pjs/content/media/ogg/nsOggCodecState.h

464 строки
16 KiB
C++

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim:set ts=2 sw=2 sts=2 et cindent: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#if !defined(nsOggCodecState_h_)
#define nsOggCodecState_h_
#include <ogg/ogg.h>
#include <theora/theoradec.h>
#ifdef MOZ_TREMOR
#include <tremor/ivorbiscodec.h>
#else
#include <vorbis/codec.h>
#endif
#ifdef MOZ_OPUS
#include <opus/opus.h>
#endif
#include <nsDeque.h>
#include <nsTArray.h>
#include <nsClassHashtable.h>
#include "VideoUtils.h"
#include "mozilla/StandardInteger.h"
// Uncomment the following to validate that we're predicting the number
// of Vorbis samples in each packet correctly.
#define VALIDATE_VORBIS_SAMPLE_CALCULATION
#ifdef VALIDATE_VORBIS_SAMPLE_CALCULATION
#include <map>
#endif
// Deallocates a packet, used in nsPacketQueue below.
class OggPacketDeallocator : public nsDequeFunctor {
virtual void* operator() (void* aPacket) {
ogg_packet* p = static_cast<ogg_packet*>(aPacket);
delete [] p->packet;
delete p;
return nsnull;
}
};
// A queue of ogg_packets. When we read a page, we extract the page's packets
// and buffer them in the owning stream's nsOggCodecState. This is because
// if we're skipping up to the next keyframe in very large frame sized videos,
// there may be several megabytes of data between keyframes, and the
// ogg_stream_state would end up resizing its buffer every time we added a
// new 4KB page to the bitstream, which kills performance on Windows. This
// also gives us the option to timestamp packets rather than decoded
// frames/samples, reducing the amount of frames/samples we must decode to
// determine start-time at a particular offset, and gives us finer control
// over memory usage.
class nsPacketQueue : private nsDeque {
public:
nsPacketQueue() : nsDeque(new OggPacketDeallocator()) {}
~nsPacketQueue() { Erase(); }
bool IsEmpty() { return nsDeque::GetSize() == 0; }
void Append(ogg_packet* aPacket);
ogg_packet* PopFront() { return static_cast<ogg_packet*>(nsDeque::PopFront()); }
ogg_packet* PeekFront() { return static_cast<ogg_packet*>(nsDeque::PeekFront()); }
void PushFront(ogg_packet* aPacket) { nsDeque::PushFront(aPacket); }
void PushBack(ogg_packet* aPacket) { nsDeque::PushFront(aPacket); }
void Erase() { nsDeque::Erase(); }
};
// Encapsulates the data required for decoding an ogg bitstream and for
// converting granulepos to timestamps.
class nsOggCodecState {
public:
// Ogg types we know about
enum CodecType {
TYPE_VORBIS=0,
TYPE_THEORA=1,
TYPE_OPUS=2,
TYPE_SKELETON=3,
TYPE_UNKNOWN=4
};
virtual ~nsOggCodecState();
// Factory for creating nsCodecStates. Use instead of constructor.
// aPage should be a beginning-of-stream page.
static nsOggCodecState* Create(ogg_page* aPage);
virtual CodecType GetType() { return TYPE_UNKNOWN; }
// Reads a header packet. Returns true when last header has been read.
virtual bool DecodeHeader(ogg_packet* aPacket) {
return (mDoneReadingHeaders = true);
}
// Returns the end time that a granulepos represents.
virtual PRInt64 Time(PRInt64 granulepos) { return -1; }
// Returns the start time that a granulepos represents.
virtual PRInt64 StartTime(PRInt64 granulepos) { return -1; }
// Initializes the codec state.
virtual bool Init();
// Returns true when this bitstream has finished reading all its
// header packets.
bool DoneReadingHeaders() { return mDoneReadingHeaders; }
// Deactivates the bitstream. Only the primary video and audio bitstreams
// should be active.
void Deactivate() {
mActive = false;
mDoneReadingHeaders = true;
Reset();
}
// Resets decoding state.
virtual nsresult Reset();
// Returns true if the nsOggCodecState thinks this packet is a header
// packet. Note this does not verify the validity of the header packet,
// it just guarantees that the packet is marked as a header packet (i.e.
