зеркало из https://github.com/mozilla/pjs.git
892 строки
24 KiB
C++
892 строки
24 KiB
C++
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
|
|
/*
|
|
* The contents of this file are subject to the Mozilla Public License
|
|
* Version 1.1 (the "MPL"); you may not use this file except in
|
|
* compliance with the MPL. You may obtain a copy of the MPL at
|
|
* http://www.mozilla.org/MPL/
|
|
*
|
|
* Software distributed under the MPL is distributed on an "AS IS" basis,
|
|
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the MPL
|
|
* for the specific language governing rights and limitations under the
|
|
* MPL.
|
|
*
|
|
* The Initial Developer of this code under the MPL is Netscape
|
|
* Communications Corporation. Portions created by Netscape are
|
|
* Copyright (C) 1999 Netscape Communications Corporation. All Rights
|
|
* Reserved.
|
|
*
|
|
* Original Author:
|
|
* Chris Waterson <waterson@netscape.com>
|
|
*/
|
|
|
|
#include "nsVoidBTree.h"
|
|
|
|
#ifdef DEBUG
|
|
#include <stdio.h>
|
|
#endif
|
|
|
|
// Set this to force the tree to be verified after every insertion and
|
|
// removal.
|
|
//#define PARANOID 1
|
|
|
|
|
|
//----------------------------------------------------------------------
|
|
// nsVoidBTree::Node
|
|
//
|
|
// Implementation methods
|
|
//
|
|
|
|
nsresult
|
|
nsVoidBTree::Node::Create(Type aType, PRInt32 aCapacity, Node** aResult)
|
|
{
|
|
// So we only ever have to do one allocation for a Node, we do a
|
|
// "naked" heap allocation, computing the size of the node and
|
|
// "padding" it out so that it can hold aCapacity slots.
|
|
char* bytes = new char[sizeof(Node) + (aCapacity - 1) * sizeof(void*)];
|
|
if (! bytes)
|
|
return NS_ERROR_OUT_OF_MEMORY;
|
|
|
|
Node* result = NS_REINTERPRET_CAST(Node*, bytes);
|
|
result->mBits = 0;
|
|
result->SetType(aType);
|
|
|
|
*aResult = result;
|
|
return NS_OK;
|
|
}
|
|
|
|
nsresult
|
|
nsVoidBTree::Node::Destroy(Node* aNode)
|
|
{
|
|
char* bytes = NS_REINTERPRET_CAST(char*, aNode);
|
|
delete[] bytes;
|
|
return NS_OK;
|
|
}
|
|
|
|
void
|
|
nsVoidBTree::Node::InsertElementAt(void* aElement, PRInt32 aIndex)
|
|
{
|
|
NS_PRECONDITION(aIndex >= 0 && aIndex <= GetCount(), "bad index");
|
|
|
|
PRInt32 count = GetCount();
|
|
SetCount(count + 1);
|
|
|
|
while (count > aIndex) {
|
|
mData[count] = mData[count - 1];
|
|
--count;
|
|
}
|
|
|
|
mData[aIndex] = aElement;
|
|
}
|
|
|
|
void
|
|
nsVoidBTree::Node::RemoveElementAt(PRInt32 aIndex)
|
|
{
|
|
NS_PRECONDITION(aIndex >= 0 && aIndex < GetCount(), "bad index");
|
|
|
|
PRInt32 count = GetCount();
|
|
SetCount(count - 1);
|
|
|
|
while (aIndex < count) {
|
|
mData[aIndex] = mData[aIndex + 1];
|
|
++aIndex;
|
|
}
|
|
}
|
|
|
|
|
|
//----------------------------------------------------------------------
|
|
//
|
|
// nsVoidBTree::Path
|
|
//
|
|
// Implementation methods
|
|
//
|
|
|
|
nsVoidBTree::Path::Path(const Path& aOther)
|
|
: mTop(aOther.mTop)
|
|
{
|
|
for (PRInt32 i = 0; i < mTop; ++i)
|
|
mLink[i] = aOther.mLink[i];
|
|
}
|
|
|
|
nsVoidBTree::Path&
|
|
nsVoidBTree::Path::operator=(const Path& aOther)
|
|
{
|
|
mTop = aOther.mTop;
|
|
for (PRInt32 i = 0; i < mTop; ++i)
|
|
mLink[i] = aOther.mLink[i];
|
|
return *this;
|
|
}
|
|
|
|
inline nsresult
|
|
nsVoidBTree::Path::Push(Node* aNode, PRInt32 aIndex)
|
|
{
|
|
// XXX If you overflow this thing, think about making larger index
|
|
// or data nodes. You can pack a _lot_ of data into a pretty flat
|
|
// tree.
