pjs/tools/codesighs/maptsvdifftool.c

1312 строки
45 KiB
C

/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* ***** BEGIN LICENSE BLOCK *****
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is maptsvdifftool.c code, released
* Oct 3, 2002.
*
* The Initial Developer of the Original Code is
* Netscape Communications Corporation.
* Portions created by the Initial Developer are Copyright (C) 2002
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Garrett Arch Blythe, 03-October-2002
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
* ***** END LICENSE BLOCK ***** */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <ctype.h>
#define ERROR_REPORT(num, val, msg) fprintf(stderr, "error(%d):\t\"%s\"\t%s\n", (num), (val), (msg));
#define CLEANUP(ptr) do { if(NULL != ptr) { free(ptr); ptr = NULL; } } while(0)
typedef struct __struct_Options
/*
** Options to control how we perform.
**
** mProgramName Used in help text.
** mInput File to read for input.
** Default is stdin.
** mInputName Name of the file.
** mOutput Output file, append.
** Default is stdout.
** mOutputName Name of the file.
** mHelp Whether or not help should be shown.
** mSummaryOnly Only output a signle line.
** mZeroDrift Output zero drift data.
** mNegation Perform negation heuristics on the symbol drifts.
*/
{
const char* mProgramName;
FILE* mInput;
char* mInputName;
FILE* mOutput;
char* mOutputName;
int mHelp;
int mSummaryOnly;
int mZeroDrift;
int mNegation;
}
Options;
typedef struct __struct_Switch
/*
** Command line options.
*/
{
const char* mLongName;
const char* mShortName;
int mHasValue;
const char* mValue;
const char* mDescription;
}
Switch;
#define DESC_NEWLINE "\n\t\t"
static Switch gInputSwitch = {"--input", "-i", 1, NULL, "Specify input file." DESC_NEWLINE "stdin is default."};
static Switch gOutputSwitch = {"--output", "-o", 1, NULL, "Specify output file." DESC_NEWLINE "Appends if file exists." DESC_NEWLINE "stdout is default."};
static Switch gSummarySwitch = {"--summary", "-s", 0, NULL, "Only output a single line." DESC_NEWLINE "The cumulative size changes." DESC_NEWLINE "Overrides all other output options."};
static Switch gZeroDriftSwitch = {"--zerodrift", "-z", 0, NULL, "Output zero drift data." DESC_NEWLINE "Reports symbol changes even when there is no net drift."};
static Switch gNegationSwitch = {"--negation", "-n", 0, NULL, "Use negation heuristics." DESC_NEWLINE "When symbol sizes are inferred by offset, order changes cause noise." DESC_NEWLINE "This helps see through the noise by eliminating equal and opposite drifts."};
static Switch gHelpSwitch = {"--help", "-h", 0, NULL, "Information on usage."};
static Switch* gSwitches[] = {
&gInputSwitch,
&gOutputSwitch,
&gSummarySwitch,
&gZeroDriftSwitch,
&gNegationSwitch,
&gHelpSwitch
};
typedef struct __struct_SizeComposition
/*
** Used to keep which parts positive and negative resulted in the total.
*/
{
int mPositive;
int mNegative;
}
SizeComposition;
typedef struct __struct_SizeStats
/*
** Keep track of sizes.
** Use signed integers so that negatives are valid, in which case we shrunk.
*/
{
int mCode;
SizeComposition mCodeComposition;
int mData;
SizeComposition mDataComposition;
}
SizeStats;
typedef enum __enum_SegmentClass
/*
** What type of data a segment holds.
*/
{
CODE,
DATA
}
SegmentClass;
typedef struct __struct_SymbolStats
/*
** Symbol level stats.
*/
{
char* mSymbol;
int mSize;
}
SymbolStats;
typedef struct __struct_ObjectStats
/*
** Object level stats.
*/
{
char* mObject;
int mSize;
SizeComposition mComposition;
SymbolStats* mSymbols;
unsigned mSymbolCount;
}
ObjectStats;
typedef struct __struct_SegmentStats
/*
** Segment level stats.
*/
{
char* mSegment;
SegmentClass mClass;
int mSize;
SizeComposition mComposition;
ObjectStats* mObjects;
unsigned mObjectCount;
}
SegmentStats;
