/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim:set ts=2 sw=2 sts=2 et cindent: */ /* ***** BEGIN LICENSE BLOCK ***** * Version: MPL 1.1/GPL 2.0/LGPL 2.1 * * The contents of this file are subject to the Mozilla Public License Version * 1.1 (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * Software distributed under the License is distributed on an "AS IS" basis, * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License * for the specific language governing rights and limitations under the * License. * * The Original Code is C++ array template. * * The Initial Developer of the Original Code is Google Inc. * Portions created by the Initial Developer are Copyright (C) 2005 * the Initial Developer. All Rights Reserved. * * Contributor(s): * Darin Fisher * * Alternatively, the contents of this file may be used under the terms of * either the GNU General Public License Version 2 or later (the "GPL"), or * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), * in which case the provisions of the GPL or the LGPL are applicable instead * of those above. If you wish to allow use of your version of this file only * under the terms of either the GPL or the LGPL, and not to allow others to * use your version of this file under the terms of the MPL, indicate your * decision by deleting the provisions above and replace them with the notice * and other provisions required by the GPL or the LGPL. If you do not delete * the provisions above, a recipient may use your version of this file under * the terms of any one of the MPL, the GPL or the LGPL. * * ***** END LICENSE BLOCK ***** */ #ifndef nsTArray_h__ #define nsTArray_h__ #include #include "prtypes.h" #include "nscore.h" #include "nsQuickSort.h" #include "nsDebug.h" #include "nsTraceRefcnt.h" #include NEW_H // // NB: nsTArray assumes that your "T" can be memmove()d. This is in // contrast to STL containers, which follow C++ // construction/destruction rules. // // Don't use nsTArray if your "T" can't be memmove()d correctly. // // // nsTArray*Allocators must all use the same |free()|, to allow // swapping between fallible and infallible variants. (NS_Free() and // moz_free() end up calling the same underlying free()). // struct nsTArrayFallibleAllocator { static void* Malloc(size_t size) { return NS_Alloc(size); } static void* Realloc(void* ptr, size_t size) { return NS_Realloc(ptr, size); } static void Free(void* ptr) { NS_Free(ptr); } }; #if defined(MOZALLOC_HAVE_XMALLOC) struct nsTArrayInfallibleAllocator { static void* Malloc(size_t size) { return moz_xmalloc(size); } static void* Realloc(void* ptr, size_t size) { return moz_xrealloc(ptr, size); } static void Free(void* ptr) { moz_free(ptr); } }; #endif struct nsTArrayDefaultAllocator : public nsTArrayFallibleAllocator { }; // nsTArray_base stores elements into the space allocated beyond // sizeof(*this). This is done to minimize the size of the nsTArray // object when it is empty. struct NS_COM_GLUE nsTArrayHeader { static nsTArrayHeader sEmptyHdr; PRUint32 mLength; PRUint32 mCapacity : 31; PRUint32 mIsAutoArray : 1; }; // // This class serves as a base class for nsTArray. It shouldn't be used // directly. It holds common implementation code that does not depend on the // element type of the nsTArray. // template class nsTArray_base { // Allow swapping elements with |nsTArray_base|s created using a // different allocator. This is kosher because all allocators use // the same free(). template friend class nsTArray_base; protected: typedef nsTArrayHeader Header; public: typedef PRUint32 size_type; typedef PRUint32 index_type; // @return The number of elements in the array. size_type Length() const { return mHdr->mLength; } // @return True if the array is empty or false otherwise. PRBool IsEmpty() const { return Length() == 0; } // @return The number of elements that can fit in the array without forcing // the array to be re-allocated. The length of an array is always less // than or equal to its capacity. size_type Capacity() const { return mHdr->mCapacity; } #ifdef DEBUG void* DebugGetHeader() const { return mHdr; } #endif protected: nsTArray_base(); ~nsTArray_base(); // Resize the storage if necessary to achieve the requested capacity. // @param capacity The requested number of array elements. // @param elemSize The size of an array element. // @return False if insufficient memory is available; true otherwise. PRBool EnsureCapacity(size_type capacity, size_type elemSize); // Resize the storage to the minimum required amount. // @param elemSize The size of an array element. void ShrinkCapacity(size_type elemSize); // This method may be called to resize a "gap" in the array by shifting // elements around. It updates mLength