pjs/memory/jemalloc/rb.h

983 строки
37 KiB
C

/******************************************************************************
*
* Copyright (C) 2008 Jason Evans <jasone@FreeBSD.org>.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice(s), this list of conditions and the following disclaimer
* unmodified other than the allowable addition of one or more
* copyright notices.
* 2. Redistributions in binary form must reproduce the above copyright
* notice(s), this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*
* cpp macro implementation of left-leaning red-black trees.
*
* Usage:
*
* (Optional.)
* #define SIZEOF_PTR ...
* #define SIZEOF_PTR_2POW ...
* #define RB_NO_C99_VARARRAYS
*
* (Optional, see assert(3).)
* #define NDEBUG
*
* (Required.)
* #include <assert.h>
* #include <rb.h>
* ...
*
* All operations are done non-recursively. Parent pointers are not used, and
* color bits are stored in the least significant bit of right-child pointers,
* thus making node linkage as compact as is possible for red-black trees.
*
* Some macros use a comparison function pointer, which is expected to have the
* following prototype:
*
* int (a_cmp *)(a_type *a_node, a_type *a_other);
* ^^^^^^
* or a_key
*
* Interpretation of comparision function return values:
*
* -1 : a_node < a_other
* 0 : a_node == a_other
* 1 : a_node > a_other
*
* In all cases, the a_node or a_key macro argument is the first argument to the
* comparison function, which makes it possible to write comparison functions
* that treat the first argument specially.
*
******************************************************************************/
#ifndef RB_H_
#define RB_H_
#if 0
#include <sys/cdefs.h>
__FBSDID("$FreeBSD: head/lib/libc/stdlib/rb.h 178995 2008-05-14 18:33:13Z jasone $");
#endif
/* Node structure. */
#define rb_node(a_type) \
struct { \
a_type *rbn_left; \
a_type *rbn_right_red; \
}
/* Root structure. */
#define rb_tree(a_type) \
struct { \
a_type *rbt_root; \
a_type rbt_nil; \
}
/* Left accessors. */
#define rbp_left_get(a_type, a_field, a_node) \
((a_node)->a_field.rbn_left)
#define rbp_left_set(a_type, a_field, a_node, a_left) do { \
(a_node)->a_field.rbn_left = a_left; \
} while (0)
/* Right accessors. */
#define rbp_right_get(a_type, a_field, a_node) \
((a_type *) (((intptr_t) (a_node)->a_field.rbn_right_red) \
& ((ssize_t)-2)))
#define rbp_right_set(a_type, a_field, a_node, a_right) do { \
(a_node)->a_field.rbn_right_red = (a_type *) (((uintptr_t) a_right) \
| (((uintptr_t) (a_node)->a_field.rbn_right_red) & ((size_t)1))); \
} while (0)
/* Color accessors. */
#define rbp_red_get(a_type, a_field, a_node) \
((bool) (((uintptr_t) (a_node)->a_field.rbn_right_red) \
& ((size_t)1)))
#define rbp_color_set(a_type, a_field, a_node, a_red) do { \
(a_node)->a_field.rbn_right_red = (a_type *) ((((intptr_t) \
(a_node)->a_field.rbn_right_red) & ((ssize_t)-2)) \
| ((ssize_t)a_red)); \
} while (0)
#define rbp_red_set(a_type, a_field, a_node) do { \
(a_node)->a_field.rbn_right_red = (a_type *) (((uintptr_t) \
(a_node)->a_field.rbn_right_red) | ((size_t)1)); \
} while (0)
#define rbp_black_set(a_type, a_field, a_node) do { \
(a_node)->a_field.rbn_right_red = (a_type *) (((intptr_t) \
(a_node)->a_field.rbn_right_red) & ((ssize_t)-2)); \
} while (0)
/* Node initializer. */
#define rbp_node_new(a_type, a_field, a_tree, a_node) do { \
rbp_left_set(a_type, a_field, (a_node), &(a_tree)->rbt_nil); \
rbp_right_set(a_type, a_field, (a_node), &(a_tree)->rbt_nil); \
rbp_red_set(a_type, a_field, (a_node)); \
} while (0)
/* Tree initializer. */
#define rb_new(a_type, a_field, a_tree) do { \
(a_tree)->rbt_root = &(a_tree)->rbt_nil; \
rbp_node_new(a_type, a_field, a_tree, &(a_tree)->rbt_nil); \
rbp_black_set(a_type, a_field, &(a_tree)->rbt_nil); \
} while (0)
/* Tree operations. */
#define rbp_black_height(a_type, a_field, a_tree, r_height) do { \
a_type *rbp_bh_t; \
for (rbp_bh_t = (a_tree)->rbt_root, (r_height) = 0; \
