pjs/js2/semantics/JS20/RegExp.lisp

676 строки
34 KiB
Common Lisp

;;;
;;; JavaScript 2.0 regular expression parser
;;;
;;; Waldemar Horwat (waldemar@acm.org)
;;;
(progn
(defparameter *rw*
(generate-world
"R"
'((lexer regexp-lexer
:lr-1
:regular-expression-pattern
((:unicode-character (% every (:text "Any Unicode character")) () t)
(:unicode-alphanumeric
(% alphanumeric (:text "Any Unicode alphabetic or decimal digit character (includes ASCII "
(:character-literal #\0) :nbhy (:character-literal #\9) ", "
(:character-literal #\A) :nbhy (:character-literal #\Z) ", and "
(:character-literal #\a) :nbhy (:character-literal #\z) ")"))
() t)
(:line-terminator (#?000A #?000D #?2028 #?2029) () t)
(:decimal-digit (#\0 #\1 #\2 #\3 #\4 #\5 #\6 #\7 #\8 #\9)
(($default-action $default-action)
(decimal-value $digit-value)))
(:non-zero-digit (#\1 #\2 #\3 #\4 #\5 #\6 #\7 #\8 #\9)
((decimal-value $digit-value)))
(:hex-digit (#\0 #\1 #\2 #\3 #\4 #\5 #\6 #\7 #\8 #\9 #\A #\B #\C #\D #\E #\F #\a #\b #\c #\d #\e #\f)
((hex-value $digit-value)))
(:control-letter (++ (#\A #\B #\C #\D #\E #\F #\G #\H #\I #\J #\K #\L #\M #\N #\O #\P #\Q #\R #\S #\T #\U #\V #\W #\X #\Y #\Z)
(#\a #\b #\c #\d #\e #\f #\g #\h #\i #\j #\k #\l #\m #\n #\o #\p #\q #\r #\s #\t #\u #\v #\w #\x #\y #\z))
(($default-action $default-action)))
(:pattern-character (- :unicode-character (#\^ #\$ #\\ #\. #\* #\+ #\? #\( #\) #\[ #\] #\{ #\} #\|))
(($default-action $default-action)))
((:class-character dash) (- :unicode-character (#\\ #\]))
(($default-action $default-action)))
((:class-character no-dash) (- (:class-character dash) (#\-))
(($default-action $default-action)))
(:identity-escape (- :unicode-character (+ (#\_) :unicode-alphanumeric))
(($default-action $default-action))))
(($default-action character nil identity)
($digit-value integer digit-value digit-char-36)))
(deftag syntax-error)
(deftype semantic-exception (tag syntax-error))
(%heading 1 "Unicode Character Classes")
(%charclass :unicode-character)
(%charclass :unicode-alphanumeric)
(%charclass :line-terminator)
(define line-terminators (range-set character) (range-set-of character #?000A #?000D #?2028 #?2029))
(define re-whitespaces (range-set character) (range-set-of character #?000C #?000A #?000D #?0009 #?000B #\space))
(define re-digits (range-set character) (range-set-of-ranges character #\0 #\9))
(define re-word-characters (range-set character) (range-set-of-ranges character #\0 #\9 #\A #\Z #\a #\z #\_ nil))
(%print-actions)
(%heading 1 "Regular Expression Definitions")
(deftuple r-e-input (str string) (ignore-case boolean) (multiline boolean) (span boolean))
(%text :semantics
"Field " (:label r-e-input str) " is the input string. "
(:label r-e-input ignore-case) ", "
(:label r-e-input multiline) ", and "
(:label r-e-input span) " are the corresponding regular expression flags.")