// it is definintely not a data packet). Do not use this to identify
// streams, use it to filter header packets from data packets while
// decoding.
virtual bool IsHeader(ogg_packet* aPacket) { return false; }
// Returns the next packet in the stream, or nsnull if there are no more
// packets buffered in the packet queue. More packets can be buffered by
// inserting one or more pages into the stream by calling PageIn(). The
// caller is responsible for deleting returned packet's using
// nsOggCodecState::ReleasePacket(). The packet will have a valid granulepos.
ogg_packet* PacketOut();
// Releases the memory used by a cloned packet. Every packet returned by
// PacketOut() must be free'd using this function.
static void ReleasePacket(ogg_packet* aPacket);
// Extracts all packets from the page, and inserts them into the packet
// queue. They can be extracted by calling PacketOut(). Packets from an
// inactive stream are not buffered, i.e. this call has no effect for
// inactive streams. Multiple pages may need to be inserted before
// PacketOut() starts to return packets, as granulepos may need to be
// captured.
virtual nsresult PageIn(ogg_page* aPage);
// Number of packets read.
PRUint64 mPacketCount;
// Serial number of the bitstream.
PRUint32 mSerial;
// Ogg specific state.
ogg_stream_state mState;
// Queue of as yet undecoded packets. Packets are guaranteed to have
// a valid granulepos.
nsPacketQueue mPackets;
// Is the bitstream active; whether we're decoding and playing this bitstream.
bool mActive;
// True when all headers packets have been read.
bool mDoneReadingHeaders;
protected:
// Constructs a new nsOggCodecState. aActive denotes whether the stream is
// active. For streams of unsupported or unknown types, aActive should be
// false.
nsOggCodecState(ogg_page* aBosPage, bool aActive);
// Deallocates all packets stored in mUnstamped, and clears the array.
void ClearUnstamped();
// Extracts packets out of mState until a data packet with a non -1
// granulepos is encountered, or no more packets are readable. Header
// packets are pushed into the packet queue immediately, and data packets
// are buffered in mUnstamped. Once a non -1 granulepos packet is read
// the granulepos of the packets in mUnstamped can be inferred, and they
// can be pushed over to mPackets. Used by PageIn() implementations in
// subclasses.
nsresult PacketOutUntilGranulepos(bool& aFoundGranulepos);
// Temporary buffer in which to store packets while we're reading packets
// in order to capture granulepos.
nsTArray<ogg_packet*> mUnstamped;
};
class nsVorbisState : public nsOggCodecState {
public:
nsVorbisState(ogg_page* aBosPage);
virtual ~nsVorbisState();
CodecType GetType() { return TYPE_VORBIS; }
bool DecodeHeader(ogg_packet* aPacket);
PRInt64 Time(PRInt64 granulepos);
bool Init();
nsresult Reset();
bool IsHeader(ogg_packet* aPacket);
nsresult PageIn(ogg_page* aPage);
// Returns the end time that a granulepos represents.
static PRInt64 Time(vorbis_info* aInfo, PRInt64 aGranulePos);
vorbis_info mInfo;
vorbis_comment mComment;
vorbis_dsp_state mDsp;
vorbis_block mBlock;
private:
// Reconstructs the granulepos of Vorbis packets stored in the mUnstamped
// array.
nsresult ReconstructVorbisGranulepos();
// The "block size" of the previously decoded Vorbis packet, or 0 if we've
// not yet decoded anything. This is used to calculate the number of samples
// in a Vorbis packet, since each Vorbis packet depends on the previous
// packet while being decoded.
long mPrevVorbisBlockSize;
// Granulepos (end sample) of the last decoded Vorbis packet. This is used
// to calculate the Vorbis granulepos when we don't find a granulepos to
// back-propagate from.