rbp_bh_t != &(a_tree)->rbt_nil; \
rbp_bh_t = rbp_left_get(a_type, a_field, rbp_bh_t)) { \
if (rbp_red_get(a_type, a_field, rbp_bh_t) == false) { \
(r_height)++; \
} \
} \
} while (0)
#define rbp_first(a_type, a_field, a_tree, a_root, r_node) do { \
for ((r_node) = (a_root); \
rbp_left_get(a_type, a_field, (r_node)) != &(a_tree)->rbt_nil; \
(r_node) = rbp_left_get(a_type, a_field, (r_node))) { \
} \
} while (0)
#define rbp_last(a_type, a_field, a_tree, a_root, r_node) do { \
for ((r_node) = (a_root); \
rbp_right_get(a_type, a_field, (r_node)) != &(a_tree)->rbt_nil; \
(r_node) = rbp_right_get(a_type, a_field, (r_node))) { \
} \
} while (0)
#define rbp_next(a_type, a_field, a_cmp, a_tree, a_node, r_node) do { \
if (rbp_right_get(a_type, a_field, (a_node)) \
!= &(a_tree)->rbt_nil) { \
rbp_first(a_type, a_field, a_tree, rbp_right_get(a_type, \
a_field, (a_node)), (r_node)); \
} else { \
a_type *rbp_n_t = (a_tree)->rbt_root; \
assert(rbp_n_t != &(a_tree)->rbt_nil); \
(r_node) = &(a_tree)->rbt_nil; \
while (true) { \
int rbp_n_cmp = (a_cmp)((a_node), rbp_n_t); \
if (rbp_n_cmp < 0) { \
(r_node) = rbp_n_t; \
rbp_n_t = rbp_left_get(a_type, a_field, rbp_n_t); \
} else if (rbp_n_cmp > 0) { \
rbp_n_t = rbp_right_get(a_type, a_field, rbp_n_t); \
} else { \
break; \
} \
assert(rbp_n_t != &(a_tree)->rbt_nil); \
} \
} \
} while (0)
#define rbp_prev(a_type, a_field, a_cmp, a_tree, a_node, r_node) do { \
if (rbp_left_get(a_type, a_field, (a_node)) != &(a_tree)->rbt_nil) {\
rbp_last(a_type, a_field, a_tree, rbp_left_get(a_type, \
a_field, (a_node)), (r_node)); \
} else { \
a_type *rbp_p_t = (a_tree)->rbt_root; \
assert(rbp_p_t != &(a_tree)->rbt_nil); \
(r_node) = &(a_tree)->rbt_nil; \
while (true) { \
int rbp_p_cmp = (a_cmp)((a_node), rbp_p_t); \
if (rbp_p_cmp < 0) { \
rbp_p_t = rbp_left_get(a_type, a_field, rbp_p_t); \
} else if (rbp_p_cmp > 0) { \
(r_node) = rbp_p_t; \
rbp_p_t = rbp_right_get(a_type, a_field, rbp_p_t); \
} else { \
break; \
} \
assert(rbp_p_t != &(a_tree)->rbt_nil); \
} \
} \
} while (0)
#define rb_first(a_type, a_field, a_tree, r_node) do { \
rbp_first(a_type, a_field, a_tree, (a_tree)->rbt_root, (r_node)); \
if ((r_node) == &(a_tree)->rbt_nil) { \
(r_node) = NULL; \
} \
} while (0)
#define rb_last(a_type, a_field, a_tree, r_node) do { \
rbp_last(a_type, a_field, a_tree, (a_tree)->rbt_root, r_node); \
if ((r_node) == &(a_tree)->rbt_nil) { \
(r_node) = NULL; \
} \
} while (0)
#define rb_next(a_type, a_field, a_cmp, a_tree, a_node, r_node) do { \
rbp_next(a_type, a_field, a_cmp, a_tree, (a_node), (r_node)); \
if ((r_node) == &(a_tree)->rbt_nil) { \
(r_node) = NULL; \
} \
} while (0)
#define rb_prev(a_type, a_field, a_cmp, a_tree, a_node, r_node) do { \
rbp_prev(a_type, a_field, a_cmp, a_tree, (a_node), (r_node)); \
if ((r_node) == &(a_tree)->rbt_nil) { \
(r_node) = NULL; \
} \
} while (0)
#define rb_search(a_type, a_field, a_cmp, a_tree, a_key, r_node) do { \
int rbp_se_cmp; \
(r_node) = (a_tree)->rbt_root; \
while ((r_node) != &(a_tree)->rbt_nil \
&& (rbp_se_cmp = (a_cmp)((a_key), (r_node))) != 0) { \
if (rbp_se_cmp < 0) { \
(r_node) = rbp_left_get(a_type, a_field, (r_node)); \
} else { \
(r_node) = rbp_right_get(a_type, a_field, (r_node)); \
} \
} \
if ((r_node) == &(a_tree)->rbt_nil) { \
(r_node) = NULL; \
} \
} while (0)
/*
* Find a match if it exists. Otherwise, find the next greater node, if one
* exists.
*/
#define rb_nsearch(a_type, a_field, a_cmp, a_tree, a_key, r_node) do { \
a_type *rbp_ns_t = (a_tree)->rbt_root; \
(r_node) = NULL; \
while (rbp_ns_t != &(a_tree)->rbt_nil) { \
int rbp_ns_cmp = (a_cmp)((a_key), rbp_ns_t); \
if (rbp_ns_cmp < 0) { \
(r_node) = rbp_ns_t; \
rbp_ns_t = rbp_left_get(a_type, a_field, rbp_ns_t); \
} else if (rbp_ns_cmp > 0) { \
rbp_ns_t = rbp_right_get(a_type, a_field, rbp_ns_t); \
} else { \
(r_node) = rbp_ns_t; \
break; \
} \
} \
} while (0)
/*
* Find a match if it exists. Otherwise, find the previous lesser node, if one
* exists.