(deftag undefined)
(deftype capture (union string (tag undefined)))
(deftuple r-e-match (end-index integer) (captures (vector capture)))
(deftag failure)
(deftype r-e-result (union r-e-match (tag failure)))
(%text :semantics
"A " (:type r-e-match) " holds an intermediate state during the pattern-matching process. "
(:label r-e-match end-index)
" is the index of the next input character to be matched by the next component in a regular expression pattern. "
"If we are at the end of the pattern, " (:label r-e-match end-index)
" is one plus the index of the last matched input character. "
(:label r-e-match captures)
" is a zero-based array of the strings captured so far by capturing parentheses.")
(deftype continuation (-> (r-e-match) r-e-result))
(%text :semantics
"A " (:type continuation)
" is a function that attempts to match the remaining portion of the pattern against the input string, "
"starting at the intermediate state given by its " (:type r-e-match) " argument. "
"If a match is possible, it returns a " (:type r-e-match)
" result that contains the final state; if no match is possible, it returns a " (:tag failure) " result.")
(deftype matcher (-> (r-e-input r-e-match continuation) r-e-result))
(%text :semantics
"A " (:type matcher)
" is a function that attempts to match a middle portion of the pattern against the input string, "
"starting at the intermediate state given by its " (:type r-e-match) " argument. "
"Since the remainder of the pattern heavily influences whether (and how) a middle portion will match, we "
"must pass in a " (:type continuation) " function that checks whether the rest of the pattern matched. "
"If the continuation returns " (:tag failure) ", the matcher function may call it repeatedly, "
"trying various alternatives at pattern choice points.")
(%text :semantics
"The " (:type r-e-input) " parameter contains the input string and is merely passed down to subroutines.")
(%text :semantics
"A " (:type (-> (integer) matcher))
" is a function executed at the time the regular expression is compiled that returns a " (:type matcher) " for a part "
"of the pattern. The " (:type integer) " parameter contains the number of capturing left parentheses seen so far in the "
"pattern and is used to assign static, consecutive numbers to capturing parentheses.")
(define (character-set-matcher (acceptance-set (range-set character)) (invert boolean)) matcher ;*********ignore case?
(function (m (t r-e-input) (x r-e-match) (c continuation)) r-e-result
(const i integer (& end-index x))
(const s string (& str t))
(cond
((= i (length s)) (return failure))
((xor (set-in (nth s i) acceptance-set) invert)
(return (c (new r-e-match (+ i 1) (& captures x)))))
(nil (return failure))))
(return m))
(%text :semantics
(:global character-set-matcher) " returns a " (:type matcher)
" that matches a single input string character. If "
(:local invert) " is " (:tag false) ", the match succeeds if the character is a member of the "
(:local acceptance-set) " set of characters (possibly ignoring case). If "
(:local invert) " is " (:tag true) ", the match succeeds if the character is not a member of the "
(:local acceptance-set) " set of characters (possibly ignoring case).")
(define (character-matcher (ch character)) matcher
(return (character-set-matcher (range-set-of character ch) false)))
(%text :semantics
(:global character-matcher) " returns a " (:type matcher)
" that matches a single input string character. The match succeeds if the character is the same as "
(:local ch) " (possibly ignoring case).")
