pjs/content/media/ogg/nsOggCodecState.cpp

1255 строки
40 KiB
C++

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim:set ts=2 sw=2 sts=2 et cindent: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "nsDebug.h"
#include "nsOggCodecState.h"
#include "nsOggDecoder.h"
#include <string.h>
#include "nsTraceRefcnt.h"
#include "VideoUtils.h"
#include "nsBuiltinDecoderReader.h"
#include "mozilla/StandardInteger.h"
#include "mozilla/Util.h" // DebugOnly
using namespace mozilla;
#ifdef PR_LOGGING
extern PRLogModuleInfo* gBuiltinDecoderLog;
#define LOG(type, msg) PR_LOG(gBuiltinDecoderLog, type, msg)
#else
#define LOG(type, msg)
#endif
// Reads a little-endian encoded unsigned 32bit integer at p.
static PRUint32 LEUint32(const unsigned char* p)
{
return p[0] +
(p[1] << 8) +
(p[2] << 16) +
(p[3] << 24);
}
// Reads a little-endian encoded 64bit integer at p.
static PRInt64 LEInt64(const unsigned char* p)
{
PRUint32 lo = LEUint32(p);
PRUint32 hi = LEUint32(p + 4);
return static_cast<PRInt64>(lo) | (static_cast<PRInt64>(hi) << 32);
}
// Reads a little-endian encoded unsigned 16bit integer at p.
static PRUint16 LEUint16(const unsigned char* p)
{
return p[0] + (p[1] << 8);
}
/** Decoder base class for Ogg-encapsulated streams. */
nsOggCodecState*
nsOggCodecState::Create(ogg_page* aPage)
{
NS_ASSERTION(ogg_page_bos(aPage), "Only call on BOS page!");
nsAutoPtr<nsOggCodecState> codecState;
if (aPage->body_len > 6 && memcmp(aPage->body+1, "theora", 6) == 0) {
codecState = new nsTheoraState(aPage);
} else if (aPage->body_len > 6 && memcmp(aPage->body+1, "vorbis", 6) == 0) {
codecState = new nsVorbisState(aPage);
#ifdef MOZ_OPUS
} else if (aPage->body_len > 8 && memcmp(aPage->body, "OpusHead", 8) == 0) {
codecState = new nsOpusState(aPage);
#endif
} else if (aPage->body_len > 8 && memcmp(aPage->body, "fishead\0", 8) == 0) {
codecState = new nsSkeletonState(aPage);
} else {
codecState = new nsOggCodecState(aPage, false);
}
return codecState->nsOggCodecState::Init() ? codecState.forget() : nsnull;
}
nsOggCodecState::nsOggCodecState(ogg_page* aBosPage, bool aActive) :
mPacketCount(0),
mSerial(ogg_page_serialno(aBosPage)),
mActive(aActive),
mDoneReadingHeaders(!aActive)
{
MOZ_COUNT_CTOR(nsOggCodecState);
memset(&mState, 0, sizeof(ogg_stream_state));
}
nsOggCodecState::~nsOggCodecState() {
MOZ_COUNT_DTOR(nsOggCodecState);
Reset();
#ifdef DEBUG
int ret =
#endif
ogg_stream_clear(&mState);
NS_ASSERTION(ret == 0, "ogg_stream_clear failed");
}
nsresult nsOggCodecState::Reset() {
if (ogg_stream_reset(&mState) != 0) {
return NS_ERROR_FAILURE;
}
mPackets.Erase();
ClearUnstamped();
return NS_OK;
}
void nsOggCodecState::ClearUnstamped()
{
for (PRUint32 i = 0; i < mUnstamped.Length(); ++i) {
nsOggCodecState::ReleasePacket(mUnstamped[i]);
}
mUnstamped.Clear();
}
bool nsOggCodecState::Init() {
int ret = ogg_stream_init(&mState, mSerial);
return ret == 0;
}
void nsVorbisState::RecordVorbisPacketSamples(ogg_packet* aPacket,
long aSamples)
{
#ifdef VALIDATE_VORBIS_SAMPLE_CALCULATION
mVorbisPacketSamples[aPacket] = aSamples;
#endif
}
void nsVorbisState::ValidateVorbisPacketSamples(ogg_packet* aPacket,
long aSamples)
{
#ifdef VALIDATE_VORBIS_SAMPLE_CALCULATION
NS_ASSERTION(mVorbisPacketSamples[aPacket] == aSamples,
"Decoded samples for Vorbis packet don't match expected!");
mVorbisPacketSamples.erase(aPacket);
#endif
}
void nsVorbisState::AssertHasRecordedPacketSamples(ogg_packet* aPacket)
{
#ifdef VALIDATE_VORBIS_SAMPLE_CALCULATION
NS_ASSERTION(mVorbisPacketSamples.count(aPacket) == 1,
"Must have recorded packet samples");
#endif
}
static ogg_packet* Clone(ogg_packet* aPacket) {
ogg_packet* p = new ogg_packet();
memcpy(p, aPacket, sizeof(ogg_packet));
p->packet = new unsigned char[p->bytes];
memcpy(p->packet, aPacket->packet, p->bytes);
return p;
}
void nsOggCodecState::ReleasePacket(ogg_packet* aPacket) {
if (aPacket)
delete [] aPacket->packet;
delete aPacket;
}
void nsPacketQueue::Append(ogg_packet* aPacket) {
nsDeque::Push(aPacket);
}
ogg_packet* nsOggCodecState::PacketOut() {
if (mPackets.IsEmpty()) {
return nsnull;
}
return mPackets.PopFront();
}
nsresult nsOggCodecState::PageIn(ogg_page* aPage) {
if (!mActive)
return NS_OK;
NS_ASSERTION(static_cast<PRUint32>(ogg_page_serialno(aPage)) == mSerial,
"Page must be for this stream!");
if (ogg_stream_pagein(&mState, aPage) == -1)
return NS_ERROR_FAILURE;
int r;
do {
ogg_packet packet;
r = ogg_stream_packetout(&mState, &packet);
if (r == 1) {
mPackets.Append(Clone(&packet));
}
} while (r != 0);
if (ogg_stream_check(&mState)) {
NS_WARNING("Unrecoverable error in ogg_stream_packetout");
return NS_ERROR_FAILURE;
}
return NS_OK;
}
nsresult nsOggCodecState::PacketOutUntilGranulepos(bool& aFoundGranulepos) {
int r;
aFoundGranulepos = false;
// Extract packets from the sync state until either no more packets
// come out, or we get a data packet with non -1 granulepos.