*/
#define rb_psearch(a_type, a_field, a_cmp, a_tree, a_key, r_node) do { \
a_type *rbp_ps_t = (a_tree)->rbt_root; \
(r_node) = NULL; \
while (rbp_ps_t != &(a_tree)->rbt_nil) { \
int rbp_ps_cmp = (a_cmp)((a_key), rbp_ps_t); \
if (rbp_ps_cmp < 0) { \
rbp_ps_t = rbp_left_get(a_type, a_field, rbp_ps_t); \
} else if (rbp_ps_cmp > 0) { \
(r_node) = rbp_ps_t; \
rbp_ps_t = rbp_right_get(a_type, a_field, rbp_ps_t); \
} else { \
(r_node) = rbp_ps_t; \
break; \
} \
} \
} while (0)
#define rbp_rotate_left(a_type, a_field, a_node, r_node) do { \
(r_node) = rbp_right_get(a_type, a_field, (a_node)); \
rbp_right_set(a_type, a_field, (a_node), \
rbp_left_get(a_type, a_field, (r_node))); \
rbp_left_set(a_type, a_field, (r_node), (a_node)); \
} while (0)
#define rbp_rotate_right(a_type, a_field, a_node, r_node) do { \
(r_node) = rbp_left_get(a_type, a_field, (a_node)); \
rbp_left_set(a_type, a_field, (a_node), \
rbp_right_get(a_type, a_field, (r_node))); \
rbp_right_set(a_type, a_field, (r_node), (a_node)); \
} while (0)
#define rbp_lean_left(a_type, a_field, a_node, r_node) do { \
bool rbp_ll_red; \
rbp_rotate_left(a_type, a_field, (a_node), (r_node)); \
rbp_ll_red = rbp_red_get(a_type, a_field, (a_node)); \
rbp_color_set(a_type, a_field, (r_node), rbp_ll_red); \
rbp_red_set(a_type, a_field, (a_node)); \
} while (0)
#define rbp_lean_right(a_type, a_field, a_node, r_node) do { \
bool rbp_lr_red; \
rbp_rotate_right(a_type, a_field, (a_node), (r_node)); \
rbp_lr_red = rbp_red_get(a_type, a_field, (a_node)); \
rbp_color_set(a_type, a_field, (r_node), rbp_lr_red); \
rbp_red_set(a_type, a_field, (a_node)); \
} while (0)
#define rbp_move_red_left(a_type, a_field, a_node, r_node) do { \
a_type *rbp_mrl_t, *rbp_mrl_u; \
rbp_mrl_t = rbp_left_get(a_type, a_field, (a_node)); \
rbp_red_set(a_type, a_field, rbp_mrl_t); \
rbp_mrl_t = rbp_right_get(a_type, a_field, (a_node)); \
rbp_mrl_u = rbp_left_get(a_type, a_field, rbp_mrl_t); \
if (rbp_red_get(a_type, a_field, rbp_mrl_u)) { \
rbp_rotate_right(a_type, a_field, rbp_mrl_t, rbp_mrl_u); \
rbp_right_set(a_type, a_field, (a_node), rbp_mrl_u); \
rbp_rotate_left(a_type, a_field, (a_node), (r_node)); \
rbp_mrl_t = rbp_right_get(a_type, a_field, (a_node)); \
if (rbp_red_get(a_type, a_field, rbp_mrl_t)) { \
rbp_black_set(a_type, a_field, rbp_mrl_t); \
rbp_red_set(a_type, a_field, (a_node)); \
rbp_rotate_left(a_type, a_field, (a_node), rbp_mrl_t); \
rbp_left_set(a_type, a_field, (r_node), rbp_mrl_t); \
} else { \
rbp_black_set(a_type, a_field, (a_node)); \
} \
} else { \
rbp_red_set(a_type, a_field, (a_node)); \
rbp_rotate_left(a_type, a_field, (a_node), (r_node)); \
} \
} while (0)
#define rbp_move_red_right(a_type, a_field, a_node, r_node) do { \
a_type *rbp_mrr_t; \
rbp_mrr_t = rbp_left_get(a_type, a_field, (a_node)); \
if (rbp_red_get(a_type, a_field, rbp_mrr_t)) { \
a_type *rbp_mrr_u, *rbp_mrr_v; \
rbp_mrr_u = rbp_right_get(a_type, a_field, rbp_mrr_t); \
rbp_mrr_v = rbp_left_get(a_type, a_field, rbp_mrr_u); \
if (rbp_red_get(a_type, a_field, rbp_mrr_v)) { \
rbp_color_set(a_type, a_field, rbp_mrr_u, \
rbp_red_get(a_type, a_field, (a_node))); \
rbp_black_set(a_type, a_field, rbp_mrr_v); \
rbp_rotate_left(a_type, a_field, rbp_mrr_t, rbp_mrr_u); \
rbp_left_set(a_type, a_field, (a_node), rbp_mrr_u); \
rbp_rotate_right(a_type, a_field, (a_node), (r_node)); \
rbp_rotate_left(a_type, a_field, (a_node), rbp_mrr_t); \
rbp_right_set(a_type, a_field, (r_node), rbp_mrr_t); \
} else { \
rbp_color_set(a_type, a_field, rbp_mrr_t, \
rbp_red_get(a_type, a_field, (a_node))); \
rbp_red_set(a_type, a_field, rbp_mrr_u); \
rbp_rotate_right(a_type, a_field, (a_node), (r_node)); \
rbp_rotate_left(a_type, a_field, (a_node), rbp_mrr_t); \
rbp_right_set(a_type, a_field, (r_node), rbp_mrr_t); \
} \
rbp_red_set(a_type, a_field, (a_node)); \
} else { \
rbp_red_set(a_type, a_field, rbp_mrr_t); \
rbp_mrr_t = rbp_left_get(a_type, a_field, rbp_mrr_t); \
if (rbp_red_get(a_type, a_field, rbp_mrr_t)) { \
rbp_black_set(a_type, a_field, rbp_mrr_t); \