typedef struct __struct_ModuleStats
/*
** Module level stats.
*/
{
char* mModule;
SizeStats mSize;
SegmentStats* mSegments;
unsigned mSegmentCount;
}
ModuleStats;
static int moduleCompare(const void* in1, const void* in2)
/*
** qsort helper.
*/
{
int retval = 0;
ModuleStats* one = (ModuleStats*)in1;
ModuleStats* two = (ModuleStats*)in2;
int oneSize = (one->mSize.mCode + one->mSize.mData);
int twoSize = (two->mSize.mCode + two->mSize.mData);
if(oneSize < twoSize)
{
retval = 1;
}
else if(oneSize > twoSize)
{
retval = -1;
}
else
{
retval = strcmp(one->mModule, two->mModule);
if(0 > oneSize && 0 > twoSize)
{
retval *= -1;
}
}
return retval;
}
static int segmentCompare(const void* in1, const void* in2)
/*
** qsort helper.
*/
{
int retval = 0;
SegmentStats* one = (SegmentStats*)in1;
SegmentStats* two = (SegmentStats*)in2;
if(one->mSize < two->mSize)
{
retval = 1;
}
else if(one->mSize > two->mSize)
{
retval = -1;
}
else
{
retval = strcmp(one->mSegment, two->mSegment);
if(0 > one->mSize && 0 > two->mSize)
{
retval *= -1;
}
}
return retval;
}
static int objectCompare(const void* in1, const void* in2)
/*
** qsort helper.
*/
{
int retval = 0;
ObjectStats* one = (ObjectStats*)in1;
ObjectStats* two = (ObjectStats*)in2;
if(one->mSize < two->mSize)
{
retval = 1;
}
else if(one->mSize > two->mSize)
{
retval = -1;
}
else
{
retval = strcmp(one->mObject, two->mObject);
if(0 > one->mSize && 0 > two->mSize)
{
retval *= -1;
}
}
return retval;
}
static int symbolCompare(const void* in1, const void* in2)
/*
** qsort helper.
*/
{
int retval = 0;
SymbolStats* one = (SymbolStats*)in1;
SymbolStats* two = (SymbolStats*)in2;
if(one->mSize < two->mSize)
{
retval = 1;
}
else if(one->mSize > two->mSize)
{
retval = -1;
}
else
{
retval = strcmp(one->mSymbol, two->mSymbol);
if(0 > one->mSize && 0 > two->mSize)
{
retval *= -1;
}
}
return retval;
}
void trimWhite(char* inString)
/*
** Remove any whitespace from the end of the string.
*/
{
int len = strlen(inString);
while(len)
{
len--;
if(isspace(*(inString + len)))
{
*(inString + len) = '\0';
}
else
{
break;
}
}
}
int difftool(Options* inOptions)
/*
** Read a diff file and spit out relevant information.
*/
{
int retval = 0;
char lineBuffer[0x500];
SizeStats overall;
ModuleStats* modules = NULL;
unsigned moduleCount = 0;
unsigned moduleLoop = 0;
ModuleStats* theModule = NULL;
unsigned segmentLoop = 0;
SegmentStats* theSegment = NULL;
unsigned objectLoop = 0;
ObjectStats* theObject = NULL;
unsigned symbolLoop = 0;
SymbolStats* theSymbol = NULL;
unsigned allSymbolCount = 0;
memset(&overall, 0, sizeof(overall));
/*
** Read the entire diff file.
** We're only interested in lines beginning with < or >
*/
while(0 == retval && NULL != fgets(lineBuffer, sizeof(lineBuffer), inOptions->mInput))
{
trimWhite(lineBuffer);
if(('<' == lineBuffer[0] || '>' == lineBuffer[0]) && ' ' == lineBuffer[1])
{
int additive = 0;
char* theLine = &lineBuffer[2];
int scanRes = 0;
int size;
char segClass[0x10];
char scope[0x10];
char module[0x100];
char segment[0x40];
char object[0x100];
char* symbol = NULL;
/*
** Figure out if the line adds or subtracts from something.
*/
if('>' == lineBuffer[0])
{
additive = __LINE__;