|
|
NS_PRECONDITION(mTop <= kMaxDepth, "overflow");
|
|
if (mTop > kMaxDepth)
|
|
return NS_ERROR_OUT_OF_MEMORY;
|
|
|
|
mLink[mTop].mNode = aNode;
|
|
mLink[mTop].mIndex = aIndex;
|
|
++mTop;
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
|
|
inline void
|
|
nsVoidBTree::Path::Pop(Node** aNode, PRInt32* aIndex)
|
|
{
|
|
--mTop;
|
|
*aNode = mLink[mTop].mNode;
|
|
*aIndex = mLink[mTop].mIndex;
|
|
}
|
|
|
|
//----------------------------------------------------------------------
|
|
//
|
|
// nsVoidBTree methods
|
|
//
|
|
|
|
nsVoidBTree::nsVoidBTree(const nsVoidBTree& aOther)
|
|
{
|
|
ConstIterator last = aOther.Last();
|
|
for (ConstIterator element = aOther.First(); element != last; ++element)
|
|
AppendElement(*element);
|
|
}
|
|
|
|
nsVoidBTree&
|
|
nsVoidBTree::operator=(const nsVoidBTree& aOther)
|
|
{
|
|
Clear();
|
|
ConstIterator last = aOther.Last();
|
|
for (ConstIterator element = aOther.First(); element != last; ++element)
|
|
AppendElement(*element);
|
|
return *this;
|
|
}
|
|
|
|
PRInt32
|
|
nsVoidBTree::Count() const
|
|
{
|
|
if (IsEmpty())
|
|
return 0;
|
|
|
|
if (IsSingleElement())
|
|
return 1;
|
|
|
|
Node* root = NS_REINTERPRET_CAST(Node*, mRoot & kRoot_PointerMask);
|
|
return root->GetSubTreeSize();
|
|
}
|
|
|
|
void*
|
|
nsVoidBTree::ElementAt(PRInt32 aIndex) const
|
|
{
|
|
NS_ASSERTION(aIndex >= 0,"nsVoidBTree::ElementAt negative index!");
|
|
NS_ASSERTION(aIndex < Count(),"nsVoidBTree::ElementAt past end");
|
|
if (aIndex < 0 || aIndex >= Count())
|
|
return nsnull;
|
|
|
|
if (IsSingleElement())
|
|
return NS_REINTERPRET_CAST(void*, mRoot & kRoot_PointerMask);
|
|
|
|
Node* current = NS_REINTERPRET_CAST(Node*, mRoot & kRoot_PointerMask);
|
|
while (current->GetType() != Node::eType_Data) {
|
|
// We're still in the index. Find the right leaf.