rbp_rotate_right(a_type, a_field, (a_node), (r_node)); \
rbp_rotate_left(a_type, a_field, (a_node), rbp_mrr_t); \
rbp_right_set(a_type, a_field, (r_node), rbp_mrr_t); \
} else { \
rbp_rotate_left(a_type, a_field, (a_node), (r_node)); \
} \
} \
} while (0)
#define rb_insert(a_type, a_field, a_cmp, a_tree, a_node) do { \
a_type rbp_i_s; \
a_type *rbp_i_g, *rbp_i_p, *rbp_i_c, *rbp_i_t, *rbp_i_u; \
int rbp_i_cmp = 0; \
rbp_i_g = &(a_tree)->rbt_nil; \
rbp_left_set(a_type, a_field, &rbp_i_s, (a_tree)->rbt_root); \
rbp_right_set(a_type, a_field, &rbp_i_s, &(a_tree)->rbt_nil); \
rbp_black_set(a_type, a_field, &rbp_i_s); \
rbp_i_p = &rbp_i_s; \
rbp_i_c = (a_tree)->rbt_root; \
/* Iteratively search down the tree for the insertion point, */\
/* splitting 4-nodes as they are encountered. At the end of each */\
/* iteration, rbp_i_g->rbp_i_p->rbp_i_c is a 3-level path down */\
/* the tree, assuming a sufficiently deep tree. */\
while (rbp_i_c != &(a_tree)->rbt_nil) { \
rbp_i_t = rbp_left_get(a_type, a_field, rbp_i_c); \
rbp_i_u = rbp_left_get(a_type, a_field, rbp_i_t); \
if (rbp_red_get(a_type, a_field, rbp_i_t) \
&& rbp_red_get(a_type, a_field, rbp_i_u)) { \
/* rbp_i_c is the top of a logical 4-node, so split it. */\
/* This iteration does not move down the tree, due to the */\
/* disruptiveness of node splitting. */\
/* */\
/* Rotate right. */\
rbp_rotate_right(a_type, a_field, rbp_i_c, rbp_i_t); \
/* Pass red links up one level. */\
rbp_i_u = rbp_left_get(a_type, a_field, rbp_i_t); \
rbp_black_set(a_type, a_field, rbp_i_u); \
if (rbp_left_get(a_type, a_field, rbp_i_p) == rbp_i_c) { \
rbp_left_set(a_type, a_field, rbp_i_p, rbp_i_t); \
rbp_i_c = rbp_i_t; \
} else { \
/* rbp_i_c was the right child of rbp_i_p, so rotate */\
/* left in order to maintain the left-leaning */\
/* invariant. */\
assert(rbp_right_get(a_type, a_field, rbp_i_p) \
== rbp_i_c); \
rbp_right_set(a_type, a_field, rbp_i_p, rbp_i_t); \
rbp_lean_left(a_type, a_field, rbp_i_p, rbp_i_u); \
if (rbp_left_get(a_type, a_field, rbp_i_g) == rbp_i_p) {\
rbp_left_set(a_type, a_field, rbp_i_g, rbp_i_u); \
} else { \
assert(rbp_right_get(a_type, a_field, rbp_i_g) \
== rbp_i_p); \
rbp_right_set(a_type, a_field, rbp_i_g, rbp_i_u); \
} \
rbp_i_p = rbp_i_u; \
rbp_i_cmp = (a_cmp)((a_node), rbp_i_p); \
if (rbp_i_cmp < 0) { \
rbp_i_c = rbp_left_get(a_type, a_field, rbp_i_p); \
} else { \
assert(rbp_i_cmp > 0); \
rbp_i_c = rbp_right_get(a_type, a_field, rbp_i_p); \
} \
continue; \
} \
} \
rbp_i_g = rbp_i_p; \
rbp_i_p = rbp_i_c; \
rbp_i_cmp = (a_cmp)((a_node), rbp_i_c); \
if (rbp_i_cmp < 0) { \
rbp_i_c = rbp_left_get(a_type, a_field, rbp_i_c); \
} else { \
assert(rbp_i_cmp > 0); \
rbp_i_c = rbp_right_get(a_type, a_field, rbp_i_c); \
} \
} \
/* rbp_i_p now refers to the node under which to insert. */\
rbp_node_new(a_type, a_field, a_tree, (a_node)); \
if (rbp_i_cmp > 0) { \
rbp_right_set(a_type, a_field, rbp_i_p, (a_node)); \
rbp_lean_left(a_type, a_field, rbp_i_p, rbp_i_t); \
if (rbp_left_get(a_type, a_field, rbp_i_g) == rbp_i_p) { \
rbp_left_set(a_type, a_field, rbp_i_g, rbp_i_t); \
} else if (rbp_right_get(a_type, a_field, rbp_i_g) == rbp_i_p) {\
rbp_right_set(a_type, a_field, rbp_i_g, rbp_i_t); \
} \
} else { \
rbp_left_set(a_type, a_field, rbp_i_p, (a_node)); \
} \
/* Update the root and make sure that it is black. */\
(a_tree)->rbt_root = rbp_left_get(a_type, a_field, &rbp_i_s); \
rbp_black_set(a_type, a_field, (a_tree)->rbt_root); \
} while (0)
#define rb_remove(a_type, a_field, a_cmp, a_tree, a_node) do { \
a_type rbp_r_s; \
a_type *rbp_r_p, *rbp_r_c, *rbp_r_xp, *rbp_r_t, *rbp_r_u; \
int rbp_r_cmp; \
rbp_left_set(a_type, a_field, &rbp_r_s, (a_tree)->rbt_root); \
rbp_right_set(a_type, a_field, &rbp_r_s, &(a_tree)->rbt_nil); \
rbp_black_set(a_type, a_field, &rbp_r_s); \
rbp_r_p = &rbp_r_s; \
rbp_r_c = (a_tree)->rbt_root; \
rbp_r_xp = &(a_tree)->rbt_nil; \
/* Iterate down the tree, but always transform 2-nodes to 3- or */\
/* 4-nodes in order to maintain the invariant that the current */\