}
/*
** Scan the line for information.
*/
scanRes = sscanf(theLine,
"%x\t%s\t%s\t%s\t%s\t%s\t",
(unsigned*)&size,
segClass,
scope,
module,
segment,
object);
if(6 == scanRes)
{
SegmentClass segmentClass = DATA;
symbol = strrchr(theLine, '\t') + 1;
if(0 == strcmp(segClass, "CODE"))
{
segmentClass = CODE;
}
else if(0 == strcmp(segClass, "DATA"))
{
segmentClass = DATA;
}
else
{
retval = __LINE__;
ERROR_REPORT(retval, segClass, "Unable to determine segment class.");
}
if(0 == retval)
{
unsigned moduleIndex = 0;
/*
** Find, in succession, the following things:
** the module
** the segment
** the object
** the symbol
** Failure to find any one of these means to create it.
*/
for(moduleIndex = 0; moduleIndex < moduleCount; moduleIndex++)
{
if(0 == strcmp(modules[moduleIndex].mModule, module))
{
break;
}
}
if(moduleIndex == moduleCount)
{
void* moved = NULL;
moved = realloc(modules, sizeof(ModuleStats) * (1 + moduleCount));
if(NULL != moved)
{
modules = (ModuleStats*)moved;
moduleCount++;
memset(modules + moduleIndex, 0, sizeof(ModuleStats));
modules[moduleIndex].mModule = strdup(module);
if(NULL == modules[moduleIndex].mModule)
{
retval = __LINE__;
ERROR_REPORT(retval, module, "Unable to duplicate string.");
}
}
else
{
retval = __LINE__;
ERROR_REPORT(retval, inOptions->mProgramName, "Unable to increase module array.");
}
}
if(0 == retval)
{
unsigned segmentIndex = 0;
theModule = (modules + moduleIndex);
for(segmentIndex = 0; segmentIndex < theModule->mSegmentCount; segmentIndex++)
{
if(0 == strcmp(segment, theModule->mSegments[segmentIndex].mSegment))
{
break;
}
}
if(segmentIndex == theModule->mSegmentCount)
{
void* moved = NULL;
moved = realloc(theModule->mSegments, sizeof(SegmentStats) * (theModule->mSegmentCount + 1));
if(NULL != moved)
{
theModule->mSegments = (SegmentStats*)moved;
theModule->mSegmentCount++;
memset(theModule->mSegments + segmentIndex, 0, sizeof(SegmentStats));
theModule->mSegments[segmentIndex].mClass = segmentClass;
theModule->mSegments[segmentIndex].mSegment = strdup(segment);
if(NULL == theModule->mSegments[segmentIndex].mSegment)
{
retval = __LINE__;
ERROR_REPORT(retval, segment, "Unable to duplicate string.");
}
}
else
{
retval = __LINE__;
ERROR_REPORT(retval, inOptions->mProgramName, "Unable to increase segment array.");
}
}
if(0 == retval)
{
unsigned objectIndex = 0;
theSegment = (theModule->mSegments + segmentIndex);
for(objectIndex = 0; objectIndex < theSegment->mObjectCount; objectIndex++)
{
if(0 == strcmp(object, theSegment->mObjects[objectIndex].mObject))
{
break;
}
}
if(objectIndex == theSegment->mObjectCount)
{
void* moved = NULL;
moved = realloc(theSegment->mObjects, sizeof(ObjectStats) * (1 + theSegment->mObjectCount));
if(NULL != moved)
{
theSegment->mObjects = (ObjectStats*)moved;
theSegment->mObjectCount++;
memset(theSegment->mObjects + objectIndex, 0, sizeof(ObjectStats));
theSegment->mObjects[objectIndex].mObject = strdup(object);
if(NULL == theSegment->mObjects[objectIndex].mObject)
{
retval = __LINE__;
ERROR_REPORT(retval, object, "Unable to duplicate string.");
}
}
else
{
retval = __LINE__;
ERROR_REPORT(retval, inOptions->mProgramName, "Unable to increase object array.");
}
}
if(0 == retval)
{
unsigned symbolIndex = 0;
theObject = (theSegment->mObjects + objectIndex);
for(symbolIndex = 0; symbolIndex < theObject->mSymbolCount; symbolIndex++)
{
if(0 == strcmp(symbol, theObject->mSymbols[symbolIndex].mSymbol))
{
break;
}
}
if(symbolIndex == theObject->mSymbolCount)
{
void* moved = NULL;
moved = realloc(theObject->mSymbols, sizeof(SymbolStats) * (1 + theObject->mSymbolCount));
if(NULL != moved)
{
theObject->mSymbols = (SymbolStats*)moved;
theObject->mSymbolCount++;
allSymbolCount++;
memset(theObject->mSymbols + symbolIndex, 0, sizeof(SymbolStats));
theObject->mSymbols[symbolIndex].mSymbol = strdup(symbol);
if(NULL == theObject->mSymbols[symbolIndex].mSymbol)
{
retval = __LINE__;
ERROR_REPORT(retval, symbol, "Unable to duplicate string.");
}
}
else
{
retval = __LINE__;
ERROR_REPORT(retval, inOptions->mProgramName, "Unable to increase symbol array.");
}
}
if(0 == retval)
{
theSymbol = (theObject->mSymbols + symbolIndex);