PRInt64 mGranulepos;
#ifdef VALIDATE_VORBIS_SAMPLE_CALCULATION
// When validating that we've correctly predicted Vorbis packets' number
// of samples, we store each packet's predicted number of samples in this
// map, and verify we decode the predicted number of samples.
std::map<ogg_packet*, long> mVorbisPacketSamples;
#endif
// Records that aPacket is predicted to have aSamples samples.
// This function has no effect if VALIDATE_VORBIS_SAMPLE_CALCULATION
// is not defined.
void RecordVorbisPacketSamples(ogg_packet* aPacket, long aSamples);
// Verifies that aPacket has had its number of samples predicted.
// This function has no effect if VALIDATE_VORBIS_SAMPLE_CALCULATION
// is not defined.
void AssertHasRecordedPacketSamples(ogg_packet* aPacket);
public:
// Asserts that the number of samples predicted for aPacket is aSamples.
// This function has no effect if VALIDATE_VORBIS_SAMPLE_CALCULATION
// is not defined.
void ValidateVorbisPacketSamples(ogg_packet* aPacket, long aSamples);
};
// Returns 1 if the Theora info struct is decoding a media of Theora
// version (maj,min,sub) or later, otherwise returns 0.
int TheoraVersion(th_info* info,
unsigned char maj,
unsigned char min,
unsigned char sub);
class nsTheoraState : public nsOggCodecState {
public:
nsTheoraState(ogg_page* aBosPage);
virtual ~nsTheoraState();
CodecType GetType() { return TYPE_THEORA; }
bool DecodeHeader(ogg_packet* aPacket);
PRInt64 Time(PRInt64 granulepos);
PRInt64 StartTime(PRInt64 granulepos);
bool Init();
bool IsHeader(ogg_packet* aPacket);
nsresult PageIn(ogg_page* aPage);
// Returns the maximum number of microseconds which a keyframe can be offset
// from any given interframe.
PRInt64 MaxKeyframeOffset();
// Returns the end time that a granulepos represents.
static PRInt64 Time(th_info* aInfo, PRInt64 aGranulePos);
th_info mInfo;
th_comment mComment;
th_setup_info *mSetup;
th_dec_ctx* mCtx;
float mPixelAspectRatio;
private:
// Reconstructs the granulepos of Theora packets stored in the
// mUnstamped array. mUnstamped must be filled with consecutive packets from
// the stream, with the last packet having a known granulepos. Using this
// known granulepos, and the known frame numbers, we recover the granulepos
// of all frames in the array. This enables us to determine their timestamps.
void ReconstructTheoraGranulepos();
};
class nsOpusState : public nsOggCodecState {
#ifdef MOZ_OPUS
public:
nsOpusState(ogg_page* aBosPage);
virtual ~nsOpusState();
CodecType GetType() { return TYPE_OPUS; }
bool DecodeHeader(ogg_packet* aPacket);
PRInt64 Time(PRInt64 granulepos);
bool Init();
nsresult Reset();
bool IsHeader(ogg_packet* aPacket);
nsresult PageIn(ogg_page* aPage);
// Various fields from the Ogg Opus header.
int mRate; // Sample rate the decoder uses (always 48 kHz).
int mNominalRate; // Original sample rate of the data (informational).
int mChannels; // Number of channels the stream encodes.
int mPreSkip; // Number of samples to strip after decoder reset.
float mGain; // Gain (dB) to apply to decoder output.
int mChannelMapping; // Channel mapping family.
int mStreams; // Number of packed streams in each packet.
OpusDecoder *mDecoder;
private:
// Reconstructs the granulepos of Opus packets stored in the
// mUnstamped array. mUnstamped must be filled with consecutive packets from
// the stream, with the last packet having a known granulepos. Using this
// known granulepos, and the known frame numbers, we recover the granulepos
// of all frames in the array. This enables us to determine their timestamps.
void ReconstructGranulepos();
#endif /* MOZ_OPUS */
};
// Constructs a 32bit version number out of two 16 bit major,minor
// version numbers.