/* node is not a 2-node. This allows simple deletion once a leaf */\
/* is reached. Handle the root specially though, since there may */\
/* be no way to convert it from a 2-node to a 3-node. */\
rbp_r_cmp = (a_cmp)((a_node), rbp_r_c); \
if (rbp_r_cmp < 0) { \
rbp_r_t = rbp_left_get(a_type, a_field, rbp_r_c); \
rbp_r_u = rbp_left_get(a_type, a_field, rbp_r_t); \
if (rbp_red_get(a_type, a_field, rbp_r_t) == false \
&& rbp_red_get(a_type, a_field, rbp_r_u) == false) { \
/* Apply standard transform to prepare for left move. */\
rbp_move_red_left(a_type, a_field, rbp_r_c, rbp_r_t); \
rbp_black_set(a_type, a_field, rbp_r_t); \
rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t); \
rbp_r_c = rbp_r_t; \
} else { \
/* Move left. */\
rbp_r_p = rbp_r_c; \
rbp_r_c = rbp_left_get(a_type, a_field, rbp_r_c); \
} \
} else { \
if (rbp_r_cmp == 0) { \
assert((a_node) == rbp_r_c); \
if (rbp_right_get(a_type, a_field, rbp_r_c) \
== &(a_tree)->rbt_nil) { \
/* Delete root node (which is also a leaf node). */\
if (rbp_left_get(a_type, a_field, rbp_r_c) \
!= &(a_tree)->rbt_nil) { \
rbp_lean_right(a_type, a_field, rbp_r_c, rbp_r_t); \
rbp_right_set(a_type, a_field, rbp_r_t, \
&(a_tree)->rbt_nil); \
} else { \
rbp_r_t = &(a_tree)->rbt_nil; \
} \
rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t); \
} else { \
/* This is the node we want to delete, but we will */\
/* instead swap it with its successor and delete the */\
/* successor. Record enough information to do the */\
/* swap later. rbp_r_xp is the a_node's parent. */\
rbp_r_xp = rbp_r_p; \
rbp_r_cmp = 1; /* Note that deletion is incomplete. */\
} \
} \
if (rbp_r_cmp == 1) { \
if (rbp_red_get(a_type, a_field, rbp_left_get(a_type, \
a_field, rbp_right_get(a_type, a_field, rbp_r_c))) \
== false) { \
rbp_r_t = rbp_left_get(a_type, a_field, rbp_r_c); \
if (rbp_red_get(a_type, a_field, rbp_r_t)) { \
/* Standard transform. */\
rbp_move_red_right(a_type, a_field, rbp_r_c, \
rbp_r_t); \
} else { \
/* Root-specific transform. */\
rbp_red_set(a_type, a_field, rbp_r_c); \
rbp_r_u = rbp_left_get(a_type, a_field, rbp_r_t); \
if (rbp_red_get(a_type, a_field, rbp_r_u)) { \
rbp_black_set(a_type, a_field, rbp_r_u); \
rbp_rotate_right(a_type, a_field, rbp_r_c, \
rbp_r_t); \
rbp_rotate_left(a_type, a_field, rbp_r_c, \
rbp_r_u); \
rbp_right_set(a_type, a_field, rbp_r_t, \
rbp_r_u); \
} else { \
rbp_red_set(a_type, a_field, rbp_r_t); \
rbp_rotate_left(a_type, a_field, rbp_r_c, \
rbp_r_t); \
} \
} \
rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t); \
rbp_r_c = rbp_r_t; \
} else { \
/* Move right. */\
rbp_r_p = rbp_r_c; \
rbp_r_c = rbp_right_get(a_type, a_field, rbp_r_c); \
} \
} \
} \
if (rbp_r_cmp != 0) { \
while (true) { \
assert(rbp_r_p != &(a_tree)->rbt_nil); \
rbp_r_cmp = (a_cmp)((a_node), rbp_r_c); \
if (rbp_r_cmp < 0) { \
rbp_r_t = rbp_left_get(a_type, a_field, rbp_r_c); \
if (rbp_r_t == &(a_tree)->rbt_nil) { \
/* rbp_r_c now refers to the successor node to */\
/* relocate, and rbp_r_xp/a_node refer to the */\
/* context for the relocation. */\
if (rbp_left_get(a_type, a_field, rbp_r_xp) \
== (a_node)) { \
rbp_left_set(a_type, a_field, rbp_r_xp, \
rbp_r_c); \
} else { \
assert(rbp_right_get(a_type, a_field, \
rbp_r_xp) == (a_node)); \
rbp_right_set(a_type, a_field, rbp_r_xp, \
rbp_r_c); \
} \
rbp_left_set(a_type, a_field, rbp_r_c, \
rbp_left_get(a_type, a_field, (a_node))); \
rbp_right_set(a_type, a_field, rbp_r_c, \
rbp_right_get(a_type, a_field, (a_node))); \
rbp_color_set(a_type, a_field, rbp_r_c, \
rbp_red_get(a_type, a_field, (a_node))); \
if (rbp_left_get(a_type, a_field, rbp_r_p) \
== rbp_r_c) { \
rbp_left_set(a_type, a_field, rbp_r_p, \
&(a_tree)->rbt_nil); \
} else { \
assert(rbp_right_get(a_type, a_field, rbp_r_p) \
== rbp_r_c); \
rbp_right_set(a_type, a_field, rbp_r_p, \
&(a_tree)->rbt_nil); \
} \
break; \
} \
rbp_r_u = rbp_left_get(a_type, a_field, rbp_r_t); \
if (rbp_red_get(a_type, a_field, rbp_r_t) == false \
&& rbp_red_get(a_type, a_field, rbp_r_u) == false) { \
