/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* * The contents of this file are subject to the Netscape Public License * Version 1.1 (the "NPL"); you may not use this file except in * compliance with the NPL. You may obtain a copy of the NPL at * http://www.mozilla.org/NPL/ * * Software distributed under the NPL is distributed on an "AS IS" basis, * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL * for the specific language governing rights and limitations under the * NPL. * * The Initial Developer of this code under the NPL is Netscape * Communications Corporation. Portions created by Netscape are * Copyright (C) 1998 Netscape Communications Corporation. All Rights * Reserved. */ /* The code are copy from rev 3.7 mozilla/nsprpub/src/io/prprf.c */ /* ** Port from prprf.c by : Frank Yung-Fong Tang */ /* ** Portable safe sprintf code. ** ** Author: Kipp E.B. Hickman */ #include #include #include #include #include "prlong.h" #include "prlog.h" #include "prmem.h" #include "nsCRT.h" #include "nsTextFormater.h" #include "nsString.h" /* ** Note: on some platforms va_list is defined as an array, ** and requires array notation. */ #if (defined(LINUX) && defined(__powerpc__)) || defined(WIN16) || \ defined(QNX) || (defined(__NetBSD__) && defined(__powerpc__)) #define VARARGS_ASSIGN(foo, bar) foo[0] = bar[0] #else #define VARARGS_ASSIGN(foo, bar) (foo) = (bar) #endif /* ** WARNING: This code may *NOT* call PR_LOG (because PR_LOG calls it) */ /* ** XXX This needs to be internationalized! */ typedef struct SprintfStateStr SprintfState; struct SprintfStateStr { int (*stuff)(SprintfState *ss, const PRUnichar *sp, PRUint32 len); PRUnichar *base; PRUnichar *cur; PRUint32 maxlen; int (*func)(void *arg, const PRUnichar *sp, PRUint32 len); void *arg; }; /* ** Numbered Arguement State */ struct NumArgState{ int type; /* type of the current ap */ va_list ap; /* point to the corresponding position on ap */ }; static PRBool l10n_debug_init = PR_FALSE; static PRBool l10n_debug = PR_FALSE; #define NAS_DEFAULT_NUM 20 /* default number of NumberedArgumentState array */ #define TYPE_INT16 0 #define TYPE_UINT16 1 #define TYPE_INTN 2 #define TYPE_UINTN 3 #define TYPE_INT32 4 #define TYPE_UINT32 5 #define TYPE_INT64 6 #define TYPE_UINT64 7 #define TYPE_STRING 8 #define TYPE_DOUBLE 9 #define TYPE_INTSTR 10 #define TYPE_UNISTRING 11 #define TYPE_UNKNOWN 20 #define _LEFT 0x1 #define _SIGNED 0x2 #define _SPACED 0x4 #define _ZEROS 0x8 #define _NEG 0x10 /* ** Fill into the buffer using the data in src */ static int fill2(SprintfState *ss, const PRUnichar *src, int srclen, int width, int flags) { PRUnichar space = ' '; int rv; width -= srclen; if ((width > 0) && ((flags & _LEFT) == 0)) { /* Right adjusting */ if (flags & _ZEROS) { space = '0'; } while (--width >= 0) { rv = (*ss->stuff)(ss, &space, 1); if (rv < 0) { return rv; } } } /* Copy out the source data */ rv = (*ss->stuff)(ss, src, srclen); if (rv < 0) { return rv; } if ((width > 0) && ((flags & _LEFT) != 0)) { /* Left adjusting */ while (--width >= 0) { rv = (*ss->stuff)(ss, &space, 1); if (rv < 0) { return rv; } } } return 0; } /* ** Fill