do {
ogg_packet packet;
r = ogg_stream_packetout(&mState, &packet);
if (r == 1) {
ogg_packet* clone = Clone(&packet);
if (IsHeader(&packet)) {
// Header packets go straight into the packet queue.
mPackets.Append(clone);
} else {
// We buffer data packets until we encounter a granulepos. We'll
// then use the granulepos to figure out the granulepos of the
// preceeding packets.
mUnstamped.AppendElement(clone);
aFoundGranulepos = packet.granulepos > 0;
}
}
} while (r != 0 && !aFoundGranulepos);
if (ogg_stream_check(&mState)) {
NS_WARNING("Unrecoverable error in ogg_stream_packetout");
return NS_ERROR_FAILURE;
}
return NS_OK;
}
nsTheoraState::nsTheoraState(ogg_page* aBosPage) :
nsOggCodecState(aBosPage, true),
mSetup(0),
mCtx(0),
mPixelAspectRatio(0)
{
MOZ_COUNT_CTOR(nsTheoraState);
th_info_init(&mInfo);
th_comment_init(&mComment);
}
nsTheoraState::~nsTheoraState() {
MOZ_COUNT_DTOR(nsTheoraState);
th_setup_free(mSetup);
th_decode_free(mCtx);
th_comment_clear(&mComment);
th_info_clear(&mInfo);
}
bool nsTheoraState::Init() {
if (!mActive)
return false;
PRInt64 n = mInfo.aspect_numerator;
PRInt64 d = mInfo.aspect_denominator;
mPixelAspectRatio = (n == 0 || d == 0) ?
1.0f : static_cast<float>(n) / static_cast<float>(d);
// Ensure the frame and picture regions aren't larger than our prescribed
// maximum, or zero sized.
nsIntSize frame(mInfo.frame_width, mInfo.frame_height);
nsIntRect picture(mInfo.pic_x, mInfo.pic_y, mInfo.pic_width, mInfo.pic_height);
if (!nsVideoInfo::ValidateVideoRegion(frame, picture, frame)) {
return mActive = false;
}
mCtx = th_decode_alloc(&mInfo, mSetup);
if (mCtx == NULL) {
return mActive = false;
}
return true;
}
bool
nsTheoraState::DecodeHeader(ogg_packet* aPacket)
{
mPacketCount++;
int ret = th_decode_headerin(&mInfo,
&mComment,
&mSetup,
aPacket);
// We must determine when we've read the last header packet.
// th_decode_headerin() does not tell us when it's read the last header, so
// we must keep track of the headers externally.
//
// There are 3 header packets, the Identification, Comment, and Setup
// headers, which must be in that order. If they're out of order, the file
// is invalid. If we've successfully read a header, and it's the setup
// header, then we're done reading headers. The first byte of each packet
// determines it's type as follows:
// 0x80 -> Identification header
// 0x81 -> Comment header
// 0x82 -> Setup header
// See http://www.theora.org/doc/Theora.pdf Chapter 6, "Bitstream Headers",
// for more details of the Ogg/Theora containment scheme.
bool isSetupHeader = aPacket->bytes > 0 && aPacket->packet[0] == 0x82;
if (ret < 0 || mPacketCount > 3) {
// We've received an error, or the first three packets weren't valid
// header packets, assume bad input, and don't activate the bitstream.
mDoneReadingHeaders = true;
} else if (ret > 0 && isSetupHeader && mPacketCount == 3) {
// Successfully read the three header packets.
mDoneReadingHeaders = true;
mActive = true;
}
return mDoneReadingHeaders;
}
PRInt64
nsTheoraState::Time(PRInt64 granulepos) {
if (!mActive) {
return -1;
}
return nsTheoraState::Time(&mInfo, granulepos);
}
bool
nsTheoraState::IsHeader(ogg_packet* aPacket) {
return th_packet_isheader(aPacket);
}
# define TH_VERSION_CHECK(_info,_maj,_min,_sub) \
(((_info)->version_major>(_maj)||(_info)->version_major==(_maj))&& \
(((_info)->version_minor>(_min)||(_info)->version_minor==(_min))&& \
(_info)->version_subminor>=(_sub)))
PRInt64 nsTheoraState::Time(th_info* aInfo, PRInt64 aGranulepos)
{
if (aGranulepos < 0 || aInfo->fps_numerator == 0) {
return -1;
}
// Implementation of th_granule_frame inlined here to operate
// on the th_info structure instead of the theora_state.
int shift = aInfo->keyframe_granule_shift;
ogg_int64_t iframe = aGranulepos >> shift;
ogg_int64_t pframe = aGranulepos - (iframe << shift);
PRInt64 frameno = iframe + pframe - TH_VERSION_CHECK(aInfo, 3, 2, 1);
CheckedInt64 t = ((CheckedInt64(frameno) + 1) * USECS_PER_S) * aInfo->fps_denominator;
if (!t.isValid())
return -1;
t /= aInfo->fps_numerator;
return t.isValid() ? t.value() : -1;
}
PRInt64 nsTheoraState::StartTime(PRInt64 granulepos) {
if (granulepos < 0 || !mActive || mInfo.fps_numerator == 0) {
return -1;
}
CheckedInt64 t = (CheckedInt64(th_granule_frame(mCtx, granulepos)) * USECS_PER_S) * mInfo.fps_denominator;
if (!t.isValid())
return -1;
return t.value() / mInfo.fps_numerator;
}
PRInt64
nsTheoraState::MaxKeyframeOffset()
{
// Determine the maximum time in microseconds by which a key frame could
// offset for the theora bitstream. Theora granulepos encode time as:
// ((key_frame_number << granule_shift) + frame_offset).
