зеркало из https://github.com/mozilla/pjs.git
539 строки
14 KiB
C
539 строки
14 KiB
C
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/*
|
|
* The contents of this file are subject to the Mozilla Public
|
|
* License Version 1.1 (the "License"); you may not use this file
|
|
* except in compliance with the License. You may obtain a copy of
|
|
* the License at http://www.mozilla.org/MPL/
|
|
*
|
|
* Software distributed under the License is distributed on an "AS
|
|
* IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
|
|
* implied. See the License for the specific language governing
|
|
* rights and limitations under the License.
|
|
*
|
|
* The Original Code is the Netscape Portable Runtime (NSPR).
|
|
*
|
|
* The Initial Developer of the Original Code is Netscape
|
|
* Communications Corporation. Portions created by Netscape are
|
|
* Copyright (C) 1998-2000 Netscape Communications Corporation. All
|
|
* Rights Reserved.
|
|
*
|
|
* Contributor(s):
|
|
*
|
|
* Alternatively, the contents of this file may be used under the
|
|
* terms of the GNU General Public License Version 2 or later (the
|
|
* "GPL"), in which case the provisions of the GPL are applicable
|
|
* instead of those above. If you wish to allow use of your
|
|
* version of this file only under the terms of the GPL and not to
|
|
* allow others to use your version of this file under the MPL,
|
|
* indicate your decision by deleting the provisions above and
|
|
* replace them with the notice and other provisions required by
|
|
* the GPL. If you do not delete the provisions above, a recipient
|
|
* may use your version of this file under either the MPL or the
|
|
* GPL.
|
|
*/
|
|
|
|
/*
|
|
* PL hash table package.
|
|
*/
|
|
#include "plhash.h"
|
|
#include "prbit.h"
|
|
#include "prlog.h"
|
|
#include "prmem.h"
|
|
#include "prtypes.h"
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
/* Compute the number of buckets in ht */
|
|
#define NBUCKETS(ht) (1 << (PL_HASH_BITS - (ht)->shift))
|
|
|
|
/* The smallest table has 16 buckets */
|
|
#define MINBUCKETSLOG2 4
|
|
#define MINBUCKETS (1 << MINBUCKETSLOG2)
|
|
|
|
/* Compute the maximum entries given n buckets that we will tolerate, ~90% */
|
|
#define OVERLOADED(n) ((n) - ((n) >> 3))
|
|
|
|
/* Compute the number of entries below which we shrink the table by half */
|
|
#define UNDERLOADED(n) (((n) > MINBUCKETS) ? ((n) >> 2) : 0)
|
|
|
|
/*
|
|
** Stubs for default hash allocator ops.
|
|
*/
|
|
static void * PR_CALLBACK
|
|
DefaultAllocTable(void *pool, PRSize size)
|
|
{
|
|
#if defined(XP_MAC)
|
|
#pragma unused (pool)
|
|
#endif
|
|
|
|
return PR_MALLOC(size);
|
|
}
|
|
|
|
static void PR_CALLBACK
|
|
DefaultFreeTable(void *pool, void *item)
|
|
{
|
|
#if defined(XP_MAC)
|
|
#pragma unused (pool)
|
|
#endif
|
|
|
|
PR_Free(item);
|
|
}
|
|
|
|
static PLHashEntry * PR_CALLBACK
|
|
DefaultAllocEntry(void *pool, const void *key)
|
|
{
|
|
#if defined(XP_MAC)
|
|
#pragma unused (pool,key)
|
|
#endif
|
|
|
|