a number. The order is: optional-sign zero-filling conversion-digits */ static int fill_n(SprintfState *ss, const PRUnichar *src, int srclen, int width, int prec, int type, int flags) { int zerowidth = 0; int precwidth = 0; int signwidth = 0; int leftspaces = 0; int rightspaces = 0; int cvtwidth; int rv; PRUnichar sign; PRUnichar space = ' '; PRUnichar zero = '0'; if ((type & 1) == 0) { if (flags & _NEG) { sign = '-'; signwidth = 1; } else if (flags & _SIGNED) { sign = '+'; signwidth = 1; } else if (flags & _SPACED) { sign = ' '; signwidth = 1; } } cvtwidth = signwidth + srclen; if (prec > 0) { if (prec > srclen) { precwidth = prec - srclen; /* Need zero filling */ cvtwidth += precwidth; } } if ((flags & _ZEROS) && (prec < 0)) { if (width > cvtwidth) { zerowidth = width - cvtwidth; /* Zero filling */ cvtwidth += zerowidth; } } if (flags & _LEFT) { if (width > cvtwidth) { /* Space filling on the right (i.e. left adjusting) */ rightspaces = width - cvtwidth; } } else { if (width > cvtwidth) { /* Space filling on the left (i.e. right adjusting) */ leftspaces = width - cvtwidth; } } while (--leftspaces >= 0) { rv = (*ss->stuff)(ss, &space, 1); if (rv < 0) { return rv; } } if (signwidth) { rv = (*ss->stuff)(ss, &sign, 1); if (rv < 0) { return rv; } } while (--precwidth >= 0) { rv = (*ss->stuff)(ss, &space, 1); if (rv < 0) { return rv; } } while (--zerowidth >= 0) { rv = (*ss->stuff)(ss, &zero, 1); if (rv < 0) { return rv; } } rv = (*ss->stuff)(ss, src, srclen); if (rv < 0) { return rv; } while (--rightspaces >= 0) { rv = (*ss->stuff)(ss, &space, 1); if (rv < 0) { return rv; } } return 0; } /* ** Convert a long into its printable form */ static int cvt_l(SprintfState *ss, long num, int width, int prec, int radix, int type, int flags, const PRUnichar *hexp) { PRUnichar cvtbuf[100]; PRUnichar *cvt; int digits; /* according to the man page this needs to happen */ if ((prec == 0) && (num == 0)) { return 0; } /* ** Converting decimal is a little tricky. In the unsigned case we ** need to stop when we hit 10 digits. In the signed case, we can ** stop when the number is zero. */ cvt = &cvtbuf[0] + sizeof(cvtbuf); digits = 0; while (num) { int digit = (((unsigned long)num) % radix) & 0xF; *--cvt = hexp[digit]; digits++; num = (long)(((unsigned long)num) / radix); } if (digits == 0) { *--cvt = '0'; digits++; } /* ** Now that we have the number converted without its sign, deal with ** the sign and zero padding. */ return fill_n(ss, cvt, digits, width, prec, type, flags); } /* ** Convert a 64-bit integer into its printable form */ static int cvt_ll(SprintfState *ss, PRInt64 num, int width, int prec, int radix, int type, int flags, const PRUnichar *hexp) { PRUnichar cvtbuf[100]; PRUnichar *cvt; int digits; PRInt64 rad; /* according to the man page this needs to happen */ if ((prec == 0) && (LL_IS_ZERO(num))) { return 0; } /* ** Converting decimal is a little tricky. In the unsigned case we ** need to stop when we hit 10 digits. In the signed case, we can ** stop when the number is zero. */ LL_I2L(rad, radix); cvt = &cvtbuf[0] + sizeof(cvtbuf); digits = 0; while (!LL_IS_ZERO(num)) { PRInt32 