/*
** Update our various totals.
*/
if(additive)
{
if(CODE == segmentClass)
{
overall.mCode += size;
theModule->mSize.mCode += size;
}
else if(DATA == segmentClass)
{
overall.mData += size;
theModule->mSize.mData += size;
}
theSegment->mSize += size;
theObject->mSize += size;
theSymbol->mSize += size;
}
else
{
if(CODE == segmentClass)
{
overall.mCode -= size;
theModule->mSize.mCode -= size;
}
else if(DATA == segmentClass)
{
overall.mData -= size;
theModule->mSize.mData -= size;
}
theSegment->mSize -= size;
theObject->mSize -= size;
theSymbol->mSize -= size;
}
}
}
}
}
}
}
else
{
retval = __LINE__;
ERROR_REPORT(retval, inOptions->mInputName, "Unable to scan line data.");
}
}
}
if(0 == retval && 0 != ferror(inOptions->mInput))
{
retval = __LINE__;
ERROR_REPORT(retval, inOptions->mInputName, "Unable to read file.");
}
/*
** Next, it is time to perform revisionist history of sorts.
** If the negation switch is in play, we perfrom the following
** aggressive steps:
**
** For each section, find size changes which have an equal and
** opposite change, and set them both to zero.
** However, you can only do this if the number of negating changes
** is even, as if it is odd, then any one of the many could be
** at fault for the actual change.
**
** This orginally exists to make the win32 codesighs reports more
** readable/meaningful.
*/
if(0 == retval && 0 != inOptions->mNegation)
{
ObjectStats** objArray = NULL;
SymbolStats** symArray = NULL;
/*
** Create arrays big enough to hold all symbols.
** As well as an array to keep the owning object at the same index.
** We will keep the object around as we may need to modify the size.
*/
objArray = (ObjectStats**)malloc(allSymbolCount * sizeof(ObjectStats*));
symArray = (SymbolStats**)malloc(allSymbolCount * sizeof(SymbolStats*));
if(NULL == objArray || NULL == symArray)
{
retval = __LINE__;
ERROR_REPORT(retval, inOptions->mProgramName, "Unable to allocate negation array memory.");
}
else
{
unsigned arrayCount = 0;
unsigned arrayLoop = 0;
/*
** Go through and perform the steps on each section/segment.
*/
for(moduleLoop = 0; moduleLoop < moduleCount; moduleLoop++)
{
theModule = modules + moduleLoop;
for(segmentLoop = 0; segmentLoop < theModule->mSegmentCount; segmentLoop++)
{
theSegment = theModule->mSegments + segmentLoop;
/*
** Collect all symbols under this section.
** The symbols are spread out between all the objects,
** so keep track of both independently at the
** same index.
*/
arrayCount = 0;
for(objectLoop = 0; objectLoop < theSegment->mObjectCount; objectLoop++)
{
theObject = theSegment->mObjects + objectLoop;
for(symbolLoop = 0; symbolLoop < theObject->mSymbolCount; symbolLoop++)
{
theSymbol = theObject->mSymbols + symbolLoop;
objArray[arrayCount] = theObject;
symArray[arrayCount] = theSymbol;
arrayCount++;