#define SKELETON_VERSION(major, minor) (((major)<<16)|(minor))
class nsSkeletonState : public nsOggCodecState {
public:
nsSkeletonState(ogg_page* aBosPage);
~nsSkeletonState();
CodecType GetType() { return TYPE_SKELETON; }
bool DecodeHeader(ogg_packet* aPacket);
PRInt64 Time(PRInt64 granulepos) { return -1; }
bool Init() { return true; }
bool IsHeader(ogg_packet* aPacket) { return true; }
// Return true if the given time (in milliseconds) is within
// the presentation time defined in the skeleton track.
bool IsPresentable(PRInt64 aTime) { return aTime >= mPresentationTime; }
// Stores the offset of the page on which a keyframe starts,
// and its presentation time.
class nsKeyPoint {
public:
nsKeyPoint()
: mOffset(INT64_MAX),
mTime(INT64_MAX) {}
nsKeyPoint(PRInt64 aOffset, PRInt64 aTime)
: mOffset(aOffset),
mTime(aTime) {}
// Offset from start of segment/link-in-the-chain in bytes.
PRInt64 mOffset;
// Presentation time in usecs.
PRInt64 mTime;
bool IsNull() {
return mOffset == INT64_MAX &&
mTime == INT64_MAX;
}
};
// Stores a keyframe's byte-offset, presentation time and the serialno
// of the stream it belongs to.
class nsSeekTarget {
public:
nsSeekTarget() : mSerial(0) {}
nsKeyPoint mKeyPoint;
PRUint32 mSerial;
bool IsNull() {
return mKeyPoint.IsNull() &&
mSerial == 0;
}
};
// Determines from the seek index the keyframe which you must seek back to
// in order to get all keyframes required to render all streams with
// serialnos in aTracks, at time aTarget.
nsresult IndexedSeekTarget(PRInt64 aTarget,
nsTArray<PRUint32>& aTracks,
nsSeekTarget& aResult);
bool HasIndex() const {
return mIndex.IsInitialized() && mIndex.Count() > 0;
}
// Returns the duration of the active tracks in the media, if we have
// an index. aTracks must be filled with the serialnos of the active tracks.
// The duration is calculated as the greatest end time of all active tracks,
// minus the smalled start time of all the active tracks.
nsresult GetDuration(const nsTArray<PRUint32>& aTracks, PRInt64& aDuration);
private:
// Decodes an index packet. Returns false on failure.
bool DecodeIndex(ogg_packet* aPacket);
// Gets the keypoint you must seek to in order to get the keyframe required
// to render the stream at time aTarget on stream with serial aSerialno.
nsresult IndexedSeekTargetForTrack(PRUint32 aSerialno,
PRInt64 aTarget,
nsKeyPoint& aResult);
// Version of the decoded skeleton track, as per the SKELETON_VERSION macro.
PRUint32 mVersion;
// Presentation time of the resource in milliseconds
PRInt64 mPresentationTime;
// Length of the resource in bytes.
PRInt64 mLength;
// Stores the keyframe index and duration information for a particular
// stream.
class nsKeyFrameIndex {
public:
nsKeyFrameIndex(PRInt64 aStartTime, PRInt64 aEndTime)
: mStartTime(aStartTime),
mEndTime(aEndTime)
{
MOZ_COUNT_CTOR(nsKeyFrameIndex);
}
~nsKeyFrameIndex() {
MOZ_COUNT_DTOR(nsKeyFrameIndex);
}
void Add(PRInt64 aOffset, PRInt64 aTimeMs) {
mKeyPoints.AppendElement(nsKeyPoint(aOffset, aTimeMs));
}
const nsKeyPoint& Get(PRUint32 aIndex) const {
return mKeyPoints[aIndex];
}
PRUint32 Length() const {
return mKeyPoints.Length();
}
// Presentation time of the first sample in this stream in usecs.
const PRInt64 mStartTime;
// End time of the last sample in this stream in usecs.
const PRInt64 mEndTime;
private:
nsTArray<nsKeyPoint> mKeyPoints;
};
// Maps Ogg serialnos to the index-keypoint list.
nsClassHashtable<nsUint32HashKey, nsKeyFrameIndex> mIndex;
};
#endif