digit; PRInt64 quot, rem; LL_UDIVMOD(", &rem, num, rad); LL_L2I(digit, rem); *--cvt = hexp[digit & 0xf]; digits++; num = quot; } if (digits == 0) { *--cvt = '0'; digits++; } /* ** Now that we have the number converted without its sign, deal with ** the sign and zero padding. */ return fill_n(ss, cvt, digits, width, prec, type, flags); } /* ** Convert a double precision floating point number into its printable ** form. ** ** XXX stop using sprintf to convert floating point */ static int cvt_f(SprintfState *ss, double d, const PRUnichar *fmt0, const PRUnichar *fmt1) { char fin[20]; char fout[300]; PRUnichar fout2[300]; int amount = fmt1 - fmt0; int i; PR_ASSERT((amount > 0) && (amount < (int)sizeof(fin))); if (amount >= (int)sizeof(fin)) { /* Totally bogus % command to sprintf. Just ignore it */ return 0; } for(i=0;istuff)(ss, fout2, nsCRT::strlen(fout2)); } /* ** Convert a string into its printable form. "width" is the output ** width. "prec" is the maximum number of characters of "s" to output, ** where -1 means until NUL. */ static int cvt_S(SprintfState *ss, const PRUnichar *s, int width, int prec, int flags) { int slen; if (prec == 0) return 0; /* Limit string length by precision value */ slen = s ? nsCRT::strlen(s) : 6; if (prec > 0) { if (prec < slen) { slen = prec; } } /* and away we go */ nsAutoString nullstr("(null)"); return fill2(ss, s ? s : nullstr.GetUnicode(), slen, width, flags); } static PRUnichar* UTF8ToUCS2(const char *aSrc, PRUint32 aSrcLen, PRUnichar* aDest, PRUint32 aDestLen) { const char *in, *inend; inend = aSrc + aSrcLen; PRUnichar *out; PRUint32 state; PRUint32 ucs4; // decide the length of the UCS2 first. PRUint32 needLen = 0; for(in=aSrc,state=0,ucs4=0;in < inend; in++) { if(0 == state) { if( 0 == (0x80 & (*in))) { needLen++; } else if( 0xC0 == (0xE0 & (*in))) { needLen++; state=1; } else if( 0xE0 == (0xF0 & (*in))) { needLen++; state=2; } else if( 0xF0 == (0xF8 & (*in))) { needLen+=2; state=3; } else if( 0xF8 == (0xFC & (*in))) { needLen+=2; state=4; } else if( 0xFC == (0xFE & (*in))) { needLen+=2; state=5; } else { needLen++; state=0; } } else { NS_ASSERTION( (0x80 == (0xC0 & (*in))) , "The input string is not in utf8"); if(0x80 == (0xC0 & (*in))) { state--; } else { state=0; } } } needLen++; // add null termination. if(needLen >= aDestLen) aDest = (PRUnichar*)PR_MALLOC(sizeof(PRUnichar) * needLen); if(nsnull == aDest) return nsnull; out= aDest; for(in=aSrc,state=0,ucs4=0;in < inend; in++) { if(0 == state) { if( 0 == (0x80 & (*in))) { // ASCII *out++ = (PRUnichar)*in; } else if( 0xC0 == (0xE0 & (*in))) { // 2 bytes UTF8 ucs4 = (PRUint32)(*in); ucs4 = (ucs4 << 6) & 0x000007C0L; state=1; } else if( 0xE0 == (0xF0 & (*in))) { ucs4 = (PRUint32)(*in); ucs4 = (ucs4 << 12) & 0x0000F000L; state=2; } else if( 0xF0 == (0xF8 & (*in))) { ucs4 = (PRUint32)(*in); ucs4 = (ucs4 << 18) & 0x001F0000L; state=3; } else if( 0xF8 == (0xFC & (*in))) { ucs4 = (PRUint32)(*in); ucs4 = (ucs4 << 24) & 0x03000000L; state=4; } else if( 0xFC == (0xFE & (*in))) { ucs4 = (PRUint32)(*in); ucs4 = (ucs4 << 30) & 0x40000000L; state=5; } else { NS_ASSERTION(0, "The