// Therefore the maximum possible time by which any frame could be offset
// from a keyframe is the duration of (1 << granule_shift) - 1) frames.
PRInt64 frameDuration;
// Max number of frames keyframe could possibly be offset.
PRInt64 keyframeDiff = (1 << mInfo.keyframe_granule_shift) - 1;
// Length of frame in usecs.
frameDuration = (mInfo.fps_denominator * USECS_PER_S) / mInfo.fps_numerator;
// Total time in usecs keyframe can be offset from any given frame.
return frameDuration * keyframeDiff;
}
nsresult
nsTheoraState::PageIn(ogg_page* aPage)
{
if (!mActive)
return NS_OK;
NS_ASSERTION(static_cast<PRUint32>(ogg_page_serialno(aPage)) == mSerial,
"Page must be for this stream!");
if (ogg_stream_pagein(&mState, aPage) == -1)
return NS_ERROR_FAILURE;
bool foundGp;
nsresult res = PacketOutUntilGranulepos(foundGp);
if (NS_FAILED(res))
return res;
if (foundGp && mDoneReadingHeaders) {
// We've found a packet with a granulepos, and we've loaded our metadata
// and initialized our decoder. Determine granulepos of buffered packets.
ReconstructTheoraGranulepos();
for (PRUint32 i = 0; i < mUnstamped.Length(); ++i) {
ogg_packet* packet = mUnstamped[i];
#ifdef DEBUG
NS_ASSERTION(!IsHeader(packet), "Don't try to recover header packet gp");
NS_ASSERTION(packet->granulepos != -1, "Packet must have gp by now");
#endif
mPackets.Append(packet);
}
mUnstamped.Clear();
}
return NS_OK;
}
// Returns 1 if the Theora info struct is decoding a media of Theora
// version (maj,min,sub) or later, otherwise returns 0.
int
TheoraVersion(th_info* info,
unsigned char maj,
unsigned char min,
unsigned char sub)
{
ogg_uint32_t ver = (maj << 16) + (min << 8) + sub;
ogg_uint32_t th_ver = (info->version_major << 16) +
(info->version_minor << 8) +
info->version_subminor;
return (th_ver >= ver) ? 1 : 0;
}
void nsTheoraState::ReconstructTheoraGranulepos()
{
if (mUnstamped.Length() == 0) {
return;
}
ogg_int64_t lastGranulepos = mUnstamped[mUnstamped.Length() - 1]->granulepos;
NS_ASSERTION(lastGranulepos != -1, "Must know last granulepos");
// Reconstruct the granulepos (and thus timestamps) of the decoded
// frames. Granulepos are stored as ((keyframe<<shift)+offset). We
// know the granulepos of the last frame in the list, so we can infer
// the granulepos of the intermediate frames using their frame numbers.
ogg_int64_t shift = mInfo.keyframe_granule_shift;
ogg_int64_t version_3_2_1 = TheoraVersion(&mInfo,3,2,1);
ogg_int64_t lastFrame = th_granule_frame(mCtx,
lastGranulepos) + version_3_2_1;
ogg_int64_t firstFrame = lastFrame - mUnstamped.Length() + 1;
// Until we encounter a keyframe, we'll assume that the "keyframe"
// segment of the granulepos is the first frame, or if that causes
// the "offset" segment to overflow, we assume the required
// keyframe is maximumally offset. Until we encounter a keyframe
// the granulepos will probably be wrong, but we can't decode the
// frame anyway (since we don't have its keyframe) so it doesn't really
// matter.
ogg_int64_t keyframe = lastGranulepos >> shift;
// The lastFrame, firstFrame, keyframe variables, as well as the frame
// variable in the loop below, store the frame number for Theora
// version >= 3.2.1 streams, and store the frame index for Theora
// version < 3.2.1 streams.
for (PRUint32 i = 0; i < mUnstamped.Length() - 1; ++i) {
ogg_int64_t frame = firstFrame + i;
ogg_int64_t granulepos;
ogg_packet* packet = mUnstamped[i];
bool isKeyframe = th_packet_iskeyframe(packet) == 1;
if (isKeyframe) {
granulepos = frame << shift;
keyframe = frame;
} else if (frame >= keyframe &&
frame - keyframe < ((ogg_int64_t)1 << shift))
{
// (frame - keyframe) won't overflow the "offset" segment of the
// granulepos, so it's safe to calculate the granulepos.
granulepos = (keyframe << shift) + (frame - keyframe);
} else {
// (frame - keyframeno) will overflow the "offset" segment of the
// granulepos, so we take "keyframe" to be the max possible offset
// frame instead.
ogg_int64_t k = NS_MAX(frame - (((ogg_int64_t)1 << shift) - 1), version_3_2_1);
granulepos = (k << shift) + (frame - k);
}
// Theora 3.2.1+ granulepos store frame number [1..N], so granulepos
// should be > 0.
// Theora 3.2.0 granulepos store the frame index [0..(N-1)], so
// granulepos should be >= 0.
NS_ASSERTION(granulepos >= version_3_2_1,
"Invalid granulepos for Theora version");
// Check that the frame's granule number is one more than the
// previous frame's.