appropriately. If the resulting // array has zero elements, then the array's memory is free'd. // @param start The starting index of the gap. // @param oldLen The current length of the gap. // @param newLen The desired length of the gap. // @param elemSize The size of an array element. void ShiftData(index_type start, size_type oldLen, size_type newLen, size_type elemSize); // This method increments the length member of the array's header. // Note that mHdr may actually be sEmptyHdr in the case where a // zero-length array is inserted into our array. But then n should // always be 0. void IncrementLength(PRUint32 n) { NS_ASSERTION(mHdr != EmptyHdr() || n == 0, "bad data pointer"); mHdr->mLength += n; } // This method inserts blank slots into the array. // @param index the place to insert the new elements. This must be no // greater than the current length of the array. // @param count the number of slots to insert // @param elementSize the size of an array element. PRBool InsertSlotsAt(index_type index, size_type count, size_type elementSize); protected: // NOTE: This method isn't heavily optimized if either array is an // nsAutoTArray. template PRBool SwapArrayElements(nsTArray_base& other, size_type elemSize); // Helper function for SwapArrayElements. Ensures that if the array // is an nsAutoTArray that it doesn't use the built-in buffer. PRBool EnsureNotUsingAutoArrayBuffer(size_type elemSize); // Returns true if this nsTArray is an nsAutoTArray with a built-in buffer. PRBool IsAutoArray() { return mHdr->mIsAutoArray; } // Dummy struct to get the compiler to simulate the alignment of // nsAutoTArray's and nsAutoTPtrArray's mAutoBuf. struct AutoArray { Header *mHdr; PRUint64 aligned; }; // Returns a Header for the built-in buffer of this nsAutoTArray. Header* GetAutoArrayBuffer() { NS_ASSERTION(IsAutoArray(), "Should be an auto array to call this"); return reinterpret_cast(&(reinterpret_cast(&mHdr))->aligned); } // Returns true if this is an nsAutoTArray and it currently uses the // built-in buffer to store its elements. PRBool UsesAutoArrayBuffer() { return mHdr->mIsAutoArray && mHdr == GetAutoArrayBuffer(); } // The array's elements (prefixed with a Header). This pointer is never // null. If the array is empty, then this will point to sEmptyHdr. Header *mHdr; Header* Hdr() const { return mHdr; } Header** PtrToHdr() { return &mHdr; } static Header* EmptyHdr() { return &Header::sEmptyHdr; } }; // // This class defines convenience functions for element specific operations. // Specialize this template if necessary. // template class nsTArrayElementTraits { public: // Invoke the default constructor in place. static inline void Construct(E *e) { // Do NOT call "E()"! That triggers C++ "default initialization" // which zeroes out POD ("plain old data") types such as regular // ints. We don't want that because it can be a performance issue // and people don't expect it; nsTArray should work like a regular // C/C++ array in this respect. new (static_cast(e)) E; } // Invoke the copy-constructor in place. template static inline void Construct(E *e, const A &arg) { new (static_cast(e)) E(arg); } // Invoke the destructor in place. static inline void Destruct(E *e) { e->~E(); } }; // This class exists because VC6 cannot handle static template functions. // Otherwise, the Compare method would be defined directly on nsTArray. template class nsQuickSortComparator { public: typedef E elem_type; // This function is meant to be used with the NS_QuickSort function. It // maps the callback API expected by NS_QuickSort to the Comparator API // used by nsTArray. See nsTArray::Sort. static int Compare(const void* e1, const void* e2, void *data) { const Comparator* c = reinterpret_cast(data); const elem_type* a = static_cast(e1); const elem_type* b = static_cast(e2); return c->LessThan(*a, *b) ? -1 : (c->Equals(*a, *b) ? 0 : 1); } }; // The default comparator used by nsTArray template class nsDefaultComparator { public: PRBool Equals(const A& a, const B& b) const { return a == b; } PRBool LessThan(const A& a, const B& b) const { return a < b; } }; // // The templatized array class that dynamically resizes its storage as // elements are added. This class is designed to behave a bit like // std::vector, though note that unlike std::vector, nsTArray doesn't // follow C++ construction/destruction rules. // // The template parameter specifies the type of the elements (elem_type), and // has the following requirements: // // elem_type MUST define a copy-constructor. // elem_type MAY define operator< for sorting. // elem_type MAY define operator== for searching. // // For methods taking a Comparator instance, the Comparator must be a class // defining the following