return PR_NEW(PLHashEntry);
|
|
}
|
|
|
|
static void PR_CALLBACK
|
|
DefaultFreeEntry(void *pool, PLHashEntry *he, PRUintn flag)
|
|
{
|
|
#if defined(XP_MAC)
|
|
#pragma unused (pool)
|
|
#endif
|
|
|
|
if (flag == HT_FREE_ENTRY)
|
|
PR_Free(he);
|
|
}
|
|
|
|
static PLHashAllocOps defaultHashAllocOps = {
|
|
DefaultAllocTable, DefaultFreeTable,
|
|
DefaultAllocEntry, DefaultFreeEntry
|
|
};
|
|
|
|
PR_IMPLEMENT(PLHashTable *)
|
|
PL_NewHashTable(PRUint32 n, PLHashFunction keyHash,
|
|
PLHashComparator keyCompare, PLHashComparator valueCompare,
|
|
const PLHashAllocOps *allocOps, void *allocPriv)
|
|
{
|
|
PLHashTable *ht;
|
|
PRSize nb;
|
|
|
|
if (n <= MINBUCKETS) {
|
|
n = MINBUCKETSLOG2;
|
|
} else {
|
|
n = PR_CeilingLog2(n);
|
|
if ((PRInt32)n < 0)
|
|
return 0;
|
|
}
|
|
|
|
if (!allocOps) allocOps = &defaultHashAllocOps;
|
|
|
|
ht = (PLHashTable*)((*allocOps->allocTable)(allocPriv, sizeof *ht));
|
|
if (!ht)
|
|
return 0;
|
|
memset(ht, 0, sizeof *ht);
|
|
ht->shift = PL_HASH_BITS - n;
|
|
n = 1 << n;
|
|
#if defined(WIN16)
|
|
if (n > 16000) {
|
|
(*allocOps->freeTable)(allocPriv, ht);
|
|
return 0;
|
|
}
|
|
#endif /* WIN16 */
|
|
nb = n * sizeof(PLHashEntry *);
|
|
ht->buckets = (PLHashEntry**)((*allocOps->allocTable)(allocPriv, nb));
|
|
if (!ht->buckets) {
|
|
(*allocOps->freeTable)(allocPriv, ht);
|
|
return 0;
|
|
}
|
|
memset(ht->buckets, 0, nb);
|
|
|
|
ht->keyHash = keyHash;
|
|
ht->keyCompare = keyCompare;
|
|
ht->valueCompare = valueCompare;
|
|
ht->allocOps = allocOps;
|
|
ht->allocPriv = allocPriv;
|
|
return ht;
|
|
}
|
|
|
|
PR_IMPLEMENT(void)
|
|
PL_HashTableDestroy(PLHashTable *ht)
|
|
{
|
|
PRUint32 i, n;
|
|
PLHashEntry *he, *next;
|
|
const PLHashAllocOps *allocOps = ht->allocOps;
|
|
void *allocPriv = ht->allocPriv;
|
|
|
|
n = NBUCKETS(ht);
|
|
for (i = 0; i < n; i++) {
|
|
for (he = ht->buckets[i]; he; he = next) {
|
|
next = he->next;
|
|
(*allocOps->freeEntry)(allocPriv, he, HT_FREE_ENTRY);
|
|
}
|
|
}
|
|
#ifdef DEBUG
|
|
memset(ht->buckets, 0xDB, n * sizeof ht->buckets[0]);
|
|
#endif
|
|
(*allocOps->freeTable)(allocPriv, ht->buckets);
|
|
#ifdef DEBUG
|
|
memset(ht, 0xDB, sizeof *ht);
|
|
#endif
|
|
(*allocOps->freeTable)(allocPriv, ht);
|
|
}
|
|
|
|
/*
|
|
** Multiplicative hash, from Knuth 6.4.
|
|
*/
|
|
#define GOLDEN_RATIO 0x9E3779B9U
|
|
|
|
PR_IMPLEMENT(PLHashEntry **)
|
|
PL_HashTableRawLookup(PLHashTable *ht, PLHashNumber keyHash, const void *key)
|
|
{
|
|
PLHashEntry *he, **hep, **hep0;
|
|
PLHashNumber h;
|
|
|
|
#ifdef HASHMETER
|
|
ht->nlookups++;
|
|
#endif
|
|
h = keyHash * GOLDEN_RATIO;
|
|
h >>= ht->shift;
|
|
hep = hep0 = &ht->buckets[h];
|
|
while ((he = *hep) != 0) {
|
|
if (he->keyHash == keyHash && (*ht->keyCompare)(key, he->key)) {
|
|
/* Move to front of chain if not already there */
|
|
if (hep != hep0) {
|
|
*hep = he->next;
|
|
he->next = *hep0;
|
|
*hep0 = he;
|
|
}
|
|
return hep0;
|
|
}
|
|
hep = &he->next;
|
|
#ifdef HASHMETER
|
|
ht->nsteps++;
|
|
#endif
|
|
}
|
|
return hep;
