pjs/tools/leaky/leaky.cpp

785 строки
17 KiB
C++

/* ***** BEGIN LICENSE BLOCK *****
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is mozilla.org code.
*
* The Initial Developer of the Original Code is Kipp E.B. Hickman.
* Portions created by the Initial Developer are Copyright (C) 1999
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
* ***** END LICENSE BLOCK ***** */
#include "leaky.h"
#include "dict.h"
#include <sys/types.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <string.h>
#ifndef NTO
#include <getopt.h>
#endif
#include <assert.h>
#include <stdlib.h>
#include <stdio.h>
#ifdef NTO
#include <mem.h>
#endif
#ifndef FALSE
#define FALSE 0
#endif
#ifndef TRUE
#define TRUE 1
#endif
static const u_int DefaultBuckets = 10007; // arbitrary, but prime
static const u_int MaxBuckets = 1000003; // arbitrary, but prime
//----------------------------------------------------------------------
int main(int argc, char** argv)
{
leaky* l = new leaky;
l->initialize(argc, argv);
l->open();
return 0;
}
leaky::leaky()
{
applicationName = NULL;
logFile = NULL;
progFile = NULL;
dumpLeaks = FALSE;
dumpGraph = FALSE;
dumpHTML = FALSE;
quiet = FALSE;
dumpEntireLog = FALSE;
showAddress = FALSE;
stackDepth = 100000;
dumpRefcnts = false;
mappedLogFile = -1;
firstLogEntry = lastLogEntry = 0;
buckets = DefaultBuckets;
dict = NULL;
refcntDict = NULL;
mallocs = 0;
reallocs = 0;
frees = 0;
totalMalloced = 0;
errors = 0;
totalLeaked = 0;
sfd = -1;
externalSymbols = 0;
usefulSymbols = 0;
numExternalSymbols = 0;
lowestSymbolAddr = 0;
highestSymbolAddr = 0;
loadMap = NULL;
}
leaky::~leaky()
{
delete dict;
}
void leaky::usageError()
{
fprintf(stderr,
"Usage: %s [-aAEdfgqxR] [-e name] [-s depth] [-h hash-buckets] [-r root|-i symbol] prog log\n",
(char*) applicationName);
exit(-1);
}
void leaky::initialize(int argc, char** argv)
{
applicationName = argv[0];
applicationName = strrchr(applicationName, '/');
if (!applicationName) {
applicationName = argv[0];
} else {
applicationName++;
}
int arg;
int errflg = 0;
while ((arg = getopt(argc, argv, "adEe:gh:i:r:Rs:tqx")) != -1) {
switch (arg) {
case '?':
errflg++;
break;
case 'a':
dumpEntireLog = TRUE;
break;
case 'A':
showAddress = TRUE;
break;
case 'd':
dumpLeaks = TRUE;
if (dumpGraph) errflg++;
break;
case 'R':
dumpRefcnts = true;
break;
case 'e':
exclusions.add(optarg);
break;
case 'g':
dumpGraph = TRUE;
if (dumpLeaks) errflg++;
break;
case 'r':
roots.add(optarg);
if (!includes.IsEmpty()) {
errflg++;
}
break;
case 'i':
includes.add(optarg);
if (!roots.IsEmpty()) {
errflg++;
}
break;
case 'h':
buckets = atoi(optarg);
if ((buckets < 0) || (buckets > MaxBuckets)) {
buckets = MaxBuckets;
fprintf(stderr, "%s: buckets is invalid, using %d\n",
(char*) applicationName,
buckets);
}
break;
case 's':
stackDepth = atoi(optarg);
if (stackDepth < 2) {
stackDepth = 2;
}
break;
case 'x':
dumpHTML = TRUE;
break;
case 'q':
quiet = TRUE;
break;
}
}
if (errflg || ((argc - optind) < 2)) {
usageError();
}
progFile = argv[optind++];
logFile = argv[optind];
dict = new MallocDict(buckets);
if (dumpRefcnts) {
refcntDict = new MallocDict(buckets);
}
}
static void* mapFile(int fd, u_int flags, off_t* sz)
{
struct stat sb;
if (fstat(fd, &sb) < 0) {
perror("fstat");
exit(-1);
}
void* base = mmap(0, (int)sb.st_size, flags, MAP_PRIVATE, fd, 0);
if (!base) {
perror("mmap");
exit(-1);
}
*sz = sb.st_size;
return base;
}
void leaky::LoadMap()
{
malloc_map_entry mme;
char name[1000];
int fd = ::open("malloc-map", O_RDONLY);
if (fd < 0) {
perror("open: malloc-map");
exit(-1);
}
for (;;) {
int nb = read(fd, &mme, sizeof(mme));
if (nb != sizeof(mme)) break;
nb = read(fd, name, mme.nameLen);
if (nb != (int)mme.nameLen) break;
name[mme.nameLen] = 0;
if (!quiet) {
printf("%s @ %lx\n", name, mme.address);
}
LoadMapEntry* lme = new LoadMapEntry;