}
}
/*
** Now that we have a list of symbols, go through each
** and see if there is a chance of negation.
*/
for(arrayLoop = 0; arrayLoop < arrayCount; arrayLoop++)
{
/*
** If the item is NULL, it was already negated.
** Don't do this for items with a zero size.
*/
if(NULL != symArray[arrayLoop] && 0 != symArray[arrayLoop]->mSize)
{
unsigned identicalValues = 0;
unsigned oppositeValues = 0;
unsigned lookLoop = 0;
const int lookingFor = symArray[arrayLoop]->mSize;
/*
** Count the number of items with this value.
** Count the number of items with the opposite equal value.
** If they are equal, go through and negate all sizes.
*/
for(lookLoop = arrayLoop; lookLoop < arrayCount; lookLoop++)
{
/*
** Skip negated items.
** Skip zero length items.
*/
if(NULL == symArray[lookLoop] || 0 == symArray[lookLoop]->mSize)
{
continue;
}
if(lookingFor == symArray[lookLoop]->mSize)
{
identicalValues++;
}
else if((-1 * lookingFor) == symArray[lookLoop]->mSize)
{
oppositeValues++;
}
}
if(0 != identicalValues && identicalValues == oppositeValues)
{
unsigned negationLoop = 0;
for(negationLoop = arrayLoop; 0 != identicalValues || 0 != oppositeValues; negationLoop++)
{
/*
** Skip negated items.
** Skip zero length items.
*/
if(NULL == symArray[negationLoop] || 0 == symArray[negationLoop]->mSize)
{
continue;
}
/*
** Negate any size matches.
** Reflect the change in the object as well.
** Clear the symbol.
*/
if(lookingFor == symArray[negationLoop]->mSize)
{
objArray[negationLoop]->mSize -= lookingFor;
symArray[negationLoop]->mSize = 0;
symArray[negationLoop] = NULL;
identicalValues--;
}
else if((-1 * lookingFor) == symArray[negationLoop]->mSize)
{
objArray[negationLoop]->mSize += lookingFor;
symArray[negationLoop]->mSize = 0;
symArray[negationLoop] = NULL;
oppositeValues--;
}
}
}
}
}
}
}
}
CLEANUP(objArray);
CLEANUP(symArray);
}
/*
** If all went well, time to report.
*/
if(0 == retval)
{
/*
** Loop through our data once more, so that the symbols can
** propigate their changes upwards in a positive/negative
** fashion.
** This will help give the composite change more meaning.
*/
for(moduleLoop = 0; moduleLoop < moduleCount; moduleLoop++)
{
theModule = modules + moduleLoop;
/*
** Skip if there is zero drift, or no net change.
*/
if(0 == inOptions->mZeroDrift && 0 == (theModule->mSize.mCode + theModule->mSize.mData))
{
continue;
}
for(segmentLoop = 0; segmentLoop < theModule->mSegmentCount; segmentLoop++)
{
theSegment = theModule->mSegments + segmentLoop;
/*
** Skip if there is zero drift, or no net change.
*/
if(0 == inOptions->mZeroDrift && 0 == theSegment->mSize)
{
continue;
}
for(objectLoop = 0; objectLoop < theSegment->mObjectCount; objectLoop++)
{
theObject = theSegment->mObjects + objectLoop;
/*
** Skip if there is zero drift, or no net change.
*/
if(0 == inOptions->mZeroDrift && 0 == theObject->mSize)
{
continue;
}
for(symbolLoop = 0; symbolLoop < theObject->mSymbolCount; symbolLoop++)
{
theSymbol = theObject->mSymbols + symbolLoop;