(%print-actions)
(%heading 1 "Regular Expression Patterns")
(rule :regular-expression-pattern ((execute (-> (r-e-input integer) r-e-result)))
(production :regular-expression-pattern (:disjunction) regular-expression-pattern-disjunction
(execute
(begin
(const m1 matcher ((gen-matcher :disjunction) 0))
(function (e (t r-e-input) (index integer)) r-e-result
(const x r-e-match (new r-e-match index (fill-capture (count-parens :disjunction))))
(return (m1 t x success-continuation)))
(return e)))))
(%print-actions)
(define (success-continuation (x r-e-match)) r-e-result
(return x))
(define (fill-capture (i integer)) (vector capture)
(if (= i 0)
(return (vector-of capture))
(return (append (fill-capture (- i 1)) (vector-of capture undefined)))))
(%heading 2 "Disjunctions")
(rule :disjunction ((gen-matcher (-> (integer) matcher)) (count-parens integer))
(production :disjunction (:alternative) disjunction-one
((gen-matcher paren-index) (return ((gen-matcher :alternative) paren-index)))
(count-parens (count-parens :alternative)))
(production :disjunction (:alternative #\| :disjunction) disjunction-more
((gen-matcher paren-index)
(const m1 matcher ((gen-matcher :alternative) paren-index))
(const m2 matcher ((gen-matcher :disjunction) (+ paren-index (count-parens :alternative))))
(function (m3 (t r-e-input) (x r-e-match) (c continuation)) r-e-result
(const y r-e-result (m1 t x c))
(case y
(:select r-e-match (return y))
(:select (tag failure) (return (m2 t x c)))))
(return m3))
(count-parens (+ (count-parens :alternative) (count-parens :disjunction)))))
(%print-actions)
(%heading 2 "Alternatives")
(rule :alternative ((gen-matcher (-> (integer) matcher)) (count-parens integer))
(production :alternative () alternative-none
((gen-matcher (paren-index :unused))
(function (m (t r-e-input :unused) (x r-e-match) (c continuation)) r-e-result
(return (c x)))
(return m))
(count-parens 0))
(production :alternative (:alternative :term) alternative-some
((gen-matcher paren-index)
(const m1 matcher ((gen-matcher :alternative) paren-index))
(const m2 matcher ((gen-matcher :term) (+ paren-index (count-parens :alternative))))
(function (m3 (t r-e-input) (x r-e-match) (c continuation)) r-e-result
(function (d (y r-e-match)) r-e-result
(return (m2 t y c)))
(return (m1 t x d)))
(return m3))
(count-parens (+ (count-parens :alternative) (count-parens :term)))))
(%print-actions)
(%heading 2 "Terms")
(rule :term ((gen-matcher (-> (integer) matcher)) (count-parens integer))
(production :term (:assertion) term-assertion
((gen-matcher (paren-index :unused))
(function (m (t r-e-input) (x r-e-match) (c continuation)) r-e-result
(if ((test-assertion :assertion) t x)
(return (c x))
(return failure)))
(return m))
(count-parens 0))
(production :term (:atom) term-atom
((gen-matcher paren-index) (return ((gen-matcher :atom) paren-index)))
(count-parens (count-parens :atom)))
(production :term (:atom :quantifier) term-quantified-atom
((gen-matcher paren-index)
(const m matcher ((gen-matcher :atom) paren-index))
(const min integer (minimum :quantifier))
(const max limit (maximum :quantifier))
(const greedy boolean (greedy :quantifier))
(when (not-in max (tag +infinity) :narrow-true)
(rwhen (< max min)
(throw syntax-error)))
(return (repeat-matcher m min max greedy paren-index (count-parens :atom))))
(count-parens (count-parens :atom))))
(%print-actions)
(rule :quantifier ((minimum integer) (maximum limit) (greedy boolean))
(production :quantifier (:quantifier-prefix) quantifier-eager
(minimum (minimum :quantifier-prefix))
(maximum (maximum :quantifier-prefix))
(greedy true))
(production :quantifier (:quantifier-prefix #\?) quantifier-greedy
(minimum (minimum :quantifier-prefix))
(maximum (maximum :quantifier-prefix))
(greedy false)))
(rule :quantifier-prefix ((minimum integer) (maximum limit))
(production :quantifier-prefix (#\*) quantifier-prefix-zero-or-more