lme->address = mme.address;
lme->name = strdup(name);
lme->next = loadMap;
loadMap = lme;
}
close(fd);
}
void leaky::open()
{
LoadMap();
setupSymbols(progFile);
// open up the log file
mappedLogFile = ::open(logFile, O_RDONLY);
if (mappedLogFile < 0) {
perror("open");
exit(-1);
}
off_t size;
firstLogEntry = (malloc_log_entry*) mapFile(mappedLogFile, PROT_READ, &size);
lastLogEntry = (malloc_log_entry*)((char*)firstLogEntry + size);
analyze();
if (dumpLeaks || dumpEntireLog || dumpRefcnts) {
dumpLog();
}
else if (dumpGraph) {
buildLeakGraph();
dumpLeakGraph();
}
exit(0);
}
//----------------------------------------------------------------------
static ptrdiff_t symbolOrder(void const* a, void const* b)
{
Symbol const* ap = (Symbol const *)a;
Symbol const* bp = (Symbol const *)b;
return ap->address - bp->address;
}
void leaky::ReadSharedLibrarySymbols()
{
LoadMapEntry* lme = loadMap;
while (NULL != lme) {
ReadSymbols(lme->name, lme->address);
lme = lme->next;
}
}
void leaky::setupSymbols(const char *fileName)
{
// Read in symbols from the program
ReadSymbols(fileName, 0);
// Read in symbols from the .so's
ReadSharedLibrarySymbols();
if (!quiet) {
printf("A total of %d symbols were loaded\n", usefulSymbols);
}
// Now sort them
qsort(externalSymbols, usefulSymbols, sizeof(Symbol), symbolOrder);
lowestSymbolAddr = externalSymbols[0].address;
highestSymbolAddr = externalSymbols[usefulSymbols-1].address;
}
// Binary search the table, looking for a symbol that covers this
// address.
Symbol* leaky::findSymbol(u_long addr)
{
u_int base = 0;
u_int limit = usefulSymbols - 1;
Symbol* end = &externalSymbols[limit];
while (base <= limit) {
u_int midPoint = (base + limit)>>1;
Symbol* sp = &externalSymbols[midPoint];
if (addr < sp->address) {
if (midPoint == 0) {
return NULL;
}
limit = midPoint - 1;
} else {
if (sp+1 < end) {
if (addr < (sp+1)->address) {
return sp;
}
} else {
return sp;
}
base = midPoint + 1;
}
}
return NULL;
}
//----------------------------------------------------------------------
bool leaky::excluded(malloc_log_entry* lep)
{
if (exclusions.IsEmpty()) {
return false;
}
char** pcp = &lep->pcs[0];
u_int n = lep->numpcs;
for (u_int i = 0; i < n; i++, pcp++) {
Symbol* sp = findSymbol((u_long) *pcp);
if (sp && exclusions.contains(sp->name)) {
return true;
}
}
return false;
}
bool leaky::included(malloc_log_entry* lep)
{
if (includes.IsEmpty()) {
return true;
}
char** pcp = &lep->pcs[0];
u_int n = lep->numpcs;
for (u_int i = 0; i < n; i++, pcp++) {
Symbol* sp = findSymbol((u_long) *pcp);
if (sp && includes.contains(sp->name)) {
return true;
}
}
return false;
}
//----------------------------------------------------------------------
void leaky::displayStackTrace(FILE* out, malloc_log_entry* lep)
{
char** pcp = &lep->pcs[0];
u_int n = (lep->numpcs < stackDepth) ? lep->numpcs : stackDepth;
for (u_int i = 0; i < n; i++, pcp++) {
u_long addr = (u_long) *pcp;
Symbol* sp = findSymbol(addr);
if (sp) {
fputs(sp->name, out);
if (showAddress) {
fprintf(out, "[%p]", (char*)addr);
}
}
else {
fprintf(out, "<%p>", (char*)addr);
}
fputc(' ', out);
}
fputc('\n', out);
}
char* typeFromLog[] = {
"malloc",
"realloc",
"free",
"new",
"delete",
"addref",
"release"
};
void leaky::dumpEntryToLog(malloc_log_entry* lep)
{
printf("%-10s %08lx %5ld ",
typeFromLog[lep->type],
lep->address, lep->size);
if (IsRefcnt(lep)) {
printf("%08ld", lep->oldaddress);
}
else {
printf("%08lx", lep->oldaddress);
}
printf(" --> ");
displayStackTrace(stdout, lep);
}
bool leaky::ShowThisEntry(malloc_log_entry* lep)
{
if ((!dumpRefcnts || IsRefcnt(lep)) && !excluded(lep) && included(lep)) {
return true;
}
return false;
}
void leaky::dumpLog()
{
if (dumpRefcnts) {
malloc_log_entry* lep;
refcntDict->rewind();
while (NULL != (lep = refcntDict->next())) {
if (ShowThisEntry(lep)) {
// Now we get slow...