methods: // // class Comparator { // public: // /** @return True if the elements are equals; false otherwise. */ // PRBool Equals(const elem_type& a, const elem_type& b) const; // // /** @return True if (a < b); false otherwise. */ // PRBool LessThan(const elem_type& a, const elem_type& b) const; // }; // // The Equals method is used for searching, and the LessThan method is used // for sorting. // // The Alloc template parameter can be used to choose between // "fallible" and "infallible" nsTArray (if available), defaulting to // fallible. If the *fallible* allocator is used, the return value of // methods that might allocate doesn't need to be checked; Append() is // one such method. These return values don't need to be checked if // the *in*fallible allocator is chosen. When in doubt, choose the // infallible allocator. // template class nsTArray : public nsTArray_base { public: typedef nsTArray_base base_type; typedef typename base_type::size_type size_type; typedef typename base_type::index_type index_type; typedef E elem_type; typedef nsTArray self_type; typedef nsTArrayElementTraits elem_traits; // A special value that is used to indicate an invalid or unknown index // into the array. enum { NoIndex = index_type(-1) }; using base_type::Length; // // Finalization method // ~nsTArray() { Clear(); } // // Initialization methods // nsTArray() {} // Initialize this array and pre-allocate some number of elements. explicit nsTArray(size_type capacity) { SetCapacity(capacity); } // The array's copy-constructor performs a 'deep' copy of the given array. // @param other The array object to copy. nsTArray(const self_type& other) { AppendElements(other); } template nsTArray(const nsTArray& other) { AppendElements(other); } // The array's assignment operator performs a 'deep' copy of the given // array. It is optimized to reuse existing storage if possible. // @param other The array object to copy. nsTArray& operator=(const self_type& other) { ReplaceElementsAt(0, Length(), other.Elements(), other.Length()); return *this; } // Return true if this array has the same length and the same // elements as |other|. bool operator==(const self_type& other) const { size_type len = Length(); if (len != other.Length()) return false; // XXX std::equal would be as fast or faster here for (index_type i = 0; i < len; ++i) if (!(operator[](i) == other[i])) return false; return true; } // Return true if this array does not have the same length and the same // elements as |other|. bool operator!=(const self_type& other) const { return !operator==(other); } template nsTArray& operator=(const nsTArray& other) { ReplaceElementsAt(0, Length(), other.Elements(), other.Length()); return *this; } // // Accessor methods // // This method provides direct access to the array elements. // @return A pointer to the first element of the array. If the array is // empty, then this pointer must not be dereferenced. elem_type* Elements() { return reinterpret_cast(Hdr() + 1); } // This method provides direct, readonly access to the array elements. // @return A pointer to the first element of the array. If the array is // empty, then this pointer must not be dereferenced. const elem_type* Elements() const { return reinterpret_cast(Hdr() + 1); } // This method provides direct access to the i'th element of the array. // The given index must be within the array bounds. // @param i The index of an element in the array. // @return A reference to the i'th element of the array. elem_type& ElementAt(index_type i) { NS_ASSERTION(i < Length(), "invalid array index"); return Elements()[i]; } // This method provides direct, readonly access to the i'th element of the // array. The given index must be within the array bounds. // @param i The index of an element in the array. // @return A const reference to the i'th element of the array. const elem_type& ElementAt(index_type i) const { NS_ASSERTION(i < Length(), "invalid array index"); return Elements()[i]; } // This method provides direct access to the i'th element of the array in // a bounds safe manner. If the requested index is out of bounds the // provided default value is returned. // @param i The index of an element in the array. // @param def The value to return if the index is out of bounds. elem_type& SafeElementAt(index_type i, elem_type& def) { return i < Length() ? Elements()[i] : def; } // This method provides direct access to the i'th element of the array in // a bounds safe manner. If the requested index is out of bounds the // provided default value is returned. // @param i The index of an element in the array. // @param def The value to return if the index is out of bounds. const elem_type& SafeElementAt(index_type i, const