(minimum 0)
(maximum +infinity))
(production :quantifier-prefix (#\+) quantifier-prefix-one-or-more
(minimum 1)
(maximum +infinity))
(production :quantifier-prefix (#\?) quantifier-prefix-zero-or-one
(minimum 0)
(maximum 1))
(production :quantifier-prefix (#\{ :decimal-digits #\}) quantifier-prefix-repeat
(minimum (integer-value :decimal-digits))
(maximum (integer-value :decimal-digits)))
(production :quantifier-prefix (#\{ :decimal-digits #\, #\}) quantifier-prefix-repeat-or-more
(minimum (integer-value :decimal-digits))
(maximum +infinity))
(production :quantifier-prefix (#\{ :decimal-digits #\, :decimal-digits #\}) quantifier-prefix-repeat-range
(minimum (integer-value :decimal-digits 1))
(maximum (integer-value :decimal-digits 2))))
(rule :decimal-digits ((integer-value integer))
(production :decimal-digits (:decimal-digit) decimal-digits-first
(integer-value (decimal-value :decimal-digit)))
(production :decimal-digits (:decimal-digits :decimal-digit) decimal-digits-rest
(integer-value (+ (* 10 (integer-value :decimal-digits)) (decimal-value :decimal-digit)))))
(%charclass :decimal-digit)
(deftype limit (union integer (tag +infinity)))
(define (reset-parens (x r-e-match) (p integer) (n-parens integer)) r-e-match
(var captures (vector capture) (& captures x))
(var i integer p)
(while (< i (+ p n-parens))
(<- captures (set-nth captures i undefined))
(<- i (+ i 1)))
(return (new r-e-match (& end-index x) captures)))
(define (repeat-matcher (body matcher) (min integer) (max limit) (greedy boolean) (paren-index integer) (n-body-parens integer)) matcher
(function (m (t r-e-input) (x r-e-match) (c continuation)) r-e-result
(rwhen (= max 0 limit)
(return (c x)))
(function (d (y r-e-match)) r-e-result
(rwhen (and (= min 0) (= (& end-index y) (& end-index x)))
(return failure))
(var new-min integer min)
(when (/= min 0)
(<- new-min (- min 1)))
(var new-max limit max)
(when (not-in max (tag +infinity) :narrow-true)
(<- new-max (- max 1)))
(const m2 matcher (repeat-matcher body new-min new-max greedy paren-index n-body-parens))
(return (m2 t y c)))
(const xr r-e-match (reset-parens x paren-index n-body-parens))
(cond
((/= min 0) (return (body t xr d)))
(greedy
(const z r-e-result (body t xr d))
(case z
(:select r-e-match (return z))
(:select (tag failure) (return (c x)))))
(nil
(const z r-e-result (c x))
(case z
(:select r-e-match (return z))
(:select (tag failure) (return (body t xr d)))))))
(return m))
(%print-actions)
(%heading 2 "Assertions")
(rule :assertion ((test-assertion (-> (r-e-input r-e-match) boolean)))
(production :assertion (#\^) assertion-beginning
((test-assertion t x)
(return (or (= (& end-index x) 0)
(and (& multiline t)
(set-in (nth (& str t) (- (& end-index x) 1)) line-terminators))))))
(production :assertion (#\$) assertion-end
((test-assertion t x)
(return (or (= (& end-index x) (length (& str t)))
(and (& multiline t)
(set-in (nth (& str t) (& end-index x)) line-terminators))))))
(production :assertion (#\\ #\b) assertion-word-boundary
((test-assertion t x)
(return (at-word-boundary (& end-index x) (& str t)))))
(production :assertion (#\\ #\B) assertion-non-word-boundary
((test-assertion t x)
(return (not (at-word-boundary (& end-index x) (& str t)))))))
(%print-actions)
(define (at-word-boundary (i integer) (s string)) boolean
(return (xor (in-word (- i 1) s) (in-word i s))))
(define (in-word (i integer) (s string)) boolean
(if (or (= i -1) (= i (length s)))
(return false)
(return (set-in (nth s i) re-word-characters))))
(%heading 1 "Atoms")
(rule :atom ((gen-matcher (-> (integer) matcher)) (count-parens integer))
(production :atom (:pattern-character) atom-pattern-character
((gen-matcher (paren-index :unused))
(return (character-matcher ($default-action :pattern-character))))
(count-parens 0))
(production :atom (#\.) atom-dot
((gen-matcher (paren-index :unused))