/*
** Propogate the composition all the way to the top.
** Sizes of zero change are skipped.
*/
if(0 < theSymbol->mSize)
{
theObject->mComposition.mPositive += theSymbol->mSize;
theSegment->mComposition.mPositive += theSymbol->mSize;
if(CODE == theSegment->mClass)
{
overall.mCodeComposition.mPositive += theSymbol->mSize;
theModule->mSize.mCodeComposition.mPositive += theSymbol->mSize;
}
else if(DATA == theSegment->mClass)
{
overall.mDataComposition.mPositive += theSymbol->mSize;
theModule->mSize.mDataComposition.mPositive += theSymbol->mSize;
}
}
else if(0 > theSymbol->mSize)
{
theObject->mComposition.mNegative += theSymbol->mSize;
theSegment->mComposition.mNegative += theSymbol->mSize;
if(CODE == theSegment->mClass)
{
overall.mCodeComposition.mNegative += theSymbol->mSize;
theModule->mSize.mCodeComposition.mNegative += theSymbol->mSize;
}
else if(DATA == theSegment->mClass)
{
overall.mDataComposition.mNegative += theSymbol->mSize;
theModule->mSize.mDataComposition.mNegative += theSymbol->mSize;
}
}
}
}
}
}
if(inOptions->mSummaryOnly)
{
fprintf(inOptions->mOutput, "%+d (%+d/%+d)\n", overall.mCode + overall.mData, overall.mCodeComposition.mPositive + overall.mDataComposition.mPositive, overall.mCodeComposition.mNegative + overall.mDataComposition.mNegative);
}
else
{
fprintf(inOptions->mOutput, "Overall Change in Size\n");
fprintf(inOptions->mOutput, "\tTotal:\t%+11d (%+d/%+d)\n", overall.mCode + overall.mData, overall.mCodeComposition.mPositive + overall.mDataComposition.mPositive, overall.mCodeComposition.mNegative + overall.mDataComposition.mNegative);
fprintf(inOptions->mOutput, "\tCode:\t%+11d (%+d/%+d)\n", overall.mCode, overall.mCodeComposition.mPositive, overall.mCodeComposition.mNegative);
fprintf(inOptions->mOutput, "\tData:\t%+11d (%+d/%+d)\n", overall.mData, overall.mDataComposition.mPositive, overall.mDataComposition.mNegative);
}
/*
** Check what else we should output.
*/
if(0 == inOptions->mSummaryOnly && NULL != modules && moduleCount)
{
const char* segmentType = NULL;
/*
** We're going to sort everything.
*/
qsort(modules, moduleCount, sizeof(ModuleStats), moduleCompare);
for(moduleLoop = 0; moduleLoop < moduleCount; moduleLoop++)
{
theModule = modules + moduleLoop;
qsort(theModule->mSegments, theModule->mSegmentCount, sizeof(SegmentStats), segmentCompare);
for(segmentLoop = 0; segmentLoop < theModule->mSegmentCount; segmentLoop++)
{
theSegment = theModule->mSegments + segmentLoop;
qsort(theSegment->mObjects, theSegment->mObjectCount, sizeof(ObjectStats), objectCompare);
for(objectLoop = 0; objectLoop < theSegment->mObjectCount; objectLoop++)
{
theObject = theSegment->mObjects + objectLoop;
qsort(theObject->mSymbols, theObject->mSymbolCount, sizeof(SymbolStats), symbolCompare);
}
}
}
/*
** Loop through for output.
*/
for(moduleLoop = 0; moduleLoop < moduleCount; moduleLoop++)
{
theModule = modules + moduleLoop;
/*
** Skip if there is zero drift, or no net change.
*/
if(0 == inOptions->mZeroDrift && 0 == (theModule->mSize.mCode + theModule->mSize.mData))
{
continue;
}
fprintf(inOptions->mOutput, "\n");
fprintf(inOptions->mOutput, "%s\n", theModule->mModule);
fprintf(inOptions->mOutput, "\tTotal:\t%+11d (%+d/%+d)\n", theModule->mSize.mCode + theModule->mSize.mData, theModule->mSize.mCodeComposition.mPositive + theModule->mSize.mDataComposition.mPositive, theModule->mSize.mCodeComposition.mNegative + theModule->mSize.mDataComposition.mNegative);
fprintf(inOptions->mOutput, "\tCode:\t%+11d (%+d/%+d)\n", theModule->mSize.mCode, theModule->mSize.mCodeComposition.mPositive, theModule->mSize.mCodeComposition.mNegative);
fprintf(inOptions->mOutput, "\tData:\t%+11d (%+d/%+d)\n", theModule->mSize.mData, theModule->mSize.mDataComposition.mPositive, theModule->mSize.mDataComposition.mNegative);
for(segmentLoop = 0; segmentLoop < theModule->mSegmentCount; segmentLoop++)
{
theSegment = theModule->mSegments + segmentLoop;