elem_type& def) const { return i < Length() ? Elements()[i] : def; } // Shorthand for ElementAt(i) elem_type& operator[](index_type i) { return ElementAt(i); } // Shorthand for ElementAt(i) const elem_type& operator[](index_type i) const { return ElementAt(i); } // // Search methods // // This method searches for the first element in this array that is equal // to the given element. // @param item The item to search for. // @param comp The Comparator used to determine element equality. // @return PR_TRUE if the element was found. template PRBool Contains(const Item& item, const Comparator& comp) const { return IndexOf(item, 0, comp) != NoIndex; } // This method searches for the first element in this array that is equal // to the given element. This method assumes that 'operator==' is defined // for elem_type. // @param item The item to search for. // @return PR_TRUE if the element was found. template PRBool Contains(const Item& item) const { return IndexOf(item) != NoIndex; } // This method searches for the offset of the first element in this // array that is equal to the given element. // @param item The item to search for. // @param start The index to start from. // @param comp The Comparator used to determine element equality. // @return The index of the found element or NoIndex if not found. template index_type IndexOf(const Item& item, index_type start, const Comparator& comp) const { const elem_type* iter = Elements() + start, *end = Elements() + Length(); for (; iter != end; ++iter) { if (comp.Equals(*iter, item)) return index_type(iter - Elements()); } return NoIndex; } // This method searches for the offset of the first element in this // array that is equal to the given element. This method assumes // that 'operator==' is defined for elem_type. // @param item The item to search for. // @param start The index to start from. // @return The index of the found element or NoIndex if not found. template index_type IndexOf(const Item& item, index_type start = 0) const { return IndexOf(item, start, nsDefaultComparator()); } // This method searches for the offset of the last element in this // array that is equal to the given element. // @param item The item to search for. // @param start The index to start from. If greater than or equal to the // length of the array, then the entire array is searched. // @param comp The Comparator used to determine element equality. // @return The index of the found element or NoIndex if not found. template index_type LastIndexOf(const Item& item, index_type start, const Comparator& comp) const { if (start >= Length()) start = Length() - 1; const elem_type* end = Elements() - 1, *iter = end + start + 1; for (; iter != end; --iter) { if (comp.Equals(*iter, item)) return index_type(iter - Elements()); } return NoIndex; } // This method searches for the offset of the last element in this // array that is equal to the given element. This method assumes // that 'operator==' is defined for elem_type. // @param item The item to search for. // @param start The index to start from. If greater than or equal to the // length of the array, then the entire array is searched. // @return The index of the found element or NoIndex if not found. template index_type LastIndexOf(const Item& item, index_type start = NoIndex) const { return LastIndexOf(item, start, nsDefaultComparator()); } // This method searches for the offset for the element in this array // that is equal to the given element. The array is assumed to be sorted. // @param item The item to search for. // @param comp The Comparator used. // @return The index of the found element or NoIndex if not found. template index_type BinaryIndexOf(const Item& item, const Comparator& comp) const { index_type low = 0, high = Length(); while (high > low) { index_type mid = (high + low) >> 1; if (comp.Equals(ElementAt(mid), item)) return mid; if (comp.LessThan(ElementAt(mid), item)) low = mid + 1; else high = mid; } return NoIndex; } // This method searches for the offset for the element in this array // that is equal to the given element. The array is assumed to be sorted. // This method assumes that 'operator==' and 'operator<' are defined. // @param item The item to search for. // @return The index of the found element or NoIndex if not found. template index_type BinaryIndexOf(const Item& item) const { return BinaryIndexOf(item, nsDefaultComparator()); } // // Mutation methods // // This method replaces a range of elements in this array. // @param start The starting index of the elements to replace. // @param count The number of elements to replace. This may be zero to // insert elements without removing any existing elements. // @param array The values to copy into