|
|
Node* next = nsnull;
|
|
|
|
PRInt32 count = current->GetCount();
|
|
for (PRInt32 i = 0; i < count; ++i) {
|
|
Node* child = NS_REINTERPRET_CAST(Node*, current->GetElementAt(i));
|
|
|
|
PRInt32 childcount = child->GetSubTreeSize();
|
|
if (PRInt32(aIndex) < childcount) {
|
|
next = child;
|
|
break;
|
|
}
|
|
|
|
aIndex -= childcount;
|
|
}
|
|
|
|
if (! next) {
|
|
NS_ERROR("corrupted");
|
|
return nsnull;
|
|
}
|
|
|
|
current = next;
|
|
}
|
|
|
|
return current->GetElementAt(aIndex);
|
|
}
|
|
|
|
|
|
PRInt32
|
|
nsVoidBTree::IndexOf(void* aPossibleElement) const
|
|
{
|
|
NS_PRECONDITION((PRWord(aPossibleElement) & ~kRoot_PointerMask) == 0,
|
|
"uh oh, someone wants to use the pointer bits");
|
|
|
|
NS_PRECONDITION(aPossibleElement != nsnull, "nsVoidBTree can't handle null elements");
|
|
if (aPossibleElement == nsnull)
|
|
return -1;
|
|
|
|
PRInt32 result = 0;
|
|
ConstIterator last = Last();
|
|
for (ConstIterator element = First(); element != last; ++element, ++result) {
|
|
if (aPossibleElement == *element)
|
|
return result;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
|
|
PRBool
|
|
nsVoidBTree::InsertElementAt(void* aElement, PRInt32 aIndex)
|
|
{
|
|
NS_PRECONDITION((PRWord(aElement) & ~kRoot_PointerMask) == 0,
|
|
"uh oh, someone wants to use the pointer bits");
|
|
|
|
if ((PRWord(aElement) & ~kRoot_PointerMask) != 0)
|
|
return PR_FALSE;
|
|
|
|
NS_PRECONDITION(aElement != nsnull, "nsVoidBTree can't handle null elements");
|
|
if (aElement == nsnull)
|
|
return PR_FALSE;
|
|
|
|
PRInt32 count = Count();
|
|
|
|
if (aIndex < 0 || aIndex > count)
|
|
return PR_FALSE;
|
|
|
|
nsresult rv;
|
|
|
|
if (IsSingleElement()) {
|
|
// We're only a single element holder, and haven't yet
|
|
// "faulted" to create the btree.
|
|
|
|
if (count == 0) {
|
|
// If we have *no* elements, then just set the root
|
|
// pointer and we're done.
|
|
mRoot = PRWord(aElement);
|
|
return PR_TRUE;
|
|
}
|
|
|
|
// If we already had an element, and now we're adding
|
|
// another. Fault and start creating the btree.
|
|
void* element = NS_REINTERPRET_CAST(void*, mRoot & kRoot_PointerMask);
|
|
|
|
Node* newroot;
|
|
rv = Node::Create(Node::eType_Data, kDataCapacity, &newroot);
|
|
if (NS_FAILED(rv)) return PR_FALSE;
|
|
|
|
newroot->InsertElementAt(element, 0);
|
|
newroot->SetSubTreeSize(1);
|
|
SetRoot(newroot);
|
|
}
|
|
|
|
Path path;
|
|
|
|
Node* current = NS_REINTERPRET_CAST(Node*, mRoot & kRoot_PointerMask);
|
|
while (current->GetType() != Node::eType_Data) {
|
|
// We're still in the index. Find the right leaf.
|
|
Node* next = nsnull;
|
|
|
|
count = current->GetCount();
|
|
for (PRInt32 i = 0; i < count; ++i) {
|
|
Node* child = NS_REINTERPRET_CAST(Node*, current->GetElementAt(i));
|
|
|
|
PRInt32 childcount = child->GetSubTreeSize();
|
|
if (PRInt32(aIndex) <= childcount) {
|
|
rv = path.Push(current, i + 1);
|
|
if (NS_FAILED(rv)) return PR_FALSE;
|
|
|
|
next = child;
|
|
break;
|
|
}
|
|
|
|
aIndex -= childcount;
|
|
}
|
|
|
|
if (! next) {
|
|
NS_ERROR("corrupted");
|
|
return PR_FALSE;
|
|
}
|
|
|
|
current = next;
|
|
}
|
|
|
|
if (current->GetCount() >= kDataCapacity) {
|
|
// We just blew the data node's buffer. Create another
|
|
// datanode and split.