|
|
}
|
|
|
|
/*
|
|
** Same as PL_HashTableRawLookup but doesn't reorder the hash entries.
|
|
*/
|
|
PR_IMPLEMENT(PLHashEntry **)
|
|
PL_HashTableRawLookupConst(PLHashTable *ht, PLHashNumber keyHash,
|
|
const void *key)
|
|
{
|
|
PLHashEntry *he, **hep;
|
|
PLHashNumber h;
|
|
|
|
#ifdef HASHMETER
|
|
ht->nlookups++;
|
|
#endif
|
|
h = keyHash * GOLDEN_RATIO;
|
|
h >>= ht->shift;
|
|
hep = &ht->buckets[h];
|
|
while ((he = *hep) != 0) {
|
|
if (he->keyHash == keyHash && (*ht->keyCompare)(key, he->key)) {
|
|
break;
|
|
}
|
|
hep = &he->next;
|
|
#ifdef HASHMETER
|
|
ht->nsteps++;
|
|
#endif
|
|
}
|
|
return hep;
|
|
}
|
|
|
|
PR_IMPLEMENT(PLHashEntry *)
|
|
PL_HashTableRawAdd(PLHashTable *ht, PLHashEntry **hep,
|
|
PLHashNumber keyHash, const void *key, void *value)
|
|
{
|
|
PRUint32 i, n;
|
|
PLHashEntry *he, *next, **oldbuckets;
|
|
PRSize nb;
|
|
|
|
/* Grow the table if it is overloaded */
|
|
n = NBUCKETS(ht);
|
|
if (ht->nentries >= OVERLOADED(n)) {
|
|
oldbuckets = ht->buckets;
|
|
#if defined(WIN16)
|
|
if (2 * n > 16000)
|
|
return 0;
|
|
#endif /* WIN16 */
|
|
nb = 2 * n * sizeof(PLHashEntry *);
|
|
ht->buckets = (PLHashEntry**)
|
|
((*ht->allocOps->allocTable)(ht->allocPriv, nb));
|
|
if (!ht->buckets) {
|
|
ht->buckets = oldbuckets;
|
|
return 0;
|
|
}
|
|
memset(ht->buckets, 0, nb);
|
|
#ifdef HASHMETER
|
|
ht->ngrows++;
|
|
#endif
|
|
ht->shift--;
|
|
|
|
for (i = 0; i < n; i++) {
|
|
for (he = oldbuckets[i]; he; he = next) {
|
|
next = he->next;
|
|
hep = PL_HashTableRawLookup(ht, he->keyHash, he->key);
|
|
PR_ASSERT(*hep == 0);
|
|
he->next = 0;
|
|
*hep = he;
|
|
}
|
|
}
|
|
#ifdef DEBUG
|
|
memset(oldbuckets, 0xDB, n * sizeof oldbuckets[0]);
|
|
#endif
|
|
(*ht->allocOps->freeTable)(ht->allocPriv, oldbuckets);
|
|
hep = PL_HashTableRawLookup(ht, keyHash, key);
|
|
}
|
|
|
|
/* Make a new key value entry */
|
|
he = (*ht->allocOps->allocEntry)(ht->allocPriv, key);
|
|
if (!he)
|
|
return 0;
|
|
he->keyHash = keyHash;
|
|
he->key = key;
|
|
he->value = value;
|
|
he->next = *hep;
|
|
*hep = he;
|
|
ht->nentries++;
|
|
return he;
|
|
}
|
|
|
|
PR_IMPLEMENT(PLHashEntry *)
|
|
PL_HashTableAdd(PLHashTable *ht, const void *key, void *value)
|
|
{
|
|
PLHashNumber keyHash;
|
|
PLHashEntry *he, **hep;
|
|
|
|
keyHash = (*ht->keyHash)(key);
|
|
hep = PL_HashTableRawLookup(ht, keyHash, key);
|
|
if ((he = *hep) != 0) {
|
|
/* Hit; see if values match */
|
|
if ((*ht->valueCompare)(he->value, value)) {
|
|
/* key,value pair is already present in table */
|
|
