pjs/js/tests/ecma/Expressions/11.5.1.js

116 строки
6.8 KiB
JavaScript

/* The contents of this file are subject to the Netscape Public
* License Version 1.1 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.mozilla.org/NPL/
*
* Software distributed under the License is distributed on an "AS
* IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
* implied. See the License for the specific language governing
* rights and limitations under the License.
*
* The Original Code is Mozilla Communicator client code, released March
* 31, 1998.
*
* The Initial Developer of the Original Code is Netscape Communications
* Corporation. Portions created by Netscape are
* Copyright (C) 1998 Netscape Communications Corporation. All
* Rights Reserved.
*
* Contributor(s):
*
*/
/**
File Name: 11.5.1.js
ECMA Section: 11.5.1 Applying the * operator
Description:
11.5.1 Applying the * operator
The * operator performs multiplication, producing the product of its
operands. Multiplication is commutative. Multiplication is not always
associative in ECMAScript, because of finite precision.
The result of a floating-point multiplication is governed by the rules
of IEEE 754 double-precision arithmetic:
If either operand is NaN, the result is NaN.
The sign of the result is positive if both operands have the same sign,
negative if the operands have different signs.
Multiplication of an infinity by a zero results in NaN.
Multiplication of an infinity by an infinity results in an infinity.
The sign is determined by the rule already stated above.
Multiplication of an infinity by a finite non-zero value results in a
signed infinity. The sign is determined by the rule already stated above.
In the remaining cases, where neither an infinity or NaN is involved, the
product is computed and rounded to the nearest representable value using IEEE
754 round-to-nearest mode. If the magnitude is too large to represent,
the result is then an infinity of appropriate sign. If the magnitude is
oo small to represent, the result is then a zero
of appropriate sign. The ECMAScript language requires support of gradual
underflow as defined by IEEE 754.
Author: christine@netscape.com
Date: 12 november 1997
*/
var SECTION = "11.5.1";
var VERSION = "ECMA_1";
startTest();
var testcases = getTestCases();
writeHeaderToLog( SECTION + " Applying the * operator");
test();
function test() {
for ( tc=0; tc < testcases.length; tc++ ) {
testcases[tc].passed = writeTestCaseResult(
testcases[tc].expect,
testcases[tc].actual,
testcases[tc].description +" = "+
testcases[tc].actual );
testcases[tc].reason += ( testcases[tc].passed ) ? "" : "wrong value ";
}
stopTest();
return ( testcases );
}
function getTestCases() {
var array = new Array();
var item = 0;
array[item++] = new TestCase( SECTION, "Number.NaN * Number.NaN", Number.NaN, Number.NaN * Number.NaN );
array[item++] = new TestCase( SECTION, "Number.NaN * 1", Number.NaN, Number.NaN * 1 );
array[item++] = new TestCase( SECTION, "1 * Number.NaN", Number.NaN, 1 * Number.NaN );
array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY * 0", Number.NaN, Number.POSITIVE_INFINITY * 0 );
array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY * 0", Number.NaN, Number.NEGATIVE_INFINITY * 0 );
array[item++] = new TestCase( SECTION, "0 * Number.POSITIVE_INFINITY", Number.NaN, 0 * Number.POSITIVE_INFINITY );
array[item++] = new TestCase( SECTION, "0 * Number.NEGATIVE_INFINITY", Number.NaN, 0 * Number.NEGATIVE_INFINITY );
array[item++] = new TestCase( SECTION, "-0 * Number.POSITIVE_INFINITY", Number.NaN, -0 * Number.POSITIVE_INFINITY );
array[item++] = new TestCase( SECTION, "-0 * Number.NEGATIVE_INFINITY", Number.NaN, -0 * Number.NEGATIVE_INFINITY );
array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY * -0", Number.NaN, Number.POSITIVE_INFINITY * -0 );
array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY * -0", Number.NaN, Number.NEGATIVE_INFINITY * -0 );
array[item++] = new TestCase( SECTION, "0 * -0", -0, 0 * -0 );
array[item++] = new TestCase( SECTION, "-0 * 0", -0, -0 * 0 );
array[item++] = new TestCase( SECTION, "-0 * -0", 0, -0 * -0 );
array[item++] = new TestCase( SECTION, "0 * 0", 0, 0 * 0 );
array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY * Number.NEGATIVE_INFINITY", Number.POSITIVE_INFINITY, Number.NEGATIVE_INFINITY * Number.NEGATIVE_INFINITY );
array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY * Number.NEGATIVE_INFINITY", Number.NEGATIVE_INFINITY, Number.POSITIVE_INFINITY * Number.NEGATIVE_INFINITY );
array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY * Number.POSITIVE_INFINITY", Number.NEGATIVE_INFINITY, Number.NEGATIVE_INFINITY * Number.POSITIVE_INFINITY );
array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY * Number.POSITIVE_INFINITY", Number.POSITIVE_INFINITY, Number.POSITIVE_INFINITY * Number.POSITIVE_INFINITY );
array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY * 1 ", Number.NEGATIVE_INFINITY, Number.NEGATIVE_INFINITY * 1 );
array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY * -1 ", Number.POSITIVE_INFINITY, Number.NEGATIVE_INFINITY * -1 );
array[item++] = new TestCase( SECTION, "1 * Number.NEGATIVE_INFINITY", Number.NEGATIVE_INFINITY, 1 * Number.NEGATIVE_INFINITY );
array[item++] = new TestCase( SECTION, "-1 * Number.NEGATIVE_INFINITY", Number.POSITIVE_INFINITY, -1 * Number.NEGATIVE_INFINITY );
array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY * 1 ", Number.POSITIVE_INFINITY, Number.POSITIVE_INFINITY * 1 );
array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY * -1 ", Number.NEGATIVE_INFINITY, Number.POSITIVE_INFINITY * -1 );
array[item++] = new TestCase( SECTION, "1 * Number.POSITIVE_INFINITY", Number.POSITIVE_INFINITY, 1 * Number.POSITIVE_INFINITY );
array[item++] = new TestCase( SECTION, "-1 * Number.POSITIVE_INFINITY", Number.NEGATIVE_INFINITY, -1 * Number.POSITIVE_INFINITY );
return ( array );
}