u_long addr = lep->address;
malloc_log_entry* lep2 = firstLogEntry;
while (lep2 < lastLogEntry) {
if (lep2->address == addr) {
dumpEntryToLog(lep2);
}
lep2 = (malloc_log_entry*) &lep2->pcs[lep2->numpcs];
}
}
}
}
else {
if (dumpEntireLog) {
malloc_log_entry* lep = firstLogEntry;
while (lep < lastLogEntry) {
if (ShowThisEntry(lep)) {
dumpEntryToLog(lep);
}
lep = (malloc_log_entry*) &lep->pcs[lep->numpcs];
}
} else {
malloc_log_entry* lep;
dict->rewind();
while (NULL != (lep = dict->next())) {
if (ShowThisEntry(lep)) {
dumpEntryToLog(lep);
}
}
}
}
}
//----------------------------------------------------------------------
void leaky::insertAddress(u_long address, malloc_log_entry* lep)
{
malloc_log_entry** lepp = dict->find(address);
if (lepp) {
assert(*lepp);
if (!quiet) {
printf("Address %lx allocated twice\n", address);
displayStackTrace(stdout, lep);
}
errors++;
} else {
dict->add(address, lep);
}
}
void leaky::removeAddress(u_long address, malloc_log_entry* lep)
{
malloc_log_entry** lepp = dict->find(address);
if (!lepp) {
if (!quiet) {
printf("Free of unallocated %lx\n", address);
displayStackTrace(stdout, lep);
}
errors++;
} else {
dict->remove(address);
}
}
void leaky::analyze()
{
malloc_log_entry* lep = firstLogEntry;
while (lep < lastLogEntry) {
switch (lep->type) {
case malloc_log_malloc:
case malloc_log_new:
mallocs++;
if (lep->address) {
totalMalloced += lep->size;
insertAddress((u_long) lep->address, lep);
}
break;
case malloc_log_realloc:
if (lep->oldaddress) {
removeAddress((u_long) lep->oldaddress, lep);
}
if (lep->address) {
insertAddress((u_long) lep->address, lep);
}
reallocs++;
break;
case malloc_log_free:
case malloc_log_delete:
if (lep->address) {
removeAddress((u_long) lep->address, lep);
}
frees++;
break;
case malloc_log_addref:
if (dumpRefcnts) {
if (lep->size == 0) {
// Initial addref
u_long addr = (u_long) lep->address;
malloc_log_entry** lepp = refcntDict->find(addr);
if (!lepp) {
refcntDict->add(addr, lep);
}
}
}
break;
case malloc_log_release:
if (dumpRefcnts) {
if (lep->oldaddress == 0) {
// Final release
u_long addr = (u_long) lep->address;
malloc_log_entry** lepp = refcntDict->find(addr);
if (lepp) {
refcntDict->remove(addr);
}
}
}
break;
}
lep = (malloc_log_entry*) &lep->pcs[lep->numpcs];
}
dict->rewind();
while (NULL != (lep = dict->next())) {
totalLeaked += lep->size;
}
if (!quiet) {
printf("# of mallocs = %ld\n", mallocs);
printf("# of reallocs = %ld\n", reallocs);
printf("# of frees = %ld\n", frees);
printf("# of errors = %ld\n", errors);
printf("Total bytes allocated = %ld\n", totalMalloced);
printf("Total bytes leaked = %ld\n", totalLeaked);
printf("Average bytes per malloc = %g\n",
float(totalMalloced)/mallocs);
}
}
void leaky::buildLeakGraph()
{
// For each leak
malloc_log_entry* lep;
dict->rewind();
while (NULL != (lep = dict->next())) {
if (ShowThisEntry(lep)) {
char** basepcp = &lep->pcs[0];
char** pcp = &lep->pcs[lep->numpcs - 1];
// Find root for this allocation
Symbol* sym = findSymbol((u_long) *pcp);
TreeNode* node = sym->root;
if (!node) {
sym->root = node = new TreeNode(sym);
// Add root to list of roots
if (roots.IsEmpty()) {
node->nextRoot = rootList;
rootList = node;
}
}
pcp--;
// Build tree underneath the root
for (; pcp >= basepcp; pcp--) {
// Share nodes in the tree until there is a divergence
sym = findSymbol((u_long) *pcp);
if (!sym) {
break;
}
TreeNode* nextNode = node->GetDirectDescendant(sym);
if (!nextNode) {
// Make a new node at the point of divergence
nextNode = node->AddDescendant(sym);
}
// See if the symbol is to be a user specified root. If it is,
// and we haven't already stuck it on the root-list do so now.