input string is not in utf8"); state=0; ucs4=0; } } else { NS_ASSERTION( (0x80 == (0xC0 & (*in))) , "The input string is not in utf8"); if(0x80 == (0xC0 & (*in))) { PRUint32 tmp = (*in); int shift = (state-1) * 6; tmp = (tmp << shift ) & ( 0x0000003FL << shift); ucs4 |= tmp; if(0 == --state) { if(ucs4 >= 0x00010000) { if(ucs4 >= 0x001F0000) { *out++ = 0xFFFD; } else { ucs4 -= 0x00010000; *out++ = 0xD800 | (0x000003FF & (ucs4 >> 10)); *out++ = 0xDC00 | (0x000003FF & ucs4); } } else { *out++ = ucs4; } ucs4=0; } } else { state=0; ucs4=0; } } } *out = 0x0000; return aDest; } /* ** Convert a string into its printable form. "width" is the output ** width. "prec" is the maximum number of characters of "s" to output, ** where -1 means until NUL. */ static int cvt_s(SprintfState *ss, const char *s, int width, int prec, int flags) { // convert s from UTF8 to PRUnichar* // Fix me !!! PRUnichar buf[256]; PRUnichar *retbuf = nsnull; retbuf = UTF8ToUCS2(s, nsCRT::strlen(s), buf, 256); if(nsnull == retbuf) return -1; int ret = cvt_S(ss, retbuf, width, prec, flags); if(retbuf != buf) PR_DELETE(retbuf); return ret; } /* ** BiuldArgArray stands for Numbered Argument list Sprintf ** for example, ** fmp = "%4$i, %2$d, %3s, %1d"; ** the number must start from 1, and no gap among them */ static struct NumArgState* BuildArgArray( const PRUnichar *fmt, va_list ap, int* rv, struct NumArgState* nasArray ) { int number = 0, cn = 0, i; const PRUnichar* p; PRUnichar c; struct NumArgState* nas; /* ** set the l10n_debug flag ** this routine should be executed only once ** 'cause getenv does take time */ if( !l10n_debug_init ){ l10n_debug_init = PR_TRUE; const char *env; env = getenv( "NETSCAPE_LOCALIZATION_DEBUG" ); if( ( env != NULL ) && ( *env == '1' ) ){ l10n_debug = PR_TRUE; } } /* ** first pass: ** detemine how many legal % I have got, then allocate space */ p = fmt; *rv = 0; i = 0; while( ( c = *p++ ) != 0 ){ if( c != '%' ) continue; if( ( c = *p++ ) == '%' ) /* skip %% case */ continue; while( c != 0 ){ if( c > '9' || c < '0' ){ if( c == '$' ){ /* numbered argument csae */ if( i > 0 ){ *rv = -1; return NULL; } number++; break; } else{ /* non-numbered argument case */ if( number > 0 ){ *rv = -1; return NULL; } i = 1; break; } } c = *p++; } } if( number == 0 ){ return NULL; } if( number > NAS_DEFAULT_NUM ){ nas = (struct NumArgState*)PR_MALLOC( number * sizeof( struct NumArgState ) ); if( !nas ){ *rv = -1; return NULL; } } else { nas = nasArray; } for( i = 0; i < number; i++ ){ nas[i].type = TYPE_UNKNOWN; } /* ** second pass: ** set nas[].type */ p = fmt; while( ( c = *p++ ) != 0 ){ if( c != '%' ) continue; c = *p++; if( c == '%' ) continue; cn = 0; while( c && c != '$' ){ /* should imporve error check later */ cn = cn*10 + c - '0'; c = *p++; } if( !c || cn < 1 || cn > number ){ *rv = -1; break; } /* nas[cn] starts from 0, and make sure nas[cn].type is not assigned */ cn--; if( nas[cn].type != TYPE_UNKNOWN ) continue; c = *p++; /* width */ if (c == '*') { /* not supported feature, for the argument is not numbered */ *rv = -1; break; } else { while ((c >= '0') && (c <= '9')) { c = *p++; } } /* precision */ if (c == '.') { c = *p++; if (c == '*') { /* not supported feature, for the argument is not numbered */ *rv = -1; break; } else { while ((c >= '0') && (c <= '9')) { c = *p++; } } } /* size */ nas[cn].type = TYPE_INTN; if (c == 'h') { nas[cn].type = TYPE_INT16; c = *p++; } else if (c == 'L') { /* XXX not quite sure here */ nas[cn].type = TYPE_INT64; c = *p++; } else if (c == 'l') { nas[cn].type = TYPE_INT32; c = *p++; if (c == 'l') { nas[cn].type = TYPE_INT64; c = *p++; } } /* format */ switch (c) { case 'd': case 'c': case 'i': case 'o': case 'u': case 'x': case 'X': break; case 'e': case 'f': case 'g': nas[ cn ].type = TYPE_DOUBLE; break; case 'p': /* XXX should use cpp */ if (sizeof(void *) == sizeof(PRInt32)) { nas[ cn ].type = TYPE_UINT32; } else if (sizeof(void *) == sizeof(PRInt64)) { nas[ cn ].type = TYPE_UINT64; } else if (sizeof(void *) == sizeof(PRIntn)) { nas[ cn ].type = TYPE_UINTN; } else { nas[ cn ].type = TYPE_UNKNOWN; } break; case 'C': //case 'S': case 'E': case 'G': /* XXX not supported I suppose */ PR_ASSERT(0); nas[ cn ].type = TYPE_UNKNOWN; break; case 'S': nas[ cn ].type = TYPE_UNISTRING; break; case 's': nas[ cn ].type = TYPE_STRING; break; case 'n': nas[ cn ].type = TYPE_INTSTR; break; default: PR_ASSERT(0); nas[ cn ].type = TYPE_UNKNOWN; break; } /* get a legal para. */ if( nas[ cn ].type == TYPE_UNKNOWN ){ *rv = -1; break; } } /* ** third pass ** fill the nas[cn].ap */ if( *rv < 0 ){ if( nas != nasArray ) PR_DELETE( nas ); return NULL; } cn = 0; while( cn < number ){ if( nas[cn].type == TYPE_UNKNOWN ){ cn++; continue; } VARARGS_ASSIGN(nas[cn].ap, ap); switch( nas[cn].type ){ case TYPE_INT16: case TYPE_UINT16: case TYPE_INTN: case TYPE_UINTN: (void)va_arg( ap, PRIntn ); break; case TYPE_INT32: (void)va_arg( ap, PRInt32 ); break; case TYPE_UINT32: (void)va_arg( ap, PRUint32 ); break; case TYPE_INT64: (void)va_arg( ap, PRInt64 ); break; case TYPE_UINT64: (void)va_arg( ap, PRUint64 ); break; case TYPE_STRING: (void)va_arg( ap, char* ); break; case TYPE_INTSTR: (void)va_arg( ap, PRIntn* ); break; case TYPE_DOUBLE: (void)va_arg( ap, double ); break; case TYPE_UNISTRING: (void)va_arg( ap, PRUnichar* ); break; default: if( nas != nasArray ) PR_DELETE( nas ); *rv = -1; return NULL; } cn++; } return nas; } /* ** The workhorse sprintf code. */ static int dosprintf(SprintfState *ss, const PRUnichar *fmt, va_list ap) { PRUnichar c; int flags, width, prec, radix, type; union { PRUnichar ch; int i; long l; PRInt64 ll; double d; const char *s; const PRUnichar *S; int *ip; } u; PRUnichar space = ' '; const PRUnichar *fmt0; nsAutoString hex("0123456789abcdef"); nsAutoString HEX("0123456789ABCDEF"); const PRUnichar *hexp; int rv, i; struct NumArgState* nas = NULL; struct NumArgState nasArray[ NAS_DEFAULT_NUM ]; PRUnichar pattern[20]; const PRUnichar* dolPt = NULL; /* in "%4$.2f", dolPt will poiont to . */ /* ** build an argument array, IF the fmt is numbered argument ** list style, to contain the Numbered Argument list pointers */ nas = BuildArgArray( fmt, ap, &rv, nasArray ); if( rv < 0 ){ /* the fmt contains error Numbered Argument format, jliu@netscape.com */ PR_ASSERT(0); return rv; } while ((c = *fmt++) != 0) { if (c != '%') { rv = (*ss->stuff)(ss, fmt - 1, 1); if (rv < 0) { return rv; } continue; } fmt0 = fmt - 1; /* ** Gobble up the % format string. Hopefully we have handled all ** of the strange cases! */ flags = 0; c = *fmt++; if (c == '%') { /* quoting a % with %% */ rv = (*ss->stuff)(ss, fmt - 1, 1); if (rv < 0) { return rv; } continue; } if( nas != NULL ){ /* the fmt contains the Numbered Arguments feature */ i = 0; while( c && c != '$' ){ /* should imporve error check later */ i = ( i * 10 ) + ( c - '0' ); c = *fmt++; } if( nas[i-1].type == TYPE_UNKNOWN ){ if( nas && ( nas != nasArray ) ) PR_DELETE( nas ); return -1; } ap = nas[i-1].ap; dolPt = fmt; c = *fmt++; } /* * Examine optional flags. Note that we do not implement the * '#' flag of sprintf(). The ANSI C spec. of the '#' flag is * somewhat ambiguous and not ideal, which is perhaps why * the various sprintf() implementations are inconsistent * on this feature. */ while ((c == '-') || (c == '+') || (c == ' ') || (c == '0')) { if (c == '-') flags |= _LEFT; if (c == '+') flags |= _SIGNED; if (c == ' ') flags |= _SPACED; if (c == '0') flags |= _ZEROS; c = *fmt++; } if (flags & _SIGNED) flags &= ~_SPACED; if (flags & _LEFT) flags &= ~_ZEROS; /* width */ if (c == '*') { c = *fmt++; width = va_arg(ap, int); } else { width = 0; while ((c >= '0') && (c <= '9')) { width = (width * 10) + (c - '0'); c = *fmt++; } } /* precision */ prec = -1; if (c == '.') { c = *fmt++; if (c == '*') { c = *fmt++; prec = va_arg(ap, int); } else { prec = 0; while ((c >= '0') && (c <= '9')) { prec = (prec * 10) + (c - '0'); c = *fmt++; } } } /* size */ type = TYPE_INTN; if (c == 'h') { type = TYPE_INT16; c = *fmt++; } else if (c == 'L') { /* XXX not quite sure here */ type = TYPE_INT64; c = *fmt++; } else if (c == 'l') { type = TYPE_INT32; c = *fmt++; if (c == 'l') { type = TYPE_INT64; c = *fmt++; } } /* format */ hexp = hex.GetUnicode(); switch (c) { case 'd': case 'i': /* decimal/integer */ radix = 10; goto fetch_and_convert; case 'o': /* octal */ radix = 8; type |= 1; goto fetch_and_convert; case 'u': /* unsigned decimal */ radix = 10; type |= 1; goto fetch_and_convert; case 'x': /* unsigned hex */ radix = 16; type |= 1; goto fetch_and_convert; case 'X': /* unsigned HEX */ radix = 16; hexp = HEX.GetUnicode(); type |= 1; goto fetch_and_convert; fetch_and_convert: switch (type) { case TYPE_INT16: u.l = va_arg(ap, int); if (u.l < 0) { u.l = -u.l; flags |= _NEG; } goto do_long; case TYPE_UINT16: u.l = va_arg(ap, int) & 0xffff; goto do_long; case TYPE_INTN: u.l = va_arg(ap, int); if (u.l < 0) { u.l = -u.l; flags |= _NEG; } goto do_long; case TYPE_UINTN: u.l = (long)va_arg(ap, unsigned int); goto do_long; case TYPE_INT32: u.l = va_arg(ap, PRInt32); if (u.l < 0) { u.l = -u.l; flags |= _NEG; } goto do_long; case TYPE_UINT32: u.l = (long)va_arg(ap, PRUint32); do_long: rv = cvt_l(ss, u.l, width, prec, radix, type, flags, hexp); if (rv < 0) { return rv; } break; case TYPE_INT64: u.ll = va_arg(ap, PRInt64); if (!LL_GE_ZERO(u.ll)) { LL_NEG(u.ll, u.ll); flags |= _NEG; } goto do_longlong; case