rbp_move_red_left(a_type, a_field, rbp_r_c, \
rbp_r_t); \
if (rbp_left_get(a_type, a_field, rbp_r_p) \
== rbp_r_c) { \
rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t);\
} else { \
rbp_right_set(a_type, a_field, rbp_r_p, \
rbp_r_t); \
} \
rbp_r_c = rbp_r_t; \
} else { \
rbp_r_p = rbp_r_c; \
rbp_r_c = rbp_left_get(a_type, a_field, rbp_r_c); \
} \
} else { \
/* Check whether to delete this node (it has to be */\
/* the correct node and a leaf node). */\
if (rbp_r_cmp == 0) { \
assert((a_node) == rbp_r_c); \
if (rbp_right_get(a_type, a_field, rbp_r_c) \
== &(a_tree)->rbt_nil) { \
/* Delete leaf node. */\
if (rbp_left_get(a_type, a_field, rbp_r_c) \
!= &(a_tree)->rbt_nil) { \
rbp_lean_right(a_type, a_field, rbp_r_c, \
rbp_r_t); \
rbp_right_set(a_type, a_field, rbp_r_t, \
&(a_tree)->rbt_nil); \
} else { \
rbp_r_t = &(a_tree)->rbt_nil; \
} \
if (rbp_left_get(a_type, a_field, rbp_r_p) \
== rbp_r_c) { \
rbp_left_set(a_type, a_field, rbp_r_p, \
rbp_r_t); \
} else { \
rbp_right_set(a_type, a_field, rbp_r_p, \
rbp_r_t); \
} \
break; \
} else { \
/* This is the node we want to delete, but we */\
/* will instead swap it with its successor */\
/* and delete the successor. Record enough */\
/* information to do the swap later. */\
/* rbp_r_xp is a_node's parent. */\
rbp_r_xp = rbp_r_p; \
} \
} \
rbp_r_t = rbp_right_get(a_type, a_field, rbp_r_c); \
rbp_r_u = rbp_left_get(a_type, a_field, rbp_r_t); \
if (rbp_red_get(a_type, a_field, rbp_r_u) == false) { \
rbp_move_red_right(a_type, a_field, rbp_r_c, \
rbp_r_t); \
if (rbp_left_get(a_type, a_field, rbp_r_p) \
== rbp_r_c) { \
rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t);\
} else { \
rbp_right_set(a_type, a_field, rbp_r_p, \
rbp_r_t); \
} \
rbp_r_c = rbp_r_t; \
} else { \
rbp_r_p = rbp_r_c; \
rbp_r_c = rbp_right_get(a_type, a_field, rbp_r_c); \
} \
} \
} \
} \
/* Update root. */\
(a_tree)->rbt_root = rbp_left_get(a_type, a_field, &rbp_r_s); \
} while (0)
/*
* The rb_wrap() macro provides a convenient way to wrap functions around the
* cpp macros. The main benefits of wrapping are that 1) repeated macro
* expansion can cause code bloat, especially for rb_{insert,remove)(), and
* 2) type, linkage, comparison functions, etc. need not be specified at every
* call point.
*/
#define rb_wrap(a_attr, a_prefix, a_tree_type, a_type, a_field, a_cmp) \
a_attr void \
a_prefix##new(a_tree_type *tree) { \
rb_new(a_type, a_field, tree); \
} \
a_attr a_type * \
a_prefix##first(a_tree_type *tree) { \
a_type *ret; \
rb_first(a_type, a_field, tree, ret); \
return (ret); \
} \
a_attr a_type * \
a_prefix##last(a_tree_type *tree) { \
a_type *ret; \
rb_last(a_type, a_field, tree, ret); \
return (ret); \
} \
a_attr a_type * \
a_prefix##next(a_tree_type *tree, a_type *node) { \
a_type *ret; \
rb_next(a_type, a_field, a_cmp, tree, node, ret); \
return (ret); \
} \
a_attr a_type * \
a_prefix##prev(a_tree_type *tree, a_type *node) { \
a_type *ret; \
rb_prev(a_type, a_field, a_cmp, tree, node, ret); \
return (ret); \
} \
a_attr a_type * \
a_prefix##search(a_tree_type *tree, a_type *key) { \
a_type *ret; \
rb_search(a_type, a_field, a_cmp, tree, key, ret); \
return (ret); \
} \
a_attr a_type * \
a_prefix##nsearch(a_tree_type *tree, a_type *key) { \
a_type *ret; \
rb_nsearch(a_type, a_field, a_cmp, tree, key, ret); \
return (ret); \
} \
a_attr a_type * \
a_prefix##psearch(a_tree_type *tree, a_type *key) { \
a_type *ret; \
rb_psearch(a_type, a_field, a_cmp, tree, key, ret); \
return (ret); \
} \
a_attr void \
a_prefix##insert(a_tree_type *tree, a_type *node) { \
rb_insert(a_type, a_field, a_cmp, tree, node); \
} \
a_attr void \
a_prefix##remove(a_tree_type *tree, a_type *node) { \
rb_remove(a_type, a_field, a_cmp, tree, node); \
}
/*
* The iterators simulate recursion via an array of pointers that store the
* current path. This is critical to performance, since a series of calls to
* rb_{next,prev}() would require time proportional to (n lg n), whereas this
* implementation only requires time proportional to (n).
