pjs/grendel/calypso/util/AtomHashtable.java

197 строки
5.3 KiB
Java

/* -*- Mode: Java; tab-width: 2; indent-tabs-mode: nil -*-
*
* The contents of this file are subject to the Mozilla Public
* License Version 1.1 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS
* IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
* implied. See the License for the specific language governing
* rights and limitations under the License.
*
* The Original Code is the Grendel mail/news client.
*
* The Initial Developer of the Original Code is Netscape Communications
* Corporation. Portions created by Netscape are
* Copyright (C) 1997 Netscape Communications Corporation. All
* Rights Reserved.
*
* Contributor(s):
*/
package calypso.util;
import java.util.*;
/**
* Special hashtable that uses Atoms as keys. This extends HashtableBase to
* expose a public Atom based api
* This hastable uses identity comparisons on keys
*
* @author psl 10-15-97 1:22pm
* @version $Revision: 1.2 $
* @see
*/
public class AtomHashtable extends HashtableBase
{
/** Constructs an empty Hashtable. The Hashtable will grow on demand
* as more elements are added.
*/
public AtomHashtable ()
{
super ();
}
/** Constructs a Hashtable capable of holding at least
* <b>initialCapacity</b> elements before needing to grow.
*/
public AtomHashtable (int aInitialCapacity)
{
super (aInitialCapacity);
}
/** Returns an Object array containing the Hashtable's keys.
*/
public Atom[] keysArray ()
{
Atom[] result = new Atom[count];
getKeysArray (result);
return result;
}
/** Returns an Object array containing the Hashtable's elements.
*/
public Object[] elementsArray ()
{
Object[] result = new Object[count];
getElementsArray (result);
return result;
}
/** Returns <b>true</b> if the Hashtable contains the element. This method
* is slow -- O(n) -- because it must scan the table searching for the
* element.
*/
public boolean contains (Object aElement)
{
return containsElement (aElement);
}
/** Returns <b>true</b> if the Hashtable contains the key <b>key</b>.
*/
public boolean containsKey (Atom aKey)
{
return (get (aKey) != null);
}
/** Returns the element associated with the <b>key</b>. This method returns
* <b>null</b> if the Hashtable does not contain <b>key</b>. Hashtable
* hashes and compares <b>key</b> using <b>hashCode()</b> and
* <b>equals()</b>.
*/
public Object get (Atom aKey)
{
// We need to short-circuit here since the data arrays may not have
// been allocated yet.
if (count == 0)
return null;
return elements[tableIndexFor (aKey, hash (aKey))];
}
/** Removes <b>key</b> and the element associated with it from the
* Hashtable. Returns the element associated with <b>key</b>, or
* <b>null</b> if <b>key</b> was not present.
*/
public Object remove (Atom aKey)
{
return removeKey (aKey);
}
/** Places the <b>key</b>/<b>element</b> pair in the Hashtable. Neither
* <b>key</b> nor <b>element</b> may be <b>null</b>. Returns the old
* element associated with <b>key</b>, or <b>null</b> if the <b>key</b>
* was not present.
*/
public Object put (Atom aKey, Object aElement)
{
return super.put (aKey, aElement);
}
int hash (Object aKey)
{
return ((Atom)aKey).fHashCode;
}
int hash (Atom aKey)
{
return aKey.fHashCode;
}
/** Primitive method used internally to find slots in the
* table. If the key is present in the table, this method will return the
* index
* under which it is stored. If the key is not present, then this
* method will return the index under which it can be put. The caller
* must look at the hashCode at that index to differentiate between
* the two possibilities.
*/
int tableIndexFor (Object aKey, int aHash)
{
int product, testHash, index, step, removedIndex, probeCount;
product = aHash * A;
index = product >>> shift;
// Probe the first slot in the table. We keep track of the first
// index where we found a REMOVED marker so we can return that index
// as the first available slot if the key is not already in the table.
testHash = hashCodes[index];
if (testHash == aHash) {
if (aKey == keys[index])
return index;
removedIndex = -1;
} else if (testHash == EMPTY)
return index;
else if (testHash == REMOVED)
removedIndex = index;
else
removedIndex = -1;
// Our first probe has failed, so now we need to start looking
// elsewhere in the table.
step = ((product >>> (2 * shift - 32)) & indexMask) | 1;
probeCount = 1;
do
{
probeCount++;
index = (index + step) & indexMask;
testHash = hashCodes[index];
if (testHash == aHash) {
if (aKey == keys[index])
return index;
} else if (testHash == EMPTY) {
if (removedIndex < 0)
return index;
else
return removedIndex;
} else if (testHash == REMOVED && removedIndex == -1)
removedIndex = index;
} while (probeCount <= totalCount);
// Something very bad has happened.
throw new Error("Hashtable overflow");
}
}