TYPE_UINT64: u.ll = va_arg(ap, PRUint64); do_longlong: rv = cvt_ll(ss, u.ll, width, prec, radix, type, flags, hexp); if (rv < 0) { return rv; } break; } break; case 'e': case 'E': case 'f': case 'g': u.d = va_arg(ap, double); if( nas != NULL ){ i = fmt - dolPt; if( i < (int)sizeof( pattern ) ){ pattern[0] = '%'; memcpy( &pattern[1], dolPt, i*sizeof(PRUnichar) ); rv = cvt_f(ss, u.d, pattern, &pattern[i+1] ); } } else rv = cvt_f(ss, u.d, fmt0, fmt); if (rv < 0) { return rv; } break; case 'c': u.ch = va_arg(ap, int); if ((flags & _LEFT) == 0) { while (width-- > 1) { rv = (*ss->stuff)(ss, &space, 1); if (rv < 0) { return rv; } } } rv = (*ss->stuff)(ss, &u.ch, 1); if (rv < 0) { return rv; } if (flags & _LEFT) { while (width-- > 1) { rv = (*ss->stuff)(ss, &space, 1); if (rv < 0) { return rv; } } } break; case 'p': if (sizeof(void *) == sizeof(PRInt32)) { type = TYPE_UINT32; } else if (sizeof(void *) == sizeof(PRInt64)) { type = TYPE_UINT64; } else if (sizeof(void *) == sizeof(int)) { type = TYPE_UINTN; } else { PR_ASSERT(0); break; } radix = 16; goto fetch_and_convert; #if 0 case 'C': //case 'S': case 'E': case 'G': /* XXX not supported I suppose */ PR_ASSERT(0); break; #endif case 'S': u.S = va_arg(ap, const PRUnichar*); rv = cvt_S(ss, u.S, width, prec, flags); if (rv < 0) { return rv; } break; case 's': u.s = va_arg(ap, const char*); rv = cvt_s(ss, u.s, width, prec, flags); if (rv < 0) { return rv; } break; case 'n': u.ip = va_arg(ap, int*); if (u.ip) { *u.ip = ss->cur - ss->base; } break; default: /* Not a % token after all... skip it */ #if 0 PR_ASSERT(0); #endif PRUnichar perct = '%'; rv = (*ss->stuff)(ss, &perct, 1); if (rv < 0) { return rv; } rv = (*ss->stuff)(ss, fmt - 1, 1); if (rv < 0) { return rv; } } } /* Stuff trailing NUL */ PRUnichar null = '\0'; rv = (*ss->stuff)(ss, &null, 1); if( nas && ( nas != nasArray ) ){ PR_DELETE( nas ); } return rv; } /************************************************************************/ #if 0 static int FuncStuff(SprintfState *ss, const PRUnichar *sp, PRUint32 len) { int rv; rv = (*ss->func)(ss->arg, sp, len); if (rv < 0) { return rv; } ss->maxlen += len; return 0; } PRUint32 nsTextFormater::sxprintf(PRStuffFunc func, void *arg, const PRUnichar *fmt, ...) { va_list ap; int rv; va_start(ap, fmt); rv = nsTextFormater::vsxprintf(func, arg, fmt, ap); va_end(ap); return rv; } PRUint32) vsxprintf(PRStuffFunc func, void *arg, const PRUnichar *fmt, va_list ap) { SprintfState ss; int rv; ss.stuff = FuncStuff; ss.func = func; ss.arg = arg; ss.maxlen = 0; rv = dosprintf(&ss, fmt, ap); return (rv < 0) ? (PRUint32)-1 : ss.maxlen; } #endif /* ** Stuff routine that automatically grows the malloc'd output buffer ** before it overflows. */ static int GrowStuff(SprintfState *ss, const PRUnichar *sp, PRUint32 len) { ptrdiff_t off; PRUnichar *newbase; PRUint32 newlen; off = ss->cur - ss->base; if (off + len >= ss->maxlen) { /* Grow the buffer */ newlen = ss->maxlen + ((len > 32) ? len : 32); if (ss->base) { newbase = (PRUnichar*) PR_REALLOC(ss->base, newlen*sizeof(PRUnichar)); } else { newbase = (PRUnichar*) PR_MALLOC(newlen*sizeof(PRUnichar)); } if (!newbase) { /* Ran out of memory */ return -1; } ss->base = newbase; ss->maxlen = newlen; ss->cur = ss->base + off; } /* Copy data */ while (len) { --len; *ss->cur++ = *sp++; } PR_ASSERT((PRUint32)(ss->cur - ss->base) <= ss->maxlen); return 0; } /* ** sprintf into a malloc'd buffer */ PRUnichar * nsTextFormater::smprintf(const PRUnichar *fmt, ...) { va_list ap; PRUnichar *rv; va_start(ap, fmt); rv = nsTextFormater::vsmprintf(fmt, ap); va_end(ap); return rv; } /* ** Free memory allocated, for the caller, by smprintf */ void nsTextFormater::smprintf_free(PRUnichar *mem) { PR_DELETE(mem); } PRUnichar * nsTextFormater::vsmprintf(const PRUnichar *fmt, va_list ap) { SprintfState ss; int rv; ss.stuff = GrowStuff; ss.base = 0; ss.cur = 0; ss.maxlen = 0; rv = dosprintf(&ss, fmt, ap); if (rv < 0) { if (ss.base) { PR_DELETE(ss.base); } return 0; } return ss.base; } /* ** Stuff routine that discards overflow data */ static int LimitStuff(SprintfState *ss, const PRUnichar *sp, PRUint32 len) { PRUint32 limit = ss->maxlen - (ss->cur - ss->base); if (len > limit) { len = limit; } while (len) { --len; *ss->cur++ = *sp++; } return 0; } /* ** sprintf into a fixed size buffer. Make sure there is a NUL at the end ** when finished. */ PRUint32 nsTextFormater::snprintf(PRUnichar *out, PRUint32 outlen, const PRUnichar *fmt, ...) { va_list ap; int rv; PR_ASSERT((PRInt32)outlen > 0); if ((PRInt32)outlen <= 0) { return 0; } va_start(ap, fmt); rv = nsTextFormater::vsnprintf(out, outlen, fmt, ap); va_end(ap); return rv; } PRUint32 nsTextFormater::vsnprintf(PRUnichar *out, PRUint32 outlen,const PRUnichar *fmt, va_list ap) { SprintfState ss; PRUint32 n; PR_ASSERT((PRInt32)outlen > 0); if ((PRInt32)outlen <= 0) { return 0; } ss.stuff = LimitStuff; ss.base = out; ss.cur = out; ss.maxlen = outlen; (void) dosprintf(&ss, fmt, ap); /* If we added chars, and we didn't append a null, do it now. */ if( (ss.cur != ss.base) && (*(ss.cur - 1) != '\0') ) *(--ss.cur) = '\0'; n = ss.cur - ss.base; return n ? n - 1 : n; } PRUnichar * nsTextFormater::sprintf_append(PRUnichar *last, const PRUnichar *fmt, ...) { va_list ap; PRUnichar *rv; va_start(ap, fmt); rv = nsTextFormater::vsprintf_append(last, fmt, ap); va_end(ap); return rv; } PRUnichar * nsTextFormater::vsprintf_append(PRUnichar *last, const PRUnichar *fmt, va_list ap) { SprintfState ss; int rv; ss.stuff = GrowStuff; if (last) { int lastlen = nsCRT::strlen(last); ss.base = last; ss.cur = last + lastlen; ss.maxlen = lastlen; } else { ss.base = 0; ss.cur = 0; ss.maxlen = 0; } rv = dosprintf(&ss, fmt, ap); if (rv < 0) { if (ss.base) { PR_DELETE(ss.base); } return 0; } return ss.base; } #ifdef DEBUG PRBool nsTextFormater::SelfTest() { PRBool passed = PR_TRUE ; nsAutoString fmt("%3$s %4$S %1$d %2$d"); char utf8[] = "Hello"; PRUnichar ucs2[]={'W', 'o', 'r', 'l', 'd', 0x4e00, 0xAc00, 0xFF45, 0x0103}; int d=3; PRUnichar buf[256]; int ret; ret = nsTextFormater::snprintf(buf, 256, fmt.GetUnicode(), d, 333, utf8, ucs2); printf("ret = %d\n", ret); nsAutoString out(buf); printf("%s \n",out.ToNewCString()); const PRUnichar *uout = out.GetUnicode(); for(int i=0;i