*
* Since the iterators cache a path down the tree, any tree modification may
* cause the cached path to become invalid. In order to continue iteration,
* use something like the following sequence:
*
* {
* a_type *node, *tnode;
*
* rb_foreach_begin(a_type, a_field, a_tree, node) {
* ...
* rb_next(a_type, a_field, a_cmp, a_tree, node, tnode);
* rb_remove(a_type, a_field, a_cmp, a_tree, node);
* rb_foreach_next(a_type, a_field, a_cmp, a_tree, tnode);
* ...
* } rb_foreach_end(a_type, a_field, a_tree, node)
* }
*
* Note that this idiom is not advised if every iteration modifies the tree,
* since in that case there is no algorithmic complexity improvement over a
* series of rb_{next,prev}() calls, thus making the setup overhead wasted
* effort.
*/
#ifdef RB_NO_C99_VARARRAYS
/*
* Avoid using variable-length arrays, at the cost of using more stack space.
* Size the path arrays such that they are always large enough, even if a
* tree consumes all of memory. Since each node must contain a minimum of
* two pointers, there can never be more nodes than:
*
* 1 << ((SIZEOF_PTR<<3) - (SIZEOF_PTR_2POW+1))
*
* Since the depth of a tree is limited to 3*lg(#nodes), the maximum depth
* is:
*
* (3 * ((SIZEOF_PTR<<3) - (SIZEOF_PTR_2POW+1)))
*
* This works out to a maximum depth of 87 and 180 for 32- and 64-bit
* systems, respectively (approximatly 348 and 1440 bytes, respectively).
*/
# define rbp_compute_f_height(a_type, a_field, a_tree)
# define rbp_f_height (3 * ((SIZEOF_PTR<<3) - (SIZEOF_PTR_2POW+1)))
# define rbp_compute_fr_height(a_type, a_field, a_tree)
# define rbp_fr_height (3 * ((SIZEOF_PTR<<3) - (SIZEOF_PTR_2POW+1)))
#else
# define rbp_compute_f_height(a_type, a_field, a_tree) \
/* Compute the maximum possible tree depth (3X the black height). */\
unsigned rbp_f_height; \
rbp_black_height(a_type, a_field, a_tree, rbp_f_height); \
rbp_f_height *= 3;
# define rbp_compute_fr_height(a_type, a_field, a_tree) \
/* Compute the maximum possible tree depth (3X the black height). */\
unsigned rbp_fr_height; \
rbp_black_height(a_type, a_field, a_tree, rbp_fr_height); \
rbp_fr_height *= 3;
#endif
#define rb_foreach_begin(a_type, a_field, a_tree, a_var) { \
rbp_compute_f_height(a_type, a_field, a_tree) \
{ \
/* Initialize the path to contain the left spine. */\
a_type *rbp_f_path[rbp_f_height]; \
a_type *rbp_f_node; \
bool rbp_f_synced = false; \
unsigned rbp_f_depth = 0; \
if ((a_tree)->rbt_root != &(a_tree)->rbt_nil) { \
rbp_f_path[rbp_f_depth] = (a_tree)->rbt_root; \
rbp_f_depth++; \
while ((rbp_f_node = rbp_left_get(a_type, a_field, \
rbp_f_path[rbp_f_depth-1])) != &(a_tree)->rbt_nil) { \
rbp_f_path[rbp_f_depth] = rbp_f_node; \
rbp_f_depth++; \
} \
} \
/* While the path is non-empty, iterate. */\
while (rbp_f_depth > 0) { \
(a_var) = rbp_f_path[rbp_f_depth-1];
/* Only use if modifying the tree during iteration. */
#define rb_foreach_next(a_type, a_field, a_cmp, a_tree, a_node) \
/* Re-initialize the path to contain the path to a_node. */\
rbp_f_depth = 0; \
if (a_node != NULL) { \
if ((a_tree)->rbt_root != &(a_tree)->rbt_nil) { \
rbp_f_path[rbp_f_depth] = (a_tree)->rbt_root; \
rbp_f_depth++; \
rbp_f_node = rbp_f_path[0]; \
while (true) { \
int rbp_f_cmp = (a_cmp)((a_node), \
rbp_f_path[rbp_f_depth-1]); \
if (rbp_f_cmp < 0) { \
rbp_f_node = rbp_left_get(a_type, a_field, \
rbp_f_path[rbp_f_depth-1]); \
} else if (rbp_f_cmp > 0) { \
rbp_f_node = rbp_right_get(a_type, a_field, \
rbp_f_path[rbp_f_depth-1]); \
} else { \
break; \
} \
assert(rbp_f_node != &(a_tree)->rbt_nil); \
rbp_f_path[rbp_f_depth] = rbp_f_node; \