(function (m1 (t r-e-input) (x r-e-match) (c continuation)) r-e-result
(const a (range-set character) (if (& span t) (range-set-of character) line-terminators))
(const m2 matcher (character-set-matcher a true))
(return (m2 t x c)))
(return m1))
(count-parens 0))
(production :atom (:null-escape) atom-null-escape
((gen-matcher (paren-index :unused))
(function (m (t r-e-input :unused) (x r-e-match) (c continuation)) r-e-result
(return (c x)))
(return m))
(count-parens 0))
(production :atom (#\\ :atom-escape) atom-atom-escape
((gen-matcher paren-index) (return ((gen-matcher :atom-escape) paren-index)))
(count-parens 0))
(production :atom (:character-class) atom-character-class
((gen-matcher (paren-index :unused))
(const a (range-set character) (acceptance-set :character-class))
(return (character-set-matcher a (invert :character-class))))
(count-parens 0))
(production :atom (#\( :disjunction #\)) atom-parentheses
((gen-matcher paren-index)
(const m1 matcher ((gen-matcher :disjunction) (+ paren-index 1)))
(function (m2 (t r-e-input) (x r-e-match) (c continuation)) r-e-result
(function (d (y r-e-match)) r-e-result
(const ref capture (subseq (& str t) (& end-index x) (- (& end-index y) 1)))
(const updated-captures (vector capture)
(set-nth (& captures y) paren-index ref))
(return (c (new r-e-match (& end-index y) updated-captures))))
(return (m1 t x d)))
(return m2))
(count-parens (+ (count-parens :disjunction) 1)))
(production :atom (#\( #\? #\: :disjunction #\)) atom-non-capturing-parentheses
((gen-matcher paren-index) (return ((gen-matcher :disjunction) paren-index)))
(count-parens (count-parens :disjunction)))
(production :atom (#\( #\? #\= :disjunction #\)) atom-positive-lookahead
((gen-matcher paren-index)
(const m1 matcher ((gen-matcher :disjunction) paren-index))
(function (m2 (t r-e-input) (x r-e-match) (c continuation)) r-e-result
;(function (d (y r-e-match)) r-e-result
; (return (c (new r-e-match (& end-index x) (& captures y)))))
;(return (m1 t x d)))))
(const y r-e-result (m1 t x success-continuation))
(case y
(:narrow r-e-match (return (c (new r-e-match (& end-index x) (& captures y)))))
(:select (tag failure) (return failure))))
(return m2))
(count-parens (count-parens :disjunction)))
(production :atom (#\( #\? #\! :disjunction #\)) atom-negative-lookahead
((gen-matcher paren-index)
(const m1 matcher ((gen-matcher :disjunction) paren-index))
(function (m2 (t r-e-input) (x r-e-match) (c continuation)) r-e-result
(case (m1 t x success-continuation)
(:select r-e-match (return failure))
(:select (tag failure) (return (c x)))))
(return m2))
(count-parens (count-parens :disjunction))))
(%charclass :pattern-character)
(%print-actions)
(%heading 1 "Escapes")
(production :null-escape (#\\ #\_) null-escape-underscore)
(rule :atom-escape ((gen-matcher (-> (integer) matcher)))
(production :atom-escape (:decimal-escape) atom-escape-decimal
((gen-matcher paren-index)
(const n integer (escape-value :decimal-escape))
(cond
((= n 0) (return (character-matcher #?0000)))
((> n paren-index) (throw syntax-error))
(nil (return (backreference-matcher n))))))
(production :atom-escape (:character-escape) atom-escape-character
((gen-matcher (paren-index :unused))
(return (character-matcher (character-value :character-escape)))))
(production :atom-escape (:character-class-escape) atom-escape-character-class
((gen-matcher (paren-index :unused))
(return (character-set-matcher (acceptance-set :character-class-escape) false)))))
(%print-actions)
(define (backreference-matcher (n integer)) matcher
(function (m (t r-e-input) (x r-e-match) (c continuation)) r-e-result
(const ref capture (nth-backreference x n))
(case ref
(:narrow string
(const i integer (& end-index x))
(const s string (& str t))
(const j integer (+ i (length ref)))
(if (and (<= j (length s))
(= (subseq s i (- j 1)) ref string)) ;*********ignore case?