|
|
rv = Split(path, current, aElement, aIndex);
|
|
if (NS_FAILED(rv)) return PR_FALSE;
|
|
}
|
|
else {
|
|
current->InsertElementAt(aElement, aIndex);
|
|
current->SetSubTreeSize(current->GetSubTreeSize() + 1);
|
|
}
|
|
|
|
while (path.Length() > 0) {
|
|
PRInt32 index;
|
|
path.Pop(¤t, &index);
|
|
current->SetSubTreeSize(current->GetSubTreeSize() + 1);
|
|
}
|
|
|
|
#ifdef PARANOID
|
|
Verify(NS_REINTERPRET_CAST(Node*, mRoot & kRoot_PointerMask));
|
|
#endif
|
|
|
|
return PR_TRUE;
|
|
}
|
|
|
|
PRBool
|
|
nsVoidBTree::ReplaceElementAt(void* aElement, PRInt32 aIndex)
|
|
{
|
|
NS_PRECONDITION((PRWord(aElement) & ~kRoot_PointerMask) == 0,
|
|
"uh oh, someone wants to use the pointer bits");
|
|
|
|
if ((PRWord(aElement) & ~kRoot_PointerMask) != 0)
|
|
return PR_FALSE;
|
|
|
|
NS_PRECONDITION(aElement != nsnull, "nsVoidBTree can't handle null elements");
|
|
if (aElement == nsnull)
|
|
return PR_FALSE;
|
|
|
|
if (aIndex < 0 || aIndex >= Count())
|
|
return PR_FALSE;
|
|
|
|
if (IsSingleElement()) {
|
|
mRoot = PRWord(aElement);
|
|
return PR_TRUE;
|
|
}
|
|
|
|
Node* current = NS_REINTERPRET_CAST(Node*, mRoot & kRoot_PointerMask);
|
|
while (current->GetType() != Node::eType_Data) {
|
|
// We're still in the index. Find the right leaf.
|
|
Node* next = nsnull;
|
|
|
|
PRInt32 count = current->GetCount();
|
|
for (PRInt32 i = 0; i < count; ++i) {
|
|
Node* child = NS_REINTERPRET_CAST(Node*, current->GetElementAt(i));
|
|
|
|
PRInt32 childcount = child->GetSubTreeSize();
|
|
if (PRInt32(aIndex) < childcount) {
|
|
next = child;
|
|
break;
|
|
}
|
|
|
|
aIndex -= childcount;
|
|
}
|
|
|
|
if (! next) {
|
|
NS_ERROR("corrupted");
|
|
return PR_FALSE;
|
|
}
|
|
|
|
current = next;
|
|
}
|
|
|
|
current->SetElementAt(aElement, aIndex);
|
|
return PR_TRUE;
|
|
}
|
|
|
|
PRBool
|
|
nsVoidBTree::RemoveElement(void* aElement)
|
|
{
|
|
PRInt32 index = IndexOf(aElement);
|
|
return (index >= 0) ? RemoveElementAt(index) : PR_FALSE;
|
|
}
|
|
|
|
PRBool
|
|
nsVoidBTree::RemoveElementAt(PRInt32 aIndex)
|
|
{
|
|
PRInt32 count = Count();
|
|
|
|
if (aIndex < 0 || aIndex >= count)
|
|
return PR_FALSE;
|
|
|
|
if (IsSingleElement()) {
|
|
// We're removing the one and only element
|
|
mRoot = 0;
|
|
return PR_TRUE;
|
|
}
|
|
|
|
// We've got more than one element, and we're removing it.
|
|
nsresult rv;
|
|
Path path;
|
|
|
|
Node* root = NS_REINTERPRET_CAST(Node*, mRoot & kRoot_PointerMask);
|
|
|
|
Node* current = root;
|
|
while (current->GetType() != Node::eType_Data) {
|
|
// We're still in the index. Find the right leaf.