NS_ASSERTION(i == 0 ||
th_granule_frame(mCtx, granulepos) ==
th_granule_frame(mCtx, mUnstamped[i-1]->granulepos) + 1,
"Granulepos calculation is incorrect!");
packet->granulepos = granulepos;
}
// Check that the second to last frame's granule number is one less than
// the last frame's (the known granule number). If not our granulepos
// recovery missed a beat.
NS_ASSERTION(mUnstamped.Length() < 2 ||
th_granule_frame(mCtx, mUnstamped[mUnstamped.Length()-2]->granulepos) + 1 ==
th_granule_frame(mCtx, lastGranulepos),
"Granulepos recovery should catch up with packet->granulepos!");
}
nsresult nsVorbisState::Reset()
{
nsresult res = NS_OK;
if (mActive && vorbis_synthesis_restart(&mDsp) != 0) {
res = NS_ERROR_FAILURE;
}
if (NS_FAILED(nsOggCodecState::Reset())) {
return NS_ERROR_FAILURE;
}
mGranulepos = 0;
mPrevVorbisBlockSize = 0;
return res;
}
nsVorbisState::nsVorbisState(ogg_page* aBosPage) :
nsOggCodecState(aBosPage, true),
mPrevVorbisBlockSize(0),
mGranulepos(0)
{
MOZ_COUNT_CTOR(nsVorbisState);
vorbis_info_init(&mInfo);
vorbis_comment_init(&mComment);
memset(&mDsp, 0, sizeof(vorbis_dsp_state));
memset(&mBlock, 0, sizeof(vorbis_block));
}
nsVorbisState::~nsVorbisState() {
MOZ_COUNT_DTOR(nsVorbisState);
Reset();
vorbis_block_clear(&mBlock);
vorbis_dsp_clear(&mDsp);
vorbis_info_clear(&mInfo);
vorbis_comment_clear(&mComment);
}
bool nsVorbisState::DecodeHeader(ogg_packet* aPacket) {
mPacketCount++;
int ret = vorbis_synthesis_headerin(&mInfo,
&mComment,
aPacket);
// We must determine when we've read the last header packet.
// vorbis_synthesis_headerin() does not tell us when it's read the last
// header, so we must keep track of the headers externally.
//
// There are 3 header packets, the Identification, Comment, and Setup
// headers, which must be in that order. If they're out of order, the file
// is invalid. If we've successfully read a header, and it's the setup
// header, then we're done reading headers. The first byte of each packet
// determines it's type as follows:
// 0x1 -> Identification header
// 0x3 -> Comment header
// 0x5 -> Setup header
// For more details of the Vorbis/Ogg containment scheme, see the Vorbis I
// Specification, Chapter 4, Codec Setup and Packet Decode:
// http://www.xiph.org/vorbis/doc/Vorbis_I_spec.html#x1-580004
bool isSetupHeader = aPacket->bytes > 0 && aPacket->packet[0] == 0x5;
if (ret < 0 || mPacketCount > 3) {
// We've received an error, or the first three packets weren't valid
// header packets, assume bad input, and deactivate the bitstream.
mDoneReadingHeaders = true;
mActive = false;
} else if (ret == 0 && isSetupHeader && mPacketCount == 3) {
// Successfully read the three header packets.
// The bitstream remains active.
mDoneReadingHeaders = true;
}
return mDoneReadingHeaders;
}
bool nsVorbisState::Init()
{
if (!mActive)
return false;
int ret = vorbis_synthesis_init(&mDsp, &mInfo);
if (ret != 0) {
NS_WARNING("vorbis_synthesis_init() failed initializing vorbis bitstream");
return mActive = false;
}
ret = vorbis_block_init(&mDsp, &mBlock);
if (ret != 0) {
NS_WARNING("vorbis_block_init() failed initializing vorbis bitstream");
if (mActive) {
vorbis_dsp_clear(&mDsp);
}
return mActive = false;
}
return true;
}
PRInt64 nsVorbisState::Time(PRInt64 granulepos)
{
if (!mActive) {
return -1;
}
return nsVorbisState::Time(&mInfo, granulepos);
}
PRInt64 nsVorbisState::Time(vorbis_info* aInfo, PRInt64 aGranulepos)
{
if (aGranulepos == -1 || aInfo->rate == 0) {
return -1;
}
CheckedInt64 t = CheckedInt64(aGranulepos) * USECS_PER_S;
if (!t.isValid())
t = 0;
return t.value() / aInfo->rate;
}
bool
nsVorbisState::IsHeader(ogg_packet* aPacket)
{
// The first byte in each Vorbis header packet is either 0x01, 0x03, or 0x05,
// i.e. the first bit is odd. Audio data packets have their first bit as 0x0.
// Any packet with its first bit set cannot be a data packet, it's a
// (possibly invalid) header packet.
// See: http://xiph.org/vorbis/doc/Vorbis_I_spec.html#x1-610004.2.1
return aPacket->bytes > 0 ? (aPacket->packet[0] & 0x1) : false;
}
nsresult
nsVorbisState::PageIn(ogg_page* aPage)
{
if (!mActive)
return NS_OK;
NS_ASSERTION(static_cast<PRUint32>(ogg_page_serialno(aPage)) == mSerial,
"Page must be for this stream!");
if (ogg_stream_pagein(&mState, aPage) == -1)
return NS_ERROR_FAILURE;
bool foundGp;
nsresult res = PacketOutUntilGranulepos(foundGp);
if (NS_FAILED(res))
return res;
if (foundGp && mDoneReadingHeaders) {
// We've found a packet with a granulepos, and we've loaded our metadata
// and initialized our decoder. Determine granulepos of buffered packets.