this array. Must be non-null, // and these elements must not already exist in the array // being modified. // @param arrayLen The number of values to copy into this array. // @return A pointer to the new elements in the array, or null if // the operation failed due to insufficient memory. template elem_type *ReplaceElementsAt(index_type start, size_type count, const Item* array, size_type arrayLen) { // Adjust memory allocation up-front to catch errors. if (!EnsureCapacity(Length() + arrayLen - count, sizeof(elem_type))) return nsnull; DestructRange(start, count); ShiftData(start, count, arrayLen, sizeof(elem_type)); AssignRange(start, arrayLen, array); return Elements() + start; } // A variation on the ReplaceElementsAt method defined above. template elem_type *ReplaceElementsAt(index_type start, size_type count, const nsTArray& array) { return ReplaceElementsAt(start, count, array.Elements(), array.Length()); } // A variation on the ReplaceElementsAt method defined above. template elem_type *ReplaceElementsAt(index_type start, size_type count, const Item& item) { return ReplaceElementsAt(start, count, &item, 1); } // A variation on the ReplaceElementsAt method defined above. template elem_type *InsertElementsAt(index_type index, const Item* array, size_type arrayLen) { return ReplaceElementsAt(index, 0, array, arrayLen); } // A variation on the ReplaceElementsAt method defined above. template elem_type *InsertElementsAt(index_type index, const nsTArray& array) { return ReplaceElementsAt(index, 0, array.Elements(), array.Length()); } // A variation on the ReplaceElementsAt method defined above. template elem_type *InsertElementAt(index_type index, const Item& item) { return ReplaceElementsAt(index, 0, &item, 1); } // Insert a new element without copy-constructing. This is useful to avoid // temporaries. // @return A pointer to the newly inserted element, or null on OOM. elem_type* InsertElementAt(index_type index) { if (!EnsureCapacity(Length() + 1, sizeof(elem_type))) return nsnull; ShiftData(index, 0, 1, sizeof(elem_type)); elem_type *elem = Elements() + index; elem_traits::Construct(elem); return elem; } // This method searches for the least index of the greatest // element less than or equal to |item|. If |item| is inserted at // this index, the array will remain sorted. True is returned iff // this index is also equal to |item|. In this case, the returned // index may point to the start of multiple copies of |item|. // @param item The item to search for. // @param comp The Comparator used. // @outparam idx The index of greatest element <= to |item| // @return True iff |item == array[*idx]|. // @precondition The array is sorted template PRBool GreatestIndexLtEq(const Item& item, const Comparator& comp, index_type* idx NS_OUTPARAM) const { // Nb: we could replace all the uses of "BinaryIndexOf" with this // function, but BinaryIndexOf will be oh-so-slightly faster so // it's not strictly desired to do. // invariant: low <= [idx] < high index_type low = 0, high = Length(); while (high > low) { index_type mid = (high + low) >> 1; if (comp.Equals(ElementAt(mid), item)) { // we might have the array [..., 2, 4, 4, 4, 4, 4, 5, ...] // and be searching for "4". it's arbitrary where mid ends // up here, so we back it up to the first instance to maintain // the "least index ..." we promised above. do { --mid; } while (NoIndex != mid && comp.Equals(ElementAt(mid), item)); *idx = ++mid; return PR_TRUE; } if (comp.LessThan(ElementAt(mid), item)) // invariant: low <= idx < high low = mid + 1; else // invariant: low <= idx < high high = mid; } // low <= idx < high, so insert at high ("shifting" high up by // 1) to maintain invariant. // (or insert at low, since low==high; just a matter of taste here.) *idx = high; return PR_FALSE; } // A variation on the GreatestIndexLtEq method defined above. template PRBool GreatestIndexLtEq(const Item& item, index_type& idx, const Comparator& comp) const { return GreatestIndexLtEq(item, comp, &idx); } // A variation on the GreatestIndexLtEq method defined above. template PRBool GreatestIndexLtEq(const Item& item, index_type& idx) const { return GreatestIndexLtEq(item, nsDefaultComparator(), &idx); } // Inserts |item| at such an index to guarantee that if the array // was previously sorted, it will remain sorted after this // insertion. template elem_type *InsertElementSorted(const Item& item, const Comparator& comp) { index_type index; GreatestIndexLtEq(item, comp, &index); return InsertElementAt(index, item); } // A variation on the InsertElementSorted metod defined above. template elem_type *InsertElementSorted(const Item& item) { return InsertElementSorted(item, nsDefaultComparator()); } // This method