rbp_f_depth++; \
} \
} \
} \
rbp_f_synced = true;
#define rb_foreach_end(a_type, a_field, a_tree, a_var) \
if (rbp_f_synced) { \
rbp_f_synced = false; \
continue; \
} \
/* Find the successor. */\
if ((rbp_f_node = rbp_right_get(a_type, a_field, \
rbp_f_path[rbp_f_depth-1])) != &(a_tree)->rbt_nil) { \
/* The successor is the left-most node in the right */\
/* subtree. */\
rbp_f_path[rbp_f_depth] = rbp_f_node; \
rbp_f_depth++; \
while ((rbp_f_node = rbp_left_get(a_type, a_field, \
rbp_f_path[rbp_f_depth-1])) != &(a_tree)->rbt_nil) { \
rbp_f_path[rbp_f_depth] = rbp_f_node; \
rbp_f_depth++; \
} \
} else { \
/* The successor is above the current node. Unwind */\
/* until a left-leaning edge is removed from the */\
/* path, or the path is empty. */\
for (rbp_f_depth--; rbp_f_depth > 0; rbp_f_depth--) { \
if (rbp_left_get(a_type, a_field, \
rbp_f_path[rbp_f_depth-1]) \
== rbp_f_path[rbp_f_depth]) { \
break; \
} \
} \
} \
} \
} \
}
#define rb_foreach_reverse_begin(a_type, a_field, a_tree, a_var) { \
rbp_compute_fr_height(a_type, a_field, a_tree) \
{ \
/* Initialize the path to contain the right spine. */\
a_type *rbp_fr_path[rbp_fr_height]; \
a_type *rbp_fr_node; \
bool rbp_fr_synced = false; \
unsigned rbp_fr_depth = 0; \
if ((a_tree)->rbt_root != &(a_tree)->rbt_nil) { \
rbp_fr_path[rbp_fr_depth] = (a_tree)->rbt_root; \
rbp_fr_depth++; \
while ((rbp_fr_node = rbp_right_get(a_type, a_field, \
rbp_fr_path[rbp_fr_depth-1])) != &(a_tree)->rbt_nil) { \
rbp_fr_path[rbp_fr_depth] = rbp_fr_node; \
rbp_fr_depth++; \
} \
} \
/* While the path is non-empty, iterate. */\
while (rbp_fr_depth > 0) { \
(a_var) = rbp_fr_path[rbp_fr_depth-1];
/* Only use if modifying the tree during iteration. */
#define rb_foreach_reverse_prev(a_type, a_field, a_cmp, a_tree, a_node) \
/* Re-initialize the path to contain the path to a_node. */\
rbp_fr_depth = 0; \
if (a_node != NULL) { \
if ((a_tree)->rbt_root != &(a_tree)->rbt_nil) { \
rbp_fr_path[rbp_fr_depth] = (a_tree)->rbt_root; \
rbp_fr_depth++; \
rbp_fr_node = rbp_fr_path[0]; \
while (true) { \
int rbp_fr_cmp = (a_cmp)((a_node), \
rbp_fr_path[rbp_fr_depth-1]); \
if (rbp_fr_cmp < 0) { \
rbp_fr_node = rbp_left_get(a_type, a_field, \
rbp_fr_path[rbp_fr_depth-1]); \
} else if (rbp_fr_cmp > 0) { \
rbp_fr_node = rbp_right_get(a_type, a_field,\
rbp_fr_path[rbp_fr_depth-1]); \
} else { \
break; \
} \
assert(rbp_fr_node != &(a_tree)->rbt_nil); \
rbp_fr_path[rbp_fr_depth] = rbp_fr_node; \
rbp_fr_depth++; \
} \
} \
} \
rbp_fr_synced = true;
#define rb_foreach_reverse_end(a_type, a_field, a_tree, a_var) \
if (rbp_fr_synced) { \
rbp_fr_synced = false; \
continue; \
} \
if (rbp_fr_depth == 0) { \
/* rb_foreach_reverse_sync() was called with a NULL */\
/* a_node. */\
break; \
} \
/* Find the predecessor. */\
if ((rbp_fr_node = rbp_left_get(a_type, a_field, \
rbp_fr_path[rbp_fr_depth-1])) != &(a_tree)->rbt_nil) { \
/* The predecessor is the right-most node in the left */\
/* subtree. */\
rbp_fr_path[rbp_fr_depth] = rbp_fr_node; \
rbp_fr_depth++; \
while ((rbp_fr_node = rbp_right_get(a_type, a_field, \
rbp_fr_path[rbp_fr_depth-1])) != &(a_tree)->rbt_nil) {\
rbp_fr_path[rbp_fr_depth] = rbp_fr_node; \
rbp_fr_depth++; \
} \
} else { \
/* The predecessor is above the current node. Unwind */\
/* until a right-leaning edge is removed from the */\
/* path, or the path is empty. */\
for (rbp_fr_depth--; rbp_fr_depth > 0; rbp_fr_depth--) {\
if (rbp_right_get(a_type, a_field, \
rbp_fr_path[rbp_fr_depth-1]) \
== rbp_fr_path[rbp_fr_depth]) { \
break; \
} \
} \
} \
} \
} \
}
#endif /* RB_H_ */