children. # # XXX I sure hope that Perl implements a stable sort! my %visited; foreach my $parent (sort { $::Objects{$b}->{'entrained-size'} <=> $::Objects{$a}->{'entrained-size'} } @::Equivalents) { dump_objects($parent, \%visited, 0); print "\n"; } } # Footer print "
$::Total total bytes\n" if $::Total; print " ";