ReconstructVorbisGranulepos();
for (PRUint32 i = 0; i < mUnstamped.Length(); ++i) {
ogg_packet* packet = mUnstamped[i];
AssertHasRecordedPacketSamples(packet);
NS_ASSERTION(!IsHeader(packet), "Don't try to recover header packet gp");
NS_ASSERTION(packet->granulepos != -1, "Packet must have gp by now");
mPackets.Append(packet);
}
mUnstamped.Clear();
}
return NS_OK;
}
nsresult nsVorbisState::ReconstructVorbisGranulepos()
{
// The number of samples in a Vorbis packet is:
// window_blocksize(previous_packet)/4+window_blocksize(current_packet)/4
// See: http://xiph.org/vorbis/doc/Vorbis_I_spec.html#x1-230001.3.2
// So we maintain mPrevVorbisBlockSize, the block size of the last packet
// encountered. We also maintain mGranulepos, which is the granulepos of
// the last encountered packet. This enables us to give granulepos to
// packets when the last packet in mUnstamped doesn't have a granulepos
// (for example if the stream was truncated).
//
// We validate our prediction of the number of samples decoded when
// VALIDATE_VORBIS_SAMPLE_CALCULATION is defined by recording the predicted
// number of samples, and verifing we extract that many when decoding
// each packet.
NS_ASSERTION(mUnstamped.Length() > 0, "Length must be > 0");
ogg_packet* last = mUnstamped[mUnstamped.Length()-1];
NS_ASSERTION(last->e_o_s || last->granulepos >= 0,
"Must know last granulepos!");
if (mUnstamped.Length() == 1) {
ogg_packet* packet = mUnstamped[0];
long blockSize = vorbis_packet_blocksize(&mInfo, packet);
if (blockSize < 0) {
// On failure vorbis_packet_blocksize returns < 0. If we've got
// a bad packet, we just assume that decode will have to skip this
// packet, i.e. assume 0 samples are decodable from this packet.
blockSize = 0;
mPrevVorbisBlockSize = 0;
}
long samples = mPrevVorbisBlockSize / 4 + blockSize / 4;
mPrevVorbisBlockSize = blockSize;
if (packet->granulepos == -1) {
packet->granulepos = mGranulepos + samples;
}
// Account for a partial last frame
if (packet->e_o_s && packet->granulepos >= mGranulepos) {
samples = packet->granulepos - mGranulepos;
}
mGranulepos = packet->granulepos;
RecordVorbisPacketSamples(packet, samples);
return NS_OK;
}
bool unknownGranulepos = last->granulepos == -1;
int totalSamples = 0;
for (PRInt32 i = mUnstamped.Length() - 1; i > 0; i--) {
ogg_packet* packet = mUnstamped[i];
ogg_packet* prev = mUnstamped[i-1];
ogg_int64_t granulepos = packet->granulepos;
NS_ASSERTION(granulepos != -1, "Must know granulepos!");
long prevBlockSize = vorbis_packet_blocksize(&mInfo, prev);
long blockSize = vorbis_packet_blocksize(&mInfo, packet);
if (blockSize < 0 || prevBlockSize < 0) {
// On failure vorbis_packet_blocksize returns < 0. If we've got
// a bad packet, we just assume that decode will have to skip this
// packet, i.e. assume 0 samples are decodable from this packet.
blockSize = 0;
prevBlockSize = 0;
}
long samples = prevBlockSize / 4 + blockSize / 4;
totalSamples += samples;
prev->granulepos = granulepos - samples;
RecordVorbisPacketSamples(packet, samples);
}
if (unknownGranulepos) {
for (PRUint32 i = 0; i < mUnstamped.Length(); i++) {
ogg_packet* packet = mUnstamped[i];
packet->granulepos += mGranulepos + totalSamples + 1;
}
}
ogg_packet* first = mUnstamped[0];
long blockSize = vorbis_packet_blocksize(&mInfo, first);
if (blockSize < 0) {
mPrevVorbisBlockSize = 0;
blockSize = 0;
}
long samples = (mPrevVorbisBlockSize == 0) ? 0 :
mPrevVorbisBlockSize / 4 + blockSize / 4;
PRInt64 start = first->granulepos - samples;
RecordVorbisPacketSamples(first, samples);
if (last->e_o_s && start < mGranulepos) {
// We've calculated that there are more samples in this page than its
// granulepos claims, and it's the last page in the stream. This is legal,
// and we will need to prune the trailing samples when we come to decode it.
// We must correct the timestamps so that they follow the last Vorbis page's
// samples.
PRInt64 pruned = mGranulepos - start;
for (PRUint32 i = 0; i < mUnstamped.Length() - 1; i++) {
mUnstamped[i]->granulepos += pruned;
}
#ifdef VALIDATE_VORBIS_SAMPLE_CALCULATION
mVorbisPacketSamples[last] -= pruned;
#endif
}
mPrevVorbisBlockSize = vorbis_packet_blocksize(&mInfo, last);
mPrevVorbisBlockSize = NS_MAX(static_cast<long>(0), mPrevVorbisBlockSize);
mGranulepos = last->granulepos;
return NS_OK;
}
#ifdef MOZ_OPUS
nsOpusState::nsOpusState(ogg_page* aBosPage) :
nsOggCodecState(aBosPage, true),
mRate(0),
mNominalRate(0),
mChannels(0),
mPreSkip(0),
mGain(0.0),
mChannelMapping(0),
mStreams(0),
mDecoder(NULL)
{
MOZ_COUNT_CTOR(nsOpusState);
}
nsOpusState::~nsOpusState() {
MOZ_COUNT_DTOR(nsOpusState);
Reset();
if (mDecoder) {
opus_decoder_destroy(mDecoder);
mDecoder = NULL;
}
}
nsresult nsOpusState::Reset()
{
nsresult res = NS_OK;
if (mActive && mDecoder) {
// Reset the decoder.
opus_decoder_ctl(mDecoder, OPUS_RESET_STATE);
}
// Clear queued data.