if (!sym->root && !roots.IsEmpty() && roots.contains(sym->name)) {
sym->root = nextNode;
nextNode->nextRoot = rootList;
rootList = nextNode;
}
if (pcp == basepcp) {
nextNode->bytesLeaked += lep->size;
}
else {
node->descendantBytesLeaked += lep->size;
}
node = nextNode;
}
}
}
}
Symbol* leaky::findLeakGraphRoot(Symbol* aStart, Symbol* aEnd)
{
while (aStart < aEnd) {
if (aStart->root) {
return aStart;
}
aStart++;
}
return NULL;
}
void leaky::dumpLeakGraph()
{
if (dumpHTML) {
printf("<html><head><title>Leaky Graph</title>\n");
printf("<style src=\"resource:/res/leaky/leaky.css\"></style>\n");
printf("<script src=\"resource:/res/leaky/leaky.js\"></script>\n");
printf("</head><body><div class=\"key\">\n");
printf("Key:<br>\n");
printf("<span class=b>Bytes directly leaked</span><br>\n");
printf("<span class=d>Bytes leaked by descendants</span></div>\n");
}
#if 0
Symbol* base = externalSymbols;
Symbol* end = externalSymbols + usefulSymbols;
while (base < end) {
Symbol* sym = findLeakGraphRoot(base, end);
if (!sym) break;
dumpLeakTree(sym->root, 0);
base = sym + 1;
}
#else
TreeNode* root = rootList;
while (root) {
dumpLeakTree(root, 0);
root = root->nextRoot;
}
#endif
if (dumpHTML) {
printf("</body></html>\n");
}
}
void leaky::dumpLeakTree(TreeNode* aNode, int aIndent)
{
Symbol* sym = aNode->symbol;
if (dumpHTML) {
printf("<div class=\"n\">\n");
if (aNode->HasDescendants()) {
printf("<img onmouseout=\"O(event);\" onmouseover=\"I(event);\" ");
printf("onclick=\"C(event);\" src=\"resource:/res/leaky/%s.gif\">",
aIndent > 1 ? "close" : "open");
}
printf("<span class=s>%s</span><span class=b>%ld</span>",
sym->name,
aNode->bytesLeaked);
printf("<span class=d>%ld</span>\n",
aNode->descendantBytesLeaked);
}
else {
indentBy(aIndent);
printf("%s bytesLeaked=%ld (%ld from kids)\n",
sym->name,
aNode->bytesLeaked,
aNode->descendantBytesLeaked);
}
TreeNode* node = aNode->descendants;
int kidNum = 0;
while (node) {
sym = node->symbol;
dumpLeakTree(node, aIndent + 1);
kidNum++;
node = node->nextSibling;
}
if (dumpHTML) {
printf("</div>");
}
}
//----------------------------------------------------------------------
TreeNode* TreeNode::freeList;
void* TreeNode::operator new(size_t size) CPP_THROW_NEW
{
if (!freeList) {
TreeNode* newNodes = (TreeNode*) new char[sizeof(TreeNode) * 5000];
if (!newNodes) {
return NULL;
}
TreeNode* n = newNodes;
TreeNode* end = newNodes + 5000 - 1;
while (n < end) {
n->nextSibling = n + 1;
n++;
}
n->nextSibling = NULL;
freeList = newNodes;
}
TreeNode* rv = freeList;
freeList = rv->nextSibling;
return (void*) rv;
}
void TreeNode::operator delete(void* ptr)
{
TreeNode* node = (TreeNode*) ptr;
if (node) {
node->nextSibling = freeList;
freeList = node;
}
}
TreeNode* TreeNode::GetDirectDescendant(Symbol* aSymbol)
{
TreeNode* node = descendants;
while (node) {
if (node->symbol == aSymbol) {
return node;
}
node = node->nextSibling;
}
return NULL;
}
TreeNode* TreeNode::AddDescendant(Symbol* aSymbol)
{
TreeNode* node = new TreeNode(aSymbol);
node->nextSibling = descendants;
descendants = node;
return node;
}