|
|
Node* next = nsnull;
|
|
|
|
count = current->GetCount();
|
|
for (PRInt32 i = 0; i < count; ++i) {
|
|
Node* child = NS_REINTERPRET_CAST(Node*, current->GetElementAt(i));
|
|
|
|
PRInt32 childcount = child->GetSubTreeSize();
|
|
if (PRInt32(aIndex) < childcount) {
|
|
rv = path.Push(current, i);
|
|
if (NS_FAILED(rv)) return PR_FALSE;
|
|
|
|
next = child;
|
|
break;
|
|
}
|
|
|
|
aIndex -= childcount;
|
|
}
|
|
|
|
if (! next) {
|
|
NS_ERROR("corrupted");
|
|
return PR_FALSE;
|
|
}
|
|
|
|
current = next;
|
|
}
|
|
|
|
current->RemoveElementAt(aIndex);
|
|
|
|
while ((current->GetCount() == 0) && (current != root)) {
|
|
Node* doomed = current;
|
|
|
|
PRInt32 index;
|
|
path.Pop(¤t, &index);
|
|
current->RemoveElementAt(index);
|
|
|
|
Node::Destroy(doomed);
|
|
}
|
|
|
|
current->SetSubTreeSize(current->GetSubTreeSize() - 1);
|
|
|
|
while (path.Length() > 0) {
|
|
PRInt32 index;
|
|
path.Pop(¤t, &index);
|
|
current->SetSubTreeSize(current->GetSubTreeSize() - 1);
|
|
}
|
|
|
|
while ((root->GetType() == Node::eType_Index) && (root->GetCount() == 1)) {
|
|
Node* doomed = root;
|
|
root = NS_REINTERPRET_CAST(Node*, root->GetElementAt(0));
|
|
SetRoot(root);
|
|
Node::Destroy(doomed);
|
|
}
|
|
|
|
#ifdef PARANOID
|
|
Verify(root);
|
|
#endif
|
|
|
|
return PR_TRUE;
|
|
}
|
|
|
|
void
|
|
nsVoidBTree::Clear(void)
|
|
{
|
|
if (IsEmpty())
|
|
return;
|
|
|
|
if (! IsSingleElement()) {
|
|
Node* root = NS_REINTERPRET_CAST(Node*, mRoot & kRoot_PointerMask);
|
|
|
|
#ifdef PARANOID
|
|
Dump(root, 0);
|
|
#endif
|
|
|
|
DestroySubtree(root);
|
|
}
|
|
|
|
mRoot = 0;
|
|
}
|
|
|
|
|
|
void
|
|
nsVoidBTree::Compact(void)
|
|
{
|
|
// XXX We could go through and try to merge datanodes.
|
|
}
|
|
|
|
PRBool
|
|
nsVoidBTree::EnumerateForwards(EnumFunc aFunc, void* aData) const
|
|
{
|
|
PRBool running = PR_TRUE;
|
|
|
|
ConstIterator last = Last();
|
|
for (ConstIterator element = First(); running && element != last; ++element)
|
|
running = (*aFunc)(*element, aData);
|
|
|
|
return running;
|
|
}
|
|
|
|
PRBool
|
|
nsVoidBTree::EnumerateBackwards(EnumFunc aFunc, void* aData) const
|
|
{
|
|
PRBool running = PR_TRUE;
|
|
|
|
ConstIterator element = Last();
|
|
ConstIterator first = First();
|
|
|
|
if (element != first) {
|
|
do {
|
|
running = (*aFunc)(*--element, aData);
|
|
} while (running && element != first);
|
|
}
|
|
|
|
return running;
|
|
}
|
|
|
|
|
|
#ifdef DEBUG
|
|
void
|
|
nsVoidBTree::SizeOf(nsISizeOfHandler* aHandler, PRUint32* aResult) const
|
|
{
|
|
if (! aResult)
|
|
return;
|
|
|
|
*aResult = sizeof(*this);
|
|
|
|
if (IsSingleElement())
|
|
return;
|
|
|
|
Path path;
|
|
path.Push(NS_REINTERPRET_CAST(Node*, mRoot & kRoot_PointerMask), 0);
|
|
|
|
while (path.Length()) {
|
|
Node* current;
|
|
PRInt32 index;
|
|
path.Pop(¤t, &index);
|
|
|
|
if (current->GetType() == Node::eType_Data) {
|
|
*aResult += sizeof(Node) + (sizeof(void*) * (kDataCapacity - 1));
|
|
}
|
|
else {
|
|
*aResult += sizeof(Node) + (sizeof(void*) * (kIndexCapacity - 1));
|
|
|
|
// If we're in an index node, and there are still kids to
|
|
// traverse, well, traverse 'em.