if (NS_FAILED(nsOggCodecState::Reset())) {
return NS_ERROR_FAILURE;
}
return res;
}
bool nsOpusState::Init(void)
{
int error;
NS_ASSERTION(mDecoder == NULL, "leaking OpusDecoder");
mDecoder = opus_decoder_create(mRate, mChannels, &error);
return error == OPUS_OK;
}
bool nsOpusState::DecodeHeader(ogg_packet* aPacket)
{
// Minimum length of any header is 16 bytes.
if (aPacket->bytes < 16) {
LOG(PR_LOG_DEBUG, ("Invalid Opus file: header too short"));
mActive = false;
return true;
}
// Try parsing as the metadata header.
if (!memcmp(aPacket->packet, "OpusTags", 8)) {
mDoneReadingHeaders = true; // This is the last Opus header.
mActive = true;
return true;
}
// Otherwise, parse as the id header.
if (aPacket->bytes < 19 || memcmp(aPacket->packet, "OpusHead", 8)) {
LOG(PR_LOG_DEBUG, ("Invalid Opus file: unrecognized header"));
mActive = false;
return true;
}
mRate = 48000; // The Opus decoder runs at 48 kHz regardless.
int version = aPacket->packet[8];
// Accept file format versions 0.x.
if ((version & 0xf0) != 0) {
LOG(PR_LOG_DEBUG, ("Rejecting unknown Opus file version %d", version));
mActive = false;
return true;
}
mChannels= aPacket->packet[9];
mPreSkip = LEUint16(aPacket->packet + 10);
mNominalRate = LEUint32(aPacket->packet + 12);
mGain = (float)LEUint16(aPacket->packet + 16) / 256.0;
mChannelMapping = aPacket->packet[18];
if (mChannelMapping == 0) {
mStreams = 1;
} else if (aPacket->bytes > 19) {
mStreams = aPacket->packet[19];
} else {
LOG(PR_LOG_DEBUG, ("Invalid Opus file: channel mapping %d,"
" but no channel mapping table", mChannelMapping));
mActive = false;
return true;
}
return true;
}
/* Return the timestamp (in microseconds) equivalent to a granulepos. */
PRInt64 nsOpusState::Time(PRInt64 granulepos)
{
if (!mActive || granulepos < 0)
return -1;
// Ogg Opus always runs at a granule rate of 48 kHz.
CheckedInt64 t = CheckedInt64(granulepos - mPreSkip) * USECS_PER_S;
return t.isValid() ? t.value() / mRate : -1;
}
bool nsOpusState::IsHeader(ogg_packet* aPacket)
{
return aPacket->bytes >= 16 &&
(!memcmp(aPacket->packet, "OpusHead", 8) ||
!memcmp(aPacket->packet, "OpusTags", 8));
}
nsresult nsOpusState::PageIn(ogg_page* aPage)
{
if (!mActive)
return NS_OK;
NS_ASSERTION(static_cast<PRUint32>(ogg_page_serialno(aPage)) == mSerial,
"Page must be for this stream!");
if (ogg_stream_pagein(&mState, aPage) == -1)
return NS_ERROR_FAILURE;
bool haveGranulepos;
nsresult rv = PacketOutUntilGranulepos(haveGranulepos);
if (NS_FAILED(rv) || !haveGranulepos || !mDoneReadingHeaders)
return rv;
ReconstructGranulepos();
for (PRUint32 i = 0; i < mUnstamped.Length(); i++) {
ogg_packet* packet = mUnstamped[i];
NS_ASSERTION(!IsHeader(packet), "Don't try to play a header packet");
NS_ASSERTION(packet->granulepos != -1, "Packet should have a granulepos");
mPackets.Append(packet);
}
mUnstamped.Clear();
return NS_OK;
}
void nsOpusState::ReconstructGranulepos(void)
{
NS_ASSERTION(mUnstamped.Length() > 0, "Must have unstamped packets");
DebugOnly<ogg_packet*> last = mUnstamped[mUnstamped.Length()-1];
NS_ASSERTION(last->e_o_s || last->granulepos > 0,
"Must know last granulepos!");
// Loop through the packets backwards, subtracting the next
// packet's duration from its granulepos to get the value
// for the current packet.
for (PRUint32 i = mUnstamped.Length() - 1; i > 0; i--) {
ogg_packet* next = mUnstamped[i];
int offset = opus_decoder_get_nb_samples(mDecoder,
next->packet,
next->bytes);
// Check for error (negative offset) and overflow.
if (offset >= 0 && offset <= next->granulepos) {
mUnstamped[i - 1]->granulepos = next->granulepos - offset;
} else {
if (offset > next->granulepos)
NS_WARNING("Clamping negative Opus granulepos to zero.");
mUnstamped[i - 1]->granulepos = 0;
}
}
}
#endif /* MOZ_OPUS */
nsSkeletonState::nsSkeletonState(ogg_page* aBosPage) :
nsOggCodecState(aBosPage, true),
mVersion(0),
mPresentationTime(0),
mLength(0)
{
MOZ_COUNT_CTOR(nsSkeletonState);
}
nsSkeletonState::~nsSkeletonState()
{
MOZ_COUNT_DTOR(nsSkeletonState);
}
// Support for Ogg Skeleton 4.0, as per specification at:
// http://wiki.xiph.org/Ogg_Skeleton_4
// Minimum length in bytes of a Skeleton header packet.
static const long SKELETON_MIN_HEADER_LEN = 28;
static const long SKELETON_4_0_MIN_HEADER_LEN = 80;
// Minimum length in bytes of a Skeleton 4.0 index packet.
static const long SKELETON_4_0_MIN_INDEX_LEN = 42;
// Minimum possible size of a compressed index keypoint.
static const size_t MIN_KEY_POINT_SIZE = 2;
// Byte offset of the major and minor version numbers in the
// Ogg Skeleton 4.0 header packet.