appends elements to the end of this array. // @param array The elements to append to this array. // @param arrayLen The number of elements to append to this array. // @return A pointer to the new elements in the array, or null if // the operation failed due to insufficient memory. template elem_type *AppendElements(const Item* array, size_type arrayLen) { if (!EnsureCapacity(Length() + arrayLen, sizeof(elem_type))) return nsnull; index_type len = Length(); AssignRange(len, arrayLen, array); IncrementLength(arrayLen); return Elements() + len; } // A variation on the AppendElements method defined above. template elem_type *AppendElements(const nsTArray& array) { return AppendElements(array.Elements(), array.Length()); } // A variation on the AppendElements method defined above. template elem_type *AppendElement(const Item& item) { return AppendElements(&item, 1); } // Append new elements without copy-constructing. This is useful to avoid // temporaries. // @return A pointer to the newly appended elements, or null on OOM. elem_type *AppendElements(size_type count) { if (!EnsureCapacity(Length() + count, sizeof(elem_type))) return nsnull; elem_type *elems = Elements() + Length(); size_type i; for (i = 0; i < count; ++i) { elem_traits::Construct(elems + i); } IncrementLength(count); return elems; } // Append a new element without copy-constructing. This is useful to avoid // temporaries. // @return A pointer to the newly appended element, or null on OOM. elem_type *AppendElement() { return AppendElements(1); } // Move all elements from another array to the end of this array without // calling copy constructors or destructors. // @return A pointer to the newly appended elements, or null on OOM. template elem_type *MoveElementsFrom(nsTArray& array) { NS_PRECONDITION(&array != this, "argument must be different array"); index_type len = Length(); index_type otherLen = array.Length(); if (!EnsureCapacity(len + otherLen, sizeof(elem_type))) return nsnull; memcpy(Elements() + len, array.Elements(), otherLen * sizeof(elem_type)); IncrementLength(otherLen); array.ShiftData(0, otherLen, 0, sizeof(elem_type)); return Elements() + len; } // This method removes a range of elements from this array. // @param start The starting index of the elements to remove. // @param count The number of elements to remove. void RemoveElementsAt(index_type start, size_type count) { NS_ASSERTION(count == 0 || start < Length(), "Invalid start index"); NS_ASSERTION(start + count <= Length(), "Invalid length"); DestructRange(start, count); ShiftData(start, count, 0, sizeof(elem_type)); } // A variation on the RemoveElementsAt method defined above. void RemoveElementAt(index_type index) { RemoveElementsAt(index, 1); } // A variation on the RemoveElementsAt method defined above. void Clear() { RemoveElementsAt(0, Length()); } // This helper function combines IndexOf with RemoveElementAt to "search // and destroy" the first element that is equal to the given element. // @param item The item to search for. // @param comp The Comparator used to determine element equality. // @return PR_TRUE if the element was found template PRBool RemoveElement(const Item& item, const Comparator& comp) { index_type i = IndexOf(item, 0, comp); if (i == NoIndex) return PR_FALSE; RemoveElementAt(i); return PR_TRUE; } // A variation on the RemoveElement method defined above that assumes // that 'operator==' is defined for elem_type. template PRBool RemoveElement(const Item& item) { return RemoveElement(item, nsDefaultComparator()); } // This helper function combines GreatestIndexLtEq with // RemoveElementAt to "search and destroy" the first element that // is equal to the given element. // @param item The item to search for. // @param comp The Comparator used to determine element equality. // @return PR_TRUE if the element was found template PRBool RemoveElementSorted(const Item& item, const Comparator& comp) { index_type index; PRBool found = GreatestIndexLtEq(item, comp, &index); if (found) RemoveElementAt(index); return found; } // A variation on the RemoveElementSorted method defined above. template PRBool RemoveElementSorted(const Item& item) { return RemoveElementSorted(item, nsDefaultComparator()); } // This method causes the elements contained in this array and the given // array to be swapped. // NOTE: This method isn't heavily optimized if either array is an // nsAutoTArray. template PRBool SwapElements(nsTArray& other) { return SwapArrayElements(other, sizeof(elem_type)); } // // Allocation // // This method may increase the capacity of this array object by the // specified amount. This method may be called in advance of several // AppendElement operations to minimize heap re-allocations. This