pjs/js2/semantics/JS20/RegExp.lisp

649 строки
33 KiB
Common Lisp

;;;
;;; JavaScript 2.0 regular expression parser
;;;
;;; Waldemar Horwat (waldemar@acm.org)
;;;
(progn
(defparameter *rw*
(generate-world
"R"
'((lexer regexp-lexer
:lr-1
:regular-expression-pattern
((:unicode-character (% every (:text "Any Unicode character")) () t)
(:unicode-alphanumeric
(% alphanumeric (:text "Any Unicode alphabetic or decimal digit character (includes ASCII "
(:character-literal #\0) :nbhy (:character-literal #\9) ", "
(:character-literal #\A) :nbhy (:character-literal #\Z) ", and "
(:character-literal #\a) :nbhy (:character-literal #\z) ")"))
() t)
(:line-terminator (#?000A #?000D #?2028 #?2029) () t)
(:decimal-digit (#\0 #\1 #\2 #\3 #\4 #\5 #\6 #\7 #\8 #\9)
(($default-action $default-action)
(decimal-value $digit-value)))
(:non-zero-digit (#\1 #\2 #\3 #\4 #\5 #\6 #\7 #\8 #\9)
((decimal-value $digit-value)))
(:hex-digit (#\0 #\1 #\2 #\3 #\4 #\5 #\6 #\7 #\8 #\9 #\A #\B #\C #\D #\E #\F #\a #\b #\c #\d #\e #\f)
((hex-value $digit-value)))
(:control-letter (++ (#\A #\B #\C #\D #\E #\F #\G #\H #\I #\J #\K #\L #\M #\N #\O #\P #\Q #\R #\S #\T #\U #\V #\W #\X #\Y #\Z)
(#\a #\b #\c #\d #\e #\f #\g #\h #\i #\j #\k #\l #\m #\n #\o #\p #\q #\r #\s #\t #\u #\v #\w #\x #\y #\z))
(($default-action $default-action)))
(:pattern-character (- :unicode-character (#\^ #\$ #\\ #\. #\* #\+ #\? #\( #\) #\[ #\] #\{ #\} #\|))
(($default-action $default-action)))
((:class-character dash) (- :unicode-character (#\\ #\]))
(($default-action $default-action)))
((:class-character no-dash) (- (:class-character dash) (#\-))
(($default-action $default-action)))
(:identity-escape (- :unicode-character :unicode-alphanumeric)
(($default-action $default-action))))
(($default-action character nil identity)
($digit-value integer digit-value digit-char-36)))
(deftype semantic-exception (oneof syntax-error))
(%section "Unicode Character Classes")
(%charclass :unicode-character)
(%charclass :unicode-alphanumeric)
(%charclass :line-terminator)
(define line-terminators (set character) (set-of character #?000A #?000D #?2028 #?2029))
(define re-whitespaces (set character) (set-of character #?000C #?000A #?000D #?0009 #?000B #\space))
(define re-digits (set character) (set-of-ranges character #\0 #\9))
(define re-word-characters (set character) (set-of-ranges character #\0 #\9 #\A #\Z #\a #\z #\_ nil))
(%print-actions)
(%section "Regular Expression Definitions")
(deftype r-e-input (tuple (str string) (ignore-case boolean) (multiline boolean)))
(%text :semantics
"Field " (:field str r-e-input) " is the input string. "
(:field ignore-case r-e-input) " and " (:field multiline r-e-input) " are the corresponding regular expression flags.")
(deftype r-e-result (oneof (success r-e-match) failure))
(deftype r-e-match (tuple (end-index integer)
(captures (vector capture))))
(%text :semantics
"A " (:type r-e-match) " holds an intermediate state during the pattern-matching process. "
(:field end-index r-e-match)
" is the index of the next input character to be matched by the next component in a regular expression pattern. "
"If we are at the end of the pattern, " (:field end-index r-e-match)
" is one plus the index of the last matched input character. "
(:field captures r-e-match)
" is a zero-based array of the strings captured so far by capturing parentheses.")
(deftype capture (oneof (present string)
absent))
(deftype continuation (-> (r-e-match) r-e-result))
(%text :semantics
"A " (:type continuation)
" is a function that attempts to match the remaining portion of the pattern against the input string, "
"starting at the intermediate state given by its " (:type r-e-match) " argument. "
"If a match is possible, it returns a " (:field success r-e-result) " result that contains the final "
(:type r-e-match) " state; if no match is possible, it returns a " (:field failure r-e-result) " result.")
(deftype matcher (-> (r-e-input r-e-match continuation) r-e-result))
(%text :semantics
"A " (:type matcher)
" is a function that attempts to match a middle portion of the pattern against the input string, "
"starting at the intermediate state given by its " (:type r-e-match) " argument. "
"Since the remainder of the pattern heavily influences whether (and how) a middle portion will match, we "
"must pass in a " (:type continuation) " function that checks whether the rest of the pattern matched. "
"If the continuation returns " (:field failure r-e-result) ", the matcher function may call it repeatedly, "
"trying various alternatives at pattern choice points.")
(%text :semantics
"The " (:type r-e-input) " parameter contains the input string and is merely passed down to subroutines.")
(deftype matcher-generator (-> (integer) matcher))
(%text :semantics
"A " (:type matcher-generator)
" is a function executed at the time the regular expression is compiled that returns a " (:type matcher) " for a part "
"of the pattern. The " (:type integer) " parameter contains the number of capturing left parentheses seen so far in the "
"pattern and is used to assign static, consecutive numbers to capturing parentheses.")
(define (character-set-matcher (acceptance-set (set character)) (invert boolean)) matcher ;*********ignore case?
(function ((t r-e-input) (x r-e-match) (c continuation))
(let ((i integer (& end-index x))
(s string (& str t)))
(if (= i (length s))
(oneof failure)
(if (xor (character-set-member (nth s i) acceptance-set) invert)
(c (tuple r-e-match (+ i 1) (& captures x)))
(oneof failure))))))
(%text :semantics
(:global character-set-matcher) " returns a " (:type matcher)
" that matches a single input string character. If "
(:local invert) " is false, the match succeeds if the character is a member of the "
(:local acceptance-set) " set of characters (possibly ignoring case). If "
(:local invert) " is true, the match succeeds if the character is not a member of the "
(:local acceptance-set) " set of characters (possibly ignoring case).")
(define (character-matcher (ch character)) matcher
(character-set-matcher (set-of character ch) false))
(%text :semantics
(:global character-matcher) " returns a " (:type matcher)
" that matches a single input string character. The match succeeds if the character is the same as "
(:local ch) " (possibly ignoring case).")
(%print-actions)
(%section "Regular Expression Patterns")
(rule :regular-expression-pattern ((exec (-> (r-e-input integer) r-e-result)))
(production :regular-expression-pattern (:disjunction) regular-expression-pattern-disjunction
(exec
(let ((match matcher ((gen-matcher :disjunction) 0)))
(function ((t r-e-