static const size_t SKELETON_VERSION_MAJOR_OFFSET = 8;
static const size_t SKELETON_VERSION_MINOR_OFFSET = 10;
// Byte-offsets of the presentation time numerator and denominator
static const size_t SKELETON_PRESENTATION_TIME_NUMERATOR_OFFSET = 12;
static const size_t SKELETON_PRESENTATION_TIME_DENOMINATOR_OFFSET = 20;
// Byte-offsets of the length of file field in the Skeleton 4.0 header packet.
static const size_t SKELETON_FILE_LENGTH_OFFSET = 64;
// Byte-offsets of the fields in the Skeleton index packet.
static const size_t INDEX_SERIALNO_OFFSET = 6;
static const size_t INDEX_NUM_KEYPOINTS_OFFSET = 10;
static const size_t INDEX_TIME_DENOM_OFFSET = 18;
static const size_t INDEX_FIRST_NUMER_OFFSET = 26;
static const size_t INDEX_LAST_NUMER_OFFSET = 34;
static const size_t INDEX_KEYPOINT_OFFSET = 42;
static bool IsSkeletonBOS(ogg_packet* aPacket)
{
return aPacket->bytes >= SKELETON_MIN_HEADER_LEN &&
memcmp(reinterpret_cast<char*>(aPacket->packet), "fishead", 8) == 0;
}
static bool IsSkeletonIndex(ogg_packet* aPacket)
{
return aPacket->bytes >= SKELETON_4_0_MIN_INDEX_LEN &&
memcmp(reinterpret_cast<char*>(aPacket->packet), "index", 5) == 0;
}
// Reads a variable length encoded integer at p. Will not read
// past aLimit. Returns pointer to character after end of integer.
static const unsigned char* ReadVariableLengthInt(const unsigned char* p,
const unsigned char* aLimit,
PRInt64& n)
{
int shift = 0;
PRInt64 byte = 0;
n = 0;
while (p < aLimit &&
(byte & 0x80) != 0x80 &&
shift < 57)
{
byte = static_cast<PRInt64>(*p);
n |= ((byte & 0x7f) << shift);
shift += 7;
p++;
}
return p;
}
bool nsSkeletonState::DecodeIndex(ogg_packet* aPacket)
{
NS_ASSERTION(aPacket->bytes >= SKELETON_4_0_MIN_INDEX_LEN,
"Index must be at least minimum size");
if (!mActive) {
return false;
}
PRUint32 serialno = LEUint32(aPacket->packet + INDEX_SERIALNO_OFFSET);
PRInt64 numKeyPoints = LEInt64(aPacket->packet + INDEX_NUM_KEYPOINTS_OFFSET);
PRInt64 endTime = 0, startTime = 0;
const unsigned char* p = aPacket->packet;
PRInt64 timeDenom = LEInt64(aPacket->packet + INDEX_TIME_DENOM_OFFSET);
if (timeDenom == 0) {
LOG(PR_LOG_DEBUG, ("Ogg Skeleton Index packet for stream %u has 0 "
"timestamp denominator.", serialno));
return (mActive = false);
}
// Extract the start time.
CheckedInt64 t = CheckedInt64(LEInt64(p + INDEX_FIRST_NUMER_OFFSET)) * USECS_PER_S;
if (!t.isValid()) {
return (mActive = false);
} else {
startTime = t.value() / timeDenom;
}
// Extract the end time.
t = LEInt64(p + INDEX_LAST_NUMER_OFFSET) * USECS_PER_S;
if (!t.isValid()) {
return (mActive = false);
} else {
endTime = t.value() / timeDenom;
}
// Check the numKeyPoints value read, ensure we're not going to run out of
// memory while trying to decode the index packet.
CheckedInt64 minPacketSize = (CheckedInt64(numKeyPoints) * MIN_KEY_POINT_SIZE) + INDEX_KEYPOINT_OFFSET;
if (!minPacketSize.isValid())
{
return (mActive = false);
}
PRInt64 sizeofIndex = aPacket->bytes - INDEX_KEYPOINT_OFFSET;
PRInt64 maxNumKeyPoints = sizeofIndex / MIN_KEY_POINT_SIZE;
if (aPacket->bytes < minPacketSize.value() ||
numKeyPoints > maxNumKeyPoints ||
numKeyPoints < 0)
{
// Packet size is less than the theoretical minimum size, or the packet is
// claiming to store more keypoints than it's capable of storing. This means
// that the numKeyPoints field is too large or small for the packet to
// possibly contain as many packets as it claims to, so the numKeyPoints
// field is possibly malicious. Don't try decoding this index, we may run
// out of memory.
LOG(PR_LOG_DEBUG, ("Possibly malicious number of key points reported "
"(%lld) in index packet for stream %u.",
numKeyPoints,
serialno));
return (mActive = false);
}
nsAutoPtr<nsKeyFrameIndex> keyPoints(new nsKeyFrameIndex(startTime, endTime));
p = aPacket->packet + INDEX_KEYPOINT_OFFSET;
const unsigned char* limit = aPacket->packet + aPacket->bytes;
PRInt64 numKeyPointsRead = 0;
CheckedInt64 offset = 0;
CheckedInt64 time = 0;
while (p < limit &&
numKeyPointsRead < numKeyPoints)
{
PRInt64 delta = 0;
p = ReadVariableLengthInt(p, limit, delta);
offset += delta;
if (p == limit ||
!offset.isValid() ||
offset.value() > mLength ||
offset.value() < 0)
{
return (mActive = false);
}
p = ReadVariableLengthInt(p, limit, delta);
time += delta;
if (!time.isValid() ||
time.value() > endTime ||
time.value() < startTime)
{
return (mActive = false);
}
CheckedInt64 timeUsecs = time * USECS_PER_S;
if (!timeUsecs.isValid())
return mActive = false;
timeUsecs /= timeDenom;
keyPoints->Add(offset.value(), timeUsecs.value());
numKeyPointsRead++;
}
PRInt32 keyPointsRead = keyPoints->Length();
if (keyPointsRead > 0) {
mIndex.Put(serialno, keyPoints.forget());
}
LOG(PR_LOG_DEBUG, ("Loaded %d keypoints for Skeleton on stream %u",
keyPointsRead, serialno));
return true;
}
nsresult nsSkeletonState::IndexedSeekTargetForTrack(PRUint32 aSerialno,
PRInt64 aTarget,
nsKeyPoint& aResult)
{
nsKeyFrameIndex* index = nsnull;
mIndex.Get(aSerialno, &index);
if (!index ||
index->Length() == 0 ||
aTarget < index->mStartTime ||
aTarget > index->mEndTime)
{
return NS_ERROR_FAILURE;
}
// Binary search to find the last key point with time less than target.