(return (c (new r-e-match j (& captures x))))
(return failure)))
(:select (tag undefined) (return (c x)))))
(return m))
(define (nth-backreference (x r-e-match) (n integer)) capture
(return (nth (& captures x) (- n 1))))
(rule :character-escape ((character-value character))
(production :character-escape (:control-escape) character-escape-control
(character-value (character-value :control-escape)))
(production :character-escape (#\c :control-letter) character-escape-control-letter
(character-value (code-to-character (bitwise-and (character-to-code ($default-action :control-letter)) 31))))
(production :character-escape (:hex-escape) character-escape-hex
(character-value (character-value :hex-escape)))
(production :character-escape (:identity-escape) character-escape-identity
(character-value ($default-action :identity-escape))))
(%charclass :control-letter)
(%charclass :identity-escape)
(rule :control-escape ((character-value character))
(production :control-escape (#\f) control-escape-form-feed (character-value #?000C))
(production :control-escape (#\n) control-escape-new-line (character-value #?000A))
(production :control-escape (#\r) control-escape-return (character-value #?000D))
(production :control-escape (#\t) control-escape-tab (character-value #?0009))
(production :control-escape (#\v) control-escape-vertical-tab (character-value #?000B)))
(%print-actions)
(%heading 2 "Decimal Escapes")
(rule :decimal-escape ((escape-value integer))
(production :decimal-escape (:decimal-integer-literal (:- :decimal-digit)) decimal-escape-integer
(escape-value (integer-value :decimal-integer-literal))))
(rule :decimal-integer-literal ((integer-value integer))
(production :decimal-integer-literal (#\0) decimal-integer-literal-0
(integer-value 0))
(production :decimal-integer-literal (:non-zero-decimal-digits) decimal-integer-literal-nonzero
(integer-value (integer-value :non-zero-decimal-digits))))
(rule :non-zero-decimal-digits ((integer-value integer))
(production :non-zero-decimal-digits (:non-zero-digit) non-zero-decimal-digits-first
(integer-value (decimal-value :non-zero-digit)))
(production :non-zero-decimal-digits (:non-zero-decimal-digits :decimal-digit) non-zero-decimal-digits-rest
(integer-value (+ (* 10 (integer-value :non-zero-decimal-digits)) (decimal-value :decimal-digit)))))
(%charclass :non-zero-digit)
(%print-actions)
(%heading 2 "Hexadecimal Escapes")
(rule :hex-escape ((character-value character))
(production :hex-escape (#\x :hex-digit :hex-digit) hex-escape-2
(character-value (code-to-character (+ (* 16 (hex-value :hex-digit 1))
(hex-value :hex-digit 2)))))
(production :hex-escape (#\u :hex-digit :hex-digit :hex-digit :hex-digit) hex-escape-4
(character-value (code-to-character (+ (+ (+ (* 4096 (hex-value :hex-digit 1))
(* 256 (hex-value :hex-digit 2)))
(* 16 (hex-value :hex-digit 3)))
(hex-value :hex-digit 4))))))
(%charclass :hex-digit)
(%print-actions)
(%heading 2 "Character Class Escapes")
(rule :character-class-escape ((acceptance-set (range-set character)))
(production :character-class-escape (#\s) character-class-escape-whitespace
(acceptance-set re-whitespaces))
(production :character-class-escape (#\S) character-class-escape-non-whitespace