|
|
if (index < current->GetCount()) {
|
|
path.Push(current, index + 1);
|
|
path.Push(NS_STATIC_CAST(Node*, current->GetElementAt(index)), 0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
//----------------------------------------------------------------------
|
|
|
|
nsresult
|
|
nsVoidBTree::Split(Path& path, Node* aOldNode, void* aElementToInsert, PRInt32 aSplitIndex)
|
|
{
|
|
nsresult rv;
|
|
|
|
PRInt32 capacity = (aOldNode->GetType() == Node::eType_Data) ? kDataCapacity : kIndexCapacity;
|
|
PRInt32 delta = 0;
|
|
|
|
|
|
Node* newnode;
|
|
rv = Node::Create(aOldNode->GetType(), capacity, &newnode);
|
|
if (NS_FAILED(rv)) return rv;
|
|
|
|
if (aSplitIndex == capacity) {
|
|
// If aSplitIndex is the same as the capacity of the node,
|
|
// then there'll be nothing to copy from the old node to the
|
|
// new node, and the element is really meant to be inserted in
|
|
// the newnode. In that case, do it _now_ so that newnode's
|
|
// subtree size will be correct.
|
|
newnode->InsertElementAt(aElementToInsert, 0);
|
|
|
|
if (newnode->GetType() == Node::eType_Data) {
|
|
newnode->SetSubTreeSize(1);
|
|
}
|
|
else {
|
|
Node* child = NS_REINTERPRET_CAST(Node*, aElementToInsert);
|
|
newnode->SetSubTreeSize(child->GetSubTreeSize());
|
|
}
|
|
}
|
|
else {
|
|
// We're meant to insert the element into the oldnode at
|
|
// aSplitIndex. Copy data from aOldNode to the newnode but
|
|
// _don't_ insert newnode yet. We may need to recursively
|
|
// split parents, an operation that allocs, and hence, may
|
|
// fail. If it does fail, we wan't to not screw up the
|
|
// existing datastructure.
|
|
//
|
|
// Note that it should be the case that count == capacity, but
|
|
// who knows, we may decide at some point to prematurely split
|
|
// nodes for some reason or another.
|
|
PRInt32 count = aOldNode->GetCount();
|
|
PRInt32 i = aSplitIndex;
|
|
PRInt32 j = 0;
|
|
|
|
newnode->SetCount(count - aSplitIndex);
|
|
while (i < count) {
|
|
if (aOldNode->GetType() == Node::eType_Data) {
|
|
++delta;
|
|
}
|
|
else {
|
|
Node* migrating = NS_REINTERPRET_CAST(Node*, aOldNode->GetElementAt(i));
|
|
delta += migrating->GetSubTreeSize();
|
|
}
|
|
|
|
newnode->SetElementAt(aOldNode->GetElementAt(i), j);
|
|
++i;
|
|
++j;
|
|
}
|
|
newnode->SetSubTreeSize(delta);
|
|
}
|
|
|
|
// Now we split the node.
|
|
|
|
if (path.Length() == 0) {
|
|
// We made it all the way up to the root! Ok, so, create a new
|
|
// root
|
|
Node* newroot;
|
|
rv = Node::Create(Node::eType_Index, kIndexCapacity, &newroot);
|
|
if (NS_FAILED(rv)) return rv;
|
|
|
|
newroot->SetCount(2);
|
|
newroot->SetElementAt(aOldNode, 0);
|
|
newroot->SetElementAt(newnode, 1);
|
|
newroot->SetSubTreeSize(aOldNode->GetSubTreeSize() + 1);
|
|
SetRoot(newroot);
|
|
}
|
|
else {
|
|
// Otherwise, use the "path" to pop off the next thing above us.
|
|
Node* parent;
|
|
PRInt32 indx;
|
|
path.Pop(&parent, &indx);
|
|
|
|
if (parent->GetCount() >= kIndexCapacity) {
|
|
// Parent is full, too. Recursively split it.
|
|
rv = Split(path, parent, newnode, indx);
|
|
if (NS_FAILED(rv)) {
|
|
Node::Destroy(newnode);
|
|
return rv;
|
|
}
|
|
}
|
|
else {
|
|
// Room in the parent, so just smack it on up there.