int start = 0;
int end = index->Length() - 1;
while (end > start) {
int mid = start + ((end - start + 1) >> 1);
if (index->Get(mid).mTime == aTarget) {
start = mid;
break;
} else if (index->Get(mid).mTime < aTarget) {
start = mid;
} else {
end = mid - 1;
}
}
aResult = index->Get(start);
NS_ASSERTION(aResult.mTime <= aTarget, "Result should have time <= target");
return NS_OK;
}
nsresult nsSkeletonState::IndexedSeekTarget(PRInt64 aTarget,
nsTArray<PRUint32>& aTracks,
nsSeekTarget& aResult)
{
if (!mActive || mVersion < SKELETON_VERSION(4,0)) {
return NS_ERROR_FAILURE;
}
// Loop over all requested tracks' indexes, and get the keypoint for that
// seek target. Record the keypoint with the lowest offset, this will be
// our seek result. User must seek to the one with lowest offset to ensure we
// pass "keyframes" on all tracks when we decode forwards to the seek target.
nsSeekTarget r;
for (PRUint32 i=0; i<aTracks.Length(); i++) {
nsKeyPoint k;
if (NS_SUCCEEDED(IndexedSeekTargetForTrack(aTracks[i], aTarget, k)) &&
k.mOffset < r.mKeyPoint.mOffset)
{
r.mKeyPoint = k;
r.mSerial = aTracks[i];
}
}
if (r.IsNull()) {
return NS_ERROR_FAILURE;
}
LOG(PR_LOG_DEBUG, ("Indexed seek target for time %lld is offset %lld",
aTarget, r.mKeyPoint.mOffset));
aResult = r;
return NS_OK;
}
nsresult nsSkeletonState::GetDuration(const nsTArray<PRUint32>& aTracks,
PRInt64& aDuration)
{
if (!mActive ||
mVersion < SKELETON_VERSION(4,0) ||
!HasIndex() ||
aTracks.Length() == 0)
{
return NS_ERROR_FAILURE;
}
PRInt64 endTime = INT64_MIN;
PRInt64 startTime = INT64_MAX;
for (PRUint32 i=0; i<aTracks.Length(); i++) {
nsKeyFrameIndex* index = nsnull;
mIndex.Get(aTracks[i], &index);
if (!index) {
// Can't get the timestamps for one of the required tracks, fail.
return NS_ERROR_FAILURE;
}
if (index->mEndTime > endTime) {
endTime = index->mEndTime;
}
if (index->mStartTime < startTime) {
startTime = index->mStartTime;
}
}
NS_ASSERTION(endTime > startTime, "Duration must be positive");
CheckedInt64 duration = CheckedInt64(endTime) - startTime;
aDuration = duration.isValid() ? duration.value() : 0;
return duration.isValid() ? NS_OK : NS_ERROR_FAILURE;
}
bool nsSkeletonState::DecodeHeader(ogg_packet* aPacket)
{
if (IsSkeletonBOS(aPacket)) {
PRUint16 verMajor = LEUint16(aPacket->packet + SKELETON_VERSION_MAJOR_OFFSET);
PRUint16 verMinor = LEUint16(aPacket->packet + SKELETON_VERSION_MINOR_OFFSET);
// Read the presentation time. We read this before the version check as the
// presentation time exists in all versions.
PRInt64 n = LEInt64(aPacket->packet + SKELETON_PRESENTATION_TIME_NUMERATOR_OFFSET);
PRInt64 d = LEInt64(aPacket->packet + SKELETON_PRESENTATION_TIME_DENOMINATOR_OFFSET);
mPresentationTime = d == 0 ? 0 : (static_cast<float>(n) / static_cast<float>(d)) * USECS_PER_S;
mVersion = SKELETON_VERSION(verMajor, verMinor);
if (mVersion < SKELETON_VERSION(4,0) ||
mVersion >= SKELETON_VERSION(5,0) ||
aPacket->bytes < SKELETON_4_0_MIN_HEADER_LEN)
{
// We can only care to parse Skeleton version 4.0+.
mActive = false;
return mDoneReadingHeaders = true;
}
// Extract the segment length.
mLength = LEInt64(aPacket->packet + SKELETON_FILE_LENGTH_OFFSET);
LOG(PR_LOG_DEBUG, ("Skeleton segment length: %lld", mLength));
// Initialize the serianlno-to-index map.
mIndex.Init();
mActive = true;
} else if (IsSkeletonIndex(aPacket) && mVersion >= SKELETON_VERSION(4,0)) {
if (!DecodeIndex(aPacket)) {
// Failed to parse index, or invalid/hostile index. DecodeIndex() will
// have deactivated the track.
return mDoneReadingHeaders = true;
}
} else if (aPacket->e_o_s) {
mDoneReadingHeaders = true;
}
return mDoneReadingHeaders;
}