(acceptance-set (set- (range-set-of-ranges character #?0000 #?FFFF) re-whitespaces)))
(production :character-class-escape (#\d) character-class-escape-digit
(acceptance-set re-digits))
(production :character-class-escape (#\D) character-class-escape-non-digit
(acceptance-set (set- (range-set-of-ranges character #?0000 #?FFFF) re-digits)))
(production :character-class-escape (#\w) character-class-escape-word
(acceptance-set re-word-characters))
(production :character-class-escape (#\W) character-class-escape-non-word
(acceptance-set (set- (range-set-of-ranges character #?0000 #?FFFF) re-word-characters))))
(%print-actions)
(%heading 1 "User-Specified Character Classes")
(rule :character-class ((acceptance-set (range-set character)) (invert boolean))
(production :character-class (#\[ (:- #\^) :class-ranges #\]) character-class-positive
(acceptance-set (acceptance-set :class-ranges))
(invert false))
(production :character-class (#\[ #\^ :class-ranges #\]) character-class-negative
(acceptance-set (acceptance-set :class-ranges))
(invert true)))
(rule :class-ranges ((acceptance-set (range-set character)))
(production :class-ranges () class-ranges-none
(acceptance-set (range-set-of character)))
(production :class-ranges ((:nonempty-class-ranges dash)) class-ranges-some
(acceptance-set (acceptance-set :nonempty-class-ranges))))
(grammar-argument :delta dash no-dash)
(rule (:nonempty-class-ranges :delta) ((acceptance-set (range-set character)))
(production (:nonempty-class-ranges :delta) ((:class-atom dash)) nonempty-class-ranges-final
(acceptance-set (acceptance-set :class-atom)))
(production (:nonempty-class-ranges :delta) ((:class-atom :delta) (:nonempty-class-ranges no-dash)) nonempty-class-ranges-non-final
(acceptance-set
(set+ (acceptance-set :class-atom)
(acceptance-set :nonempty-class-ranges))))
(production (:nonempty-class-ranges :delta) ((:class-atom :delta) #\- (:class-atom dash) :class-ranges) nonempty-class-ranges-range
(acceptance-set
(set+ (character-range (acceptance-set :class-atom 1) (acceptance-set :class-atom 2))
(acceptance-set :class-ranges))))
(production (:nonempty-class-ranges :delta) (:null-escape :class-ranges) nonempty-class-ranges-null-escape
(acceptance-set (acceptance-set :class-ranges))))
(%print-actions)
(define (character-range (low (range-set character)) (high (range-set character))) (range-set character)
(rwhen (or (/= (length low) 1) (/= (length high) 1))
(throw syntax-error))
(const l character (character-set-min low))
(const h character (character-set-min high))
(if (<= l h character)
(return (range-set-of-ranges character l h))
(throw syntax-error)))
(%heading 2 "Character Class Range Atoms")
(rule (:class-atom :delta) ((acceptance-set (range-set character)))
(production (:class-atom :delta) ((:class-character :delta)) class-atom-character
(acceptance-set (range-set-of character ($default-action :class-character))))
(production (:class-atom :delta) (#\\ :class-escape) class-atom-escape
(acceptance-set (acceptance-set :class-escape))))
(%charclass (:class-character dash))
(%charclass (:class-character no-dash))
(rule :class-escape ((acceptance-set (range-set character)))
(production :class-escape (:decimal-escape) class-escape-decimal
(acceptance-set
(begin