return he;
|
|
}
|
|
if (he->value)
|
|
(*ht->allocOps->freeEntry)(ht->allocPriv, he, HT_FREE_VALUE);
|
|
he->value = value;
|
|
return he;
|
|
}
|
|
return PL_HashTableRawAdd(ht, hep, keyHash, key, value);
|
|
}
|
|
|
|
PR_IMPLEMENT(void)
|
|
PL_HashTableRawRemove(PLHashTable *ht, PLHashEntry **hep, PLHashEntry *he)
|
|
{
|
|
PRUint32 i, n;
|
|
PLHashEntry *next, **oldbuckets;
|
|
PRSize nb;
|
|
|
|
*hep = he->next;
|
|
(*ht->allocOps->freeEntry)(ht->allocPriv, he, HT_FREE_ENTRY);
|
|
|
|
/* Shrink table if it's underloaded */
|
|
n = NBUCKETS(ht);
|
|
if (--ht->nentries < UNDERLOADED(n)) {
|
|
oldbuckets = ht->buckets;
|
|
nb = n * sizeof(PLHashEntry*) / 2;
|
|
ht->buckets = (PLHashEntry**)(
|
|
(*ht->allocOps->allocTable)(ht->allocPriv, nb));
|
|
if (!ht->buckets) {
|
|
ht->buckets = oldbuckets;
|
|
return;
|
|
}
|
|
memset(ht->buckets, 0, nb);
|
|
#ifdef HASHMETER
|
|
ht->nshrinks++;
|
|
#endif
|
|
ht->shift++;
|
|
|
|
for (i = 0; i < n; i++) {
|
|
for (he = oldbuckets[i]; he; he = next) {
|
|
next = he->next;
|
|
hep = PL_HashTableRawLookup(ht, he->keyHash, he->key);
|
|
PR_ASSERT(*hep == 0);
|
|
he->next = 0;
|
|
*hep = he;
|
|
}
|
|
}
|
|
#ifdef DEBUG
|
|
memset(oldbuckets, 0xDB, n * sizeof oldbuckets[0]);
|
|
#endif
|
|
(*ht->allocOps->freeTable)(ht->allocPriv, oldbuckets);
|
|
}
|
|
}
|
|
|
|
PR_IMPLEMENT(PRBool)
|
|
PL_HashTableRemove(PLHashTable *ht, const void *key)
|
|
{
|
|
PLHashNumber keyHash;
|
|
PLHashEntry *he, **hep;
|
|
|
|
keyHash = (*ht->keyHash)(key);
|
|
hep = PL_HashTableRawLookup(ht, keyHash, key);
|
|
if ((he = *hep) == 0)
|
|
return PR_FALSE;
|
|
|
|
/* Hit; remove element */
|
|
PL_HashTableRawRemove(ht, hep, he);
|
|
return PR_TRUE;
|
|
}
|
|
|
|
PR_IMPLEMENT(void *)
|
|
PL_HashTableLookup(PLHashTable *ht, const void *key)
|
|
{
|
|
PLHashNumber keyHash;
|
|
PLHashEntry *he, **hep;
|
|
|
|
keyHash = (*ht->keyHash)(key);
|
|
hep = PL_HashTableRawLookup(ht, keyHash, key);
|
|
if ((he = *hep) != 0) {
|
|
return he->value;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Same as PL_HashTableLookup but doesn't reorder the hash entries.
|
|
*/
|
|
PR_IMPLEMENT(void *)
|
|
PL_HashTableLookupConst(PLHashTable *ht, const void *key)
|
|
{
|
|
PLHashNumber keyHash;
|
|
PLHashEntry *he, **hep;
|
|
|
|
keyHash = (*ht->keyHash)(key);
|
|
hep = PL_HashTableRawLookupConst(ht, keyHash, key);
|
|
if ((he = *hep) != 0) {
|
|
return he->value;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Iterate over the entries in the hash table calling func for each