|
|
parent->InsertElementAt(newnode, indx);
|
|
parent->SetSubTreeSize(parent->GetSubTreeSize() + 1);
|
|
}
|
|
}
|
|
|
|
// Now, since all our operations that might fail have finished, we
|
|
// can go ahead and monkey with the old node.
|
|
|
|
if (aSplitIndex == capacity) {
|
|
PRInt32 nodeslost = newnode->GetSubTreeSize() - 1;
|
|
PRInt32 subtreesize = aOldNode->GetSubTreeSize() - nodeslost;
|
|
aOldNode->SetSubTreeSize(subtreesize);
|
|
}
|
|
else {
|
|
aOldNode->SetCount(aSplitIndex);
|
|
aOldNode->InsertElementAt(aElementToInsert, aSplitIndex);
|
|
PRInt32 subtreesize = aOldNode->GetSubTreeSize() - delta + 1;
|
|
aOldNode->SetSubTreeSize(subtreesize);
|
|
}
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
|
|
PRInt32
|
|
nsVoidBTree::Verify(Node* aNode)
|
|
{
|
|
// Sanity check the tree by verifying that the subtree sizes all
|
|
// add up correctly.
|
|
if (aNode->GetType() == Node::eType_Data) {
|
|
NS_ASSERTION(aNode->GetCount() == aNode->GetSubTreeSize(), "corrupted");
|
|
return aNode->GetCount();
|
|
}
|
|
|
|
PRInt32 childcount = 0;
|
|
for (PRInt32 i = 0; i < aNode->GetCount(); ++i) {
|
|
Node* child = NS_REINTERPRET_CAST(Node*, aNode->GetElementAt(i));
|
|
childcount += Verify(child);
|
|
}
|
|
|
|
NS_ASSERTION(childcount == aNode->GetSubTreeSize(), "corrupted");
|
|
return childcount;
|
|
}
|
|
|
|
|
|
void
|
|
nsVoidBTree::DestroySubtree(Node* aNode)
|
|
{
|
|
PRInt32 count = aNode->GetCount() - 1;
|
|
while (count >= 0) {
|
|
if (aNode->GetType() == Node::eType_Index)
|
|
DestroySubtree(NS_REINTERPRET_CAST(Node*, aNode->GetElementAt(count)));
|
|
|
|
--count;
|
|
}
|
|
|
|
Node::Destroy(aNode);
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
void
|
|
nsVoidBTree::Dump(Node* aNode, PRInt32 aIndent)
|
|
{
|
|
for (PRInt32 i = 0; i < aIndent; ++i)
|
|
printf(" ");
|
|
|
|
if (aNode->GetType() == Node::eType_Data) {
|
|
printf("data(%d/%d)\n", aNode->GetCount(), aNode->GetSubTreeSize());
|
|
}
|
|
else {
|
|
printf("index(%d/%d)\n", aNode->GetCount(), aNode->GetSubTreeSize());
|
|
for (PRInt32 j = 0; j < aNode->GetCount(); ++j)
|
|
Dump(NS_REINTERPRET_CAST(Node*, aNode->GetElementAt(j)), aIndent + 1);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
//----------------------------------------------------------------------
|
|
//
|
|
// nsVoidBTree::ConstIterator and Iterator methods
|
|
//
|
|
|
|
void* nsVoidBTree::kDummyLast;
|
|
|
|
void
|
|
nsVoidBTree::ConstIterator::Next()
|
|
{
|
|
if (mIsSingleton) {
|
|
mIsExhausted = PR_TRUE;
|
|
return;
|
|
}
|
|
|
|
// Otherwise we're a real b-tree iterator, and we need to pull and
|
|
// pop our path stack appropriately to gyrate into the right
|
|
// position.
|
|
while (1) {
|
|
Node* current;
|
|
PRInt32 index;
|
|
mPath.Pop(¤t, &index);
|
|
|
|
PRInt32 count = current->GetCount();
|
|
|
|
NS_ASSERTION(index < count, "ran off the end, pal");
|
|
|
|
if (++index >= count) {
|
|
// XXXwaterson Oh, this is so ugly. I wish I was smart
|
|
// enough to figure out a prettier way to do it.