(if (= (escape-value :decimal-escape) 0)
(return (range-set-of character #?0000))
(throw syntax-error)))))
(production :class-escape (#\b) class-escape-backspace
(acceptance-set (range-set-of character #?0008)))
(production :class-escape (:character-escape) class-escape-character-escape
(acceptance-set (range-set-of character (character-value :character-escape))))
(production :class-escape (:character-class-escape) class-escape-character-class-escape
(acceptance-set (acceptance-set :character-class-escape))))
(%print-actions)
)))
(defparameter *rl* (world-lexer *rw* 'regexp-lexer))
(defparameter *rg* (lexer-grammar *rl*)))
(eval-when (:load-toplevel :execute)
(defun run-regexp (regexp input &key ignore-case multiline span)
(let ((execute (first (lexer-parse *rl* regexp))))
(dotimes (i (length input) :failure)
(let ((result (funcall execute (list 'r:r-e-input input ignore-case multiline span) i)))
(unless (eq result :failure)
(assert-true (eq (first result) 'r:r-e-match))
(return (list* i (subseq input i (second result)) (cddr result)))))))))
(defun dump-regexp ()
(values
(depict-rtf-to-local-file
"JS20/RegExpGrammar.rtf"
"Regular Expression Grammar"
#'(lambda (rtf-stream)
(depict-world-commands rtf-stream *rw* :heading-offset 1 :visible-semantics nil)))
(depict-rtf-to-local-file
"JS20/RegExpSemantics.rtf"
"Regular Expression Semantics"
#'(lambda (rtf-stream)
(depict-world-commands rtf-stream *rw* :heading-offset 1)))
(depict-html-to-local-file
"JS20/RegExpGrammar.html"
"Regular Expression Grammar"
t
#'(lambda (html-stream)
(depict-world-commands html-stream *rw* :heading-offset 1 :visible-semantics nil))
:external-link-base "notation.html")
(depict-html-to-local-file
"JS20/RegExpSemantics.html"
"Regular Expression Semantics"
t
#'(lambda (html-stream)
(depict-world-commands html-stream *rw* :heading-offset 1))
:external-link-base "notation.html")))
#|
(dump-regexp)
(with-local-output (s "JS20/RegExpGrammar.txt") (print-lexer *rl* s) (print-grammar *rg* s))
(lexer-pparse *rl* "a+" :trace t)
(lexer-pparse *rl* "[]+" :trace t)
(run-regexp "(0x|0)2" "0x20")
(run-regexp "(a*)b\\1+c" "aabaaaac")
(run-regexp "(a*)b\\1+c" "aabaabaaaac")
(run-regexp "(a*)b\\1+" "baaaac")
(run-regexp "b(a+)(a+)?(a+)c" "baaaac")
(run-regexp "(((a+)?(b+)?c)*)" "aacbbbcac")
(run-regexp "(\\s\\S\\s)" "aac xa d fds fds sac")
(run-regexp "(\\s)" "aac xa deac")
(run-regexp "[01234]+aa+" "93-43aabbc")
(run-regexp "[\\101A-ae-]+" "93ABC-@ezy43abc")
(run-regexp "[\\181A-ae-]+" "93ABC-@ezy43abc")
(run-regexp "b[ace]+" "baaaacecfe")
(run-regexp "b[^a]+" "baaaabc")
(run-regexp "(?=(a+))a*b\\1" "baaabac")
(run-regexp "(?=(a+))" "baaabac")
(run-regexp "(.*?)a(?!(a+)b\\2c)\\2(.*)" "baaabaac")
(run-regexp "(aa|aabaac|ba|b|c)*" "aabaac")
(run-regexp "[\\_^01234]+\\_aa+" "93-43aabbc")
(run-regexp "a." "AAab")
(run-regexp "a." "AAab" :ignore-case t)
(run-regexp "a.." (concatenate 'string "a" (string #\newline) "bacd"))
(run-regexp "a.." (concatenate 'string "a" (string #\newline) "bacd") :span t)
(run-regexp "^(a\\1?){4}$" "aaaaaaaaaa")
(run-regexp "(?:(f)(o)(o)|(b)(a)(r))*" "foobar")
(run-regexp "(a)?a(b)" "ab")
|#
#+allegro (clean-grammar *rg*) ;Remove this line if you wish to print the grammar's state tables.
(length (grammar-states *rg*))