|
|
** entry found. Stop if "f" says to (return value & PR_ENUMERATE_STOP).
|
|
** Return a count of the number of elements scanned.
|
|
*/
|
|
PR_IMPLEMENT(int)
|
|
PL_HashTableEnumerateEntries(PLHashTable *ht, PLHashEnumerator f, void *arg)
|
|
{
|
|
PLHashEntry *he, **hep;
|
|
PRUint32 i, nbuckets;
|
|
int rv, n = 0;
|
|
PLHashEntry *todo = 0;
|
|
|
|
nbuckets = NBUCKETS(ht);
|
|
for (i = 0; i < nbuckets; i++) {
|
|
hep = &ht->buckets[i];
|
|
while ((he = *hep) != 0) {
|
|
rv = (*f)(he, n, arg);
|
|
n++;
|
|
if (rv & (HT_ENUMERATE_REMOVE | HT_ENUMERATE_UNHASH)) {
|
|
*hep = he->next;
|
|
if (rv & HT_ENUMERATE_REMOVE) {
|
|
he->next = todo;
|
|
todo = he;
|
|
}
|
|
} else {
|
|
hep = &he->next;
|
|
}
|
|
if (rv & HT_ENUMERATE_STOP) {
|
|
goto out;
|
|
}
|
|
}
|
|
}
|
|
|
|
out:
|
|
hep = &todo;
|
|
while ((he = *hep) != 0) {
|
|
PL_HashTableRawRemove(ht, hep, he);
|
|
}
|
|
return n;
|
|
}
|
|
|
|
#ifdef HASHMETER
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
|
|
PR_IMPLEMENT(void)
|
|
PL_HashTableDumpMeter(PLHashTable *ht, PLHashEnumerator dump, FILE *fp)
|
|
{
|
|
double mean, variance;
|
|
PRUint32 nchains, nbuckets;
|
|
PRUint32 i, n, maxChain, maxChainLen;
|
|
PLHashEntry *he;
|
|
|
|
variance = 0;
|
|
nchains = 0;
|
|
maxChainLen = 0;
|
|
nbuckets = NBUCKETS(ht);
|
|
for (i = 0; i < nbuckets; i++) {
|
|
he = ht->buckets[i];
|
|
if (!he)
|
|
continue;
|
|
nchains++;
|
|
for (n = 0; he; he = he->next)
|
|
n++;
|
|
variance += n * n;
|
|
if (n > maxChainLen) {
|
|
maxChainLen = n;
|
|
maxChain = i;
|
|
}
|
|
}
|
|
mean = (double)ht->nentries / nchains;
|
|
variance = fabs(variance / nchains - mean * mean);
|
|
|
|
fprintf(fp, "\nHash table statistics:\n");
|
|
fprintf(fp, " number of lookups: %u\n", ht->nlookups);
|
|
fprintf(fp, " number of entries: %u\n", ht->nentries);
|
|
fprintf(fp, " number of grows: %u\n", ht->ngrows);
|
|
fprintf(fp, " number of shrinks: %u\n", ht->nshrinks);
|
|
fprintf(fp, " mean steps per hash: %g\n", (double)ht->nsteps
|
|
/ ht->nlookups);
|
|
fprintf(fp, "mean hash chain length: %g\n", mean);
|
|
fprintf(fp, " standard deviation: %g\n", sqrt(variance));
|
|
fprintf(fp, " max hash chain length: %u\n", maxChainLen);
|
|
fprintf(fp, " max hash chain: [%u]\n", maxChain);
|
|
|
|
for (he = ht->buckets[maxChain], i = 0; he; he = he->next, i++)
|
|
if ((*dump)(he, i, fp) != HT_ENUMERATE_NEXT)
|
|
break;
|
|
}
|
|
#endif /* HASHMETER */
|
|
|
|
PR_IMPLEMENT(int)
|
|
PL_HashTableDump(PLHashTable *ht, PLHashEnumerator dump, FILE *fp)
|
|
{
|
|
int count;
|
|
|
|
count = PL_HashTableEnumerateEntries(ht, dump, fp);
|
|
#ifdef HASHMETER
|
|
PL_HashTableDumpMeter(ht, dump, fp);
|
|
#endif
|
|
return count;
|
|
}
|
|
|
|
PR_IMPLEMENT(PLHashNumber)
|
|
PL_HashString(const void *key)
|
|
{
|
|
PLHashNumber h;
|
|
const PRUint8 *s;
|
|
|
|
h = 0;
|
|
for (s = (const PRUint8*)key; *s; s++)
|
|
h = (h >> 28) ^ (h << 4) ^ *s;
|
|
return h;
|
|
}
|
|
|
|
PR_IMPLEMENT(int)
|
|
PL_CompareStrings(const void *v1, const void *v2)
|
|
{
|
|
return strcmp((const char*)v1, (const char*)v2) == 0;
|
|
}
|
|
|
|
PR_IMPLEMENT(int)
|
|
PL_CompareValues(const void *v1, const void *v2)
|
|
{
|
|
return v1 == v2;
|
|
}
|