method // will not reduce the number of elements in this array. // @param capacity The desired capacity of this array. // @return True if the operation succeeded; false if we ran out of memory PRBool SetCapacity(size_type capacity) { return EnsureCapacity(capacity, sizeof(elem_type)); } // This method modifies the length of the array. If the new length is // larger than the existing length of the array, then new elements will be // constructed using elem_type's default constructor. Otherwise, this call // removes elements from the array (see also RemoveElementsAt). // @param newLen The desired length of this array. // @return True if the operation succeeded; false otherwise. // See also TruncateLength if the new length is guaranteed to be // smaller than the old. PRBool SetLength(size_type newLen) { size_type oldLen = Length(); if (newLen > oldLen) { return InsertElementsAt(oldLen, newLen - oldLen) != nsnull; } TruncateLength(newLen); return PR_TRUE; } // This method modifies the length of the array, but may only be // called when the new length is shorter than the old. It can // therefore be called when elem_type has no default constructor, // unlike SetLength. It removes elements from the array (see also // RemoveElementsAt). // @param newLen The desired length of this array. void TruncateLength(size_type newLen) { size_type oldLen = Length(); NS_ABORT_IF_FALSE(newLen <= oldLen, "caller should use SetLength instead"); RemoveElementsAt(newLen, oldLen - newLen); } // This method ensures that the array has length at least the given // length. If the current length is shorter than the given length, // then new elements will be constructed using elem_type's default // constructor. // @param minLen The desired minimum length of this array. // @return True if the operation succeeded; false otherwise. PRBool EnsureLengthAtLeast(size_type minLen) { size_type oldLen = Length(); if (minLen > oldLen) { return InsertElementsAt(oldLen, minLen - oldLen) != nsnull; } return PR_TRUE; } // This method inserts elements into the array, constructing // them using elem_type's default constructor. // @param index the place to insert the new elements. This must be no // greater than the current length of the array. // @param count the number of elements to insert elem_type *InsertElementsAt(index_type index, size_type count) { if (!base_type::InsertSlotsAt(index, count, sizeof(elem_type))) { return nsnull; } // Initialize the extra array elements elem_type *iter = Elements() + index, *end = iter + count; for (; iter != end; ++iter) { elem_traits::Construct(iter); } return Elements() + index; } // This method inserts elements into the array, constructing them // elem_type's copy constructor (or whatever one-arg constructor // happens to match the Item type). // @param index the place to insert the new elements. This must be no // greater than the current length of the array. // @param count the number of elements to insert. // @param item the value to use when constructing the new elements. template elem_type *InsertElementsAt(index_type index, size_type count, const Item& item) { if (!base_type::InsertSlotsAt(index, count, sizeof(elem_type))) { return nsnull; } // Initialize the extra array elements elem_type *iter = Elements() + index, *end = iter + count; for (; iter != end; ++iter) { elem_traits::Construct(iter, item); } return Elements() + index; } // This method may be called to minimize the memory used by this array. void Compact() { ShrinkCapacity(sizeof(elem_type)); } // // Sorting // // This method sorts the elements of the array. It uses the LessThan // method defined on the given Comparator object to collate elements. // @param comp The Comparator used to collate elements. template void Sort(const Comparator& comp) { NS_QuickSort(Elements(), Length(), sizeof(elem_type), nsQuickSortComparator::Compare, const_cast(&comp)); } // A variation on the Sort method defined above that assumes that // 'operator<' is defined for elem_type. void Sort() { Sort(nsDefaultComparator()); } // // Binary Heap // // Sorts the array into a binary heap. // @param comp The Comparator used to create the heap template void MakeHeap(const Comparator& comp) { if (!Length()) { return; } index_type index = (Length() - 1) / 2; do { SiftDown(index, comp); } while (index--); } // A variation on the MakeHeap method defined above. void MakeHeap() { MakeHeap(nsDefaultComparator()); } // Adds an element to the heap // @param item The item to add // @param comp The Comparator used to sift-up the item template elem_type *PushHeap(const Item& item, const Comparator& comp) { if (!base_type::InsertSlotsAt(Length(), 1, sizeof(elem_type))) { return nsnull; } // Sift up the new node