/*
** Skip if there is zero drift, or no net change.
*/
if(0 == inOptions->mZeroDrift && 0 == theSegment->mSize)
{
continue;
}
if(CODE == theSegment->mClass)
{
segmentType = "CODE";
}
else if(DATA == theSegment->mClass)
{
segmentType = "DATA";
}
fprintf(inOptions->mOutput, "\t%+11d (%+d/%+d)\t%s (%s)\n", theSegment->mSize, theSegment->mComposition.mPositive, theSegment->mComposition.mNegative, theSegment->mSegment, segmentType);
for(objectLoop = 0; objectLoop < theSegment->mObjectCount; objectLoop++)
{
theObject = theSegment->mObjects + objectLoop;
/*
** Skip if there is zero drift, or no net change.
*/
if(0 == inOptions->mZeroDrift && 0 == theObject->mSize)
{
continue;
}
fprintf(inOptions->mOutput, "\t\t%+11d (%+d/%+d)\t%s\n", theObject->mSize, theObject->mComposition.mPositive, theObject->mComposition.mNegative, theObject->mObject);
for(symbolLoop = 0; symbolLoop < theObject->mSymbolCount; symbolLoop++)
{
theSymbol = theObject->mSymbols + symbolLoop;
/*
** Skip if there is zero drift, or no net change.
*/
if(0 == inOptions->mZeroDrift && 0 == theSymbol->mSize)
{
continue;
}
fprintf(inOptions->mOutput, "\t\t\t%+11d\t%s\n", theSymbol->mSize, theSymbol->mSymbol);
}
}
}
}
}
}
/*
** Cleanup time.
*/
for(moduleLoop = 0; moduleLoop < moduleCount; moduleLoop++)
{
theModule = modules + moduleLoop;
for(segmentLoop = 0; segmentLoop < theModule->mSegmentCount; segmentLoop++)
{
theSegment = theModule->mSegments + segmentLoop;
for(objectLoop = 0; objectLoop < theSegment->mObjectCount; objectLoop++)
{
theObject = theSegment->mObjects + objectLoop;
for(symbolLoop = 0; symbolLoop < theObject->mSymbolCount; symbolLoop++)
{
theSymbol = theObject->mSymbols + symbolLoop;
CLEANUP(theSymbol->mSymbol);
}
CLEANUP(theObject->mSymbols);
CLEANUP(theObject->mObject);
}
CLEANUP(theSegment->mObjects);
CLEANUP(theSegment->mSegment);
}
CLEANUP(theModule->mSegments);
CLEANUP(theModule->mModule);
}
CLEANUP(modules);
return retval;
}
int initOptions(Options* outOptions, int inArgc, char** inArgv)
/*
** returns int 0 if successful.
*/
{
int retval = 0;
int loop = 0;
int switchLoop = 0;
int match = 0;
const int switchCount = sizeof(gSwitches) / sizeof(gSwitches[0]);
Switch* current = NULL;
/*
** Set any defaults.
*/
memset(outOptions, 0, sizeof(Options));
outOptions->mProgramName = inArgv[0];
outOptions->mInput = stdin;
outOptions->mInputName = strdup("stdin");
outOptions->mOutput = stdout;
outOptions->mOutputName = strdup("stdout");
if(NULL == outOptions->mOutputName || NULL == outOptions->mInputName)
{
retval = __LINE__;
ERROR_REPORT(retval, "stdin/stdout", "Unable to strdup.");
}
/*
** Go through and attempt to do the right thing.
*/
for(loop = 1; loop < inArgc && 0 == retval; loop++)
{
match = 0;
current = NULL;
for(switchLoop = 0; switchLoop < switchCount && 0 == retval; switchLoop++)
{
if(0 == strcmp(gSwitches[switchLoop]->mLongName, inArgv[loop]))
{
match = __LINE__;
}
else if(0 == strcmp(gSwitches[switchLoop]->mShortName, inArgv[loop]))
{
match = __LINE__;
}
if(match)
{
if(gSwitches[switchLoop]->mHasValue)