|
|
//
|
|
// See if we've just iterated past the last element in the
|
|
// b-tree, and now need to leave ourselves in the magical
|
|
// state that is equal to nsVoidBTree::Last().
|
|
if (current->GetType() == Node::eType_Data) {
|
|
PRBool rightmost = PR_TRUE;
|
|
for (PRInt32 slot = mPath.mTop - 1; slot >= 0; --slot) {
|
|
const Link& link = mPath.mLink[slot];
|
|
if (link.mIndex != link.mNode->GetCount() - 1) {
|
|
rightmost = PR_FALSE;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (rightmost) {
|
|
// It's the last one. Make the path look exactly
|
|
// like nsVoidBTree::Last().
|
|
mPath.Push(current, index);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Otherwise, we just ran off the end of a "middling"
|
|
// node. Loop around, to pop back up the b-tree to its
|
|
// parent.
|
|
continue;
|
|
}
|
|
|
|
// We're somewhere in the middle. Push the new location onto
|
|
// the stack.
|
|
mPath.Push(current, index);
|
|
|
|
// If we're in a data node, we're done: break out of the loop
|
|
// here leaving the top of the stack pointing to the next data
|
|
// element in the b-tree.
|
|
if (current->GetType() == Node::eType_Data)
|
|
break;
|
|
|
|
// Otherwise, we're still in an index node. Push next node
|
|
// down onto the stack, starting "one off" to the left, and
|
|
// continue around.
|
|
mPath.Push(NS_STATIC_CAST(Node*, current->GetElementAt(index)), -1);
|
|
}
|
|
}
|
|
|
|
void
|
|
nsVoidBTree::ConstIterator::Prev()
|
|
{
|
|
if (mIsSingleton) {
|
|
mIsExhausted = PR_FALSE;
|
|
return;
|
|
}
|
|
|
|
// Otherwise we're a real b-tree iterator, and we need to pull and
|
|
// pop our path stack appropriately to gyrate into the right
|
|
// position. This is just like nsVoidBTree::ConstIterator::Next(),
|
|
// but in reverse.
|
|
while (1) {
|
|
Node* current;
|
|
PRInt32 index;
|
|
mPath.Pop(¤t, &index);
|
|
|
|
NS_ASSERTION(index >= 0, "ran off the front, pal");
|
|
|
|
if (--index < 0)
|
|
continue;
|
|
|
|
mPath.Push(current, index);
|
|
|
|
if (current->GetType() == Node::eType_Data)
|
|
break;
|
|
|
|
current = NS_STATIC_CAST(Node*, current->GetElementAt(index));
|
|
mPath.Push(current, current->GetCount());
|
|
}
|
|
}
|
|
|
|
const nsVoidBTree::Path
|
|
nsVoidBTree::LeftMostPath() const
|
|
{
|
|
Path path;
|
|
Node* current = NS_REINTERPRET_CAST(Node*, mRoot & kRoot_PointerMask);
|
|
|
|
while (1) {
|
|
path.Push(current, 0);
|
|
|
|
if (current->GetType() == Node::eType_Data)
|
|
break;
|
|
|
|
current = NS_STATIC_CAST(Node*, current->GetElementAt(0));
|
|
}
|
|
|
|
return path;
|
|
}
|
|
|
|
|
|
const nsVoidBTree::Path
|
|
nsVoidBTree::RightMostPath() const
|
|
{
|
|
Path path;
|
|
Node* current = NS_REINTERPRET_CAST(Node*, mRoot & kRoot_PointerMask);
|
|
|
|
while (1) {
|
|
PRInt32 count = current->GetCount();
|
|
|
|
if (current->GetType() == Node::eType_Data) {
|
|
path.Push(current, count);
|
|
break;
|
|
}
|
|
|
|
path.Push(current, count - 1);
|
|
current = NS_STATIC_CAST(Node*, current->GetElementAt(count - 1));
|
|
}
|
|
|
|
return path;
|
|
}
|