elem_type *elem = Elements(); index_type index = Length() - 1; index_type parent_index = (index - 1) / 2; while (index && comp.LessThan(elem[parent_index], item)) { elem[index] = elem[parent_index]; index = parent_index; parent_index = (index - 1) / 2; } elem[index] = item; return &elem[index]; } // A variation on the PushHeap method defined above. template elem_type *PushHeap(const Item& item) { return PushHeap(item, nsDefaultComparator()); } // Delete the root of the heap and restore the heap // @param comp The Comparator used to restore the heap template void PopHeap(const Comparator& comp) { if (!Length()) { return; } index_type last_index = Length() - 1; elem_type *elem = Elements(); elem[0] = elem[last_index]; TruncateLength(last_index); if (Length()) { SiftDown(0, comp); } } // A variation on the PopHeap method defined above. void PopHeap() { PopHeap(nsDefaultComparator()); } protected: using base_type::Hdr; using base_type::ShrinkCapacity; // This method invokes elem_type's destructor on a range of elements. // @param start The index of the first element to destroy. // @param count The number of elements to destroy. void DestructRange(index_type start, size_type count) { elem_type *iter = Elements() + start, *end = iter + count; for (; iter != end; ++iter) { elem_traits::Destruct(iter); } } // This method invokes elem_type's copy-constructor on a range of elements. // @param start The index of the first element to construct. // @param count The number of elements to construct. // @param values The array of elements to copy. template void AssignRange(index_type start, size_type count, const Item *values) { elem_type *iter = Elements() + start, *end = iter + count; for (; iter != end; ++iter, ++values) { elem_traits::Construct(iter, *values); } } // This method sifts an item down to its proper place in a binary heap // @param index The index of the node to start sifting down from // @param comp The Comparator used to sift down template void SiftDown(index_type index, const Comparator& comp) { elem_type *elem = Elements(); elem_type item = elem[index]; index_type end = Length() - 1; while ((index * 2) < end) { const index_type left = (index * 2) + 1; const index_type right = (index * 2) + 2; const index_type parent_index = index; if (comp.LessThan(item, elem[left])) { if (left < end && comp.LessThan(elem[left], elem[right])) { index = right; } else { index = left; } } else if (left < end && comp.LessThan(item, elem[right])) { index = right; } else { break; } elem[parent_index] = elem[index]; } elem[index] = item; } }; // // Convenience subtypes of nsTArray. // template class FallibleTArray : public nsTArray { public: typedef nsTArray base_type; typedef typename base_type::size_type size_type; FallibleTArray() {} explicit FallibleTArray(size_type capacity) : base_type(capacity) {} FallibleTArray(const FallibleTArray& other) : base_type(other) {} }; #ifdef MOZALLOC_HAVE_XMALLOC template class InfallibleTArray : public nsTArray { public: typedef nsTArray base_type; typedef typename base_type::size_type size_type; InfallibleTArray() {} explicit InfallibleTArray(size_type capacity) : base_type(capacity) {} InfallibleTArray(const InfallibleTArray& other) : base_type(other) {} }; #endif template class nsAutoArrayBase : public TArrayBase { public: typedef TArrayBase base_type; typedef typename base_type::Header Header; typedef typename base_type::elem_type elem_type; nsAutoArrayBase() { *base_type::PtrToHdr() = reinterpret_cast(&mAutoBuf); base_type::Hdr()->mLength = 0; base_type::Hdr()->mCapacity = N; base_type::Hdr()->mIsAutoArray = 1; NS_ASSERTION(base_type::GetAutoArrayBuffer() == reinterpret_cast(&mAutoBuf), "GetAutoArrayBuffer needs to be fixed"); } protected: union { char mAutoBuf[sizeof(Header) + N * sizeof(elem_type)]; PRUint64 dummy; }; }; template class nsAutoTArray : public nsAutoArrayBase, N> { public: nsAutoTArray() {} }; template class AutoFallibleTArray : public nsAutoArrayBase, N> { public: AutoFallibleTArray() {} }; #if defined(MOZALLOC_HAVE_XMALLOC) template class AutoInfallibleTArray : public nsAutoArrayBase, N> { public: AutoInfallibleTArray() {} }; #endif // specializations for N = 0. this makes the inheritance model easier for // templated users of nsAutoTArray. template class nsAutoTArray : public nsAutoArrayBase< nsTArray, 0> { public: nsAutoTArray() {} }; template class AutoFallibleTArray : public nsAutoArrayBase< FallibleTArray, 0> { public: AutoFallibleTArray() {} }; #if defined(MOZALLOC_HAVE_XMALLOC) template class AutoInfallibleTArray : public nsAutoArrayBase< InfallibleTArray, 0> { public: AutoInfallibleTArray() {} }; #endif // Definitions of nsTArray methods #include "nsTArray-inl.h" #endif // nsTArray_h__