{
/*
** Attempt to absorb next option to fullfill value.
*/
if(loop + 1 < inArgc)
{
loop++;
current = gSwitches[switchLoop];
current->mValue = inArgv[loop];
}
}
else
{
current = gSwitches[switchLoop];
}
break;
}
}
if(0 == match)
{
outOptions->mHelp = __LINE__;
retval = __LINE__;
ERROR_REPORT(retval, inArgv[loop], "Unknown command line switch.");
}
else if(NULL == current)
{
outOptions->mHelp = __LINE__;
retval = __LINE__;
ERROR_REPORT(retval, inArgv[loop], "Command line switch requires a value.");
}
else
{
/*
** Do something based on address/swtich.
*/
if(current == &gInputSwitch)
{
CLEANUP(outOptions->mInputName);
if(NULL != outOptions->mInput && stdin != outOptions->mInput)
{
fclose(outOptions->mInput);
outOptions->mInput = NULL;
}
outOptions->mInput = fopen(current->mValue, "r");
if(NULL == outOptions->mInput)
{
retval = __LINE__;
ERROR_REPORT(retval, current->mValue, "Unable to open input file.");
}
else
{
outOptions->mInputName = strdup(current->mValue);
if(NULL == outOptions->mInputName)
{
retval = __LINE__;
ERROR_REPORT(retval, current->mValue, "Unable to strdup.");
}
}
}
else if(current == &gOutputSwitch)
{
CLEANUP(outOptions->mOutputName);
if(NULL != outOptions->mOutput && stdout != outOptions->mOutput)
{
fclose(outOptions->mOutput);
outOptions->mOutput = NULL;
}
outOptions->mOutput = fopen(current->mValue, "a");
if(NULL == outOptions->mOutput)
{
retval = __LINE__;
ERROR_REPORT(retval, current->mValue, "Unable to open output file.");
}
else
{
outOptions->mOutputName = strdup(current->mValue);
if(NULL == outOptions->mOutputName)
{
retval = __LINE__;
ERROR_REPORT(retval, current->mValue, "Unable to strdup.");
}
}
}
else if(current == &gHelpSwitch)
{
outOptions->mHelp = __LINE__;
}
else if(current == &gSummarySwitch)
{
outOptions->mSummaryOnly = __LINE__;
}
else if(current == &gZeroDriftSwitch)
{
outOptions->mZeroDrift = __LINE__;
}
else if(current == &gNegationSwitch)
{
outOptions->mNegation = __LINE__;
}
else
{
retval = __LINE__;
ERROR_REPORT(retval, current->mLongName, "No handler for command line switch.");
}
}
}
return retval;
}
void cleanOptions(Options* inOptions)
/*
** Clean up any open handles.
*/
{
CLEANUP(inOptions->mInputName);
if(NULL != inOptions->mInput && stdin != inOptions->mInput)
{
fclose(inOptions->mInput);
}
CLEANUP(inOptions->mOutputName);
if(NULL != inOptions->mOutput && stdout != inOptions->mOutput)
{
fclose(inOptions->mOutput);
}
memset(inOptions, 0, sizeof(Options));
}
void showHelp(Options* inOptions)
/*
** Show some simple help text on usage.
*/
{
int loop = 0;
const int switchCount = sizeof(gSwitches) / sizeof(gSwitches[0]);
const char* valueText = NULL;
printf("usage:\t%s [arguments]\n", inOptions->mProgramName);
printf("\n");
printf("arguments:\n");
for(loop = 0; loop < switchCount; loop++)
{
if(gSwitches[loop]->mHasValue)
{
valueText = " <value>";
}
else
{
valueText = "";
}
printf("\t%s%s\n", gSwitches[loop]->mLongName, valueText);
printf("\t %s%s", gSwitches[loop]->mShortName, valueText);
printf(DESC_NEWLINE "%s\n\n", gSwitches[loop]->mDescription);
}
printf("This tool takes the diff of two sorted tsv files to form a summary report\n");
printf("of code and data size changes which is hoped to be human readable.\n");
}
int main(int inArgc, char** inArgv)
{
int retval = 0;
Options options;
retval = initOptions(&options, inArgc, inArgv);
if(options.mHelp)
{
showHelp(&options);
}
else if(0 == retval)
{
retval = difftool(&options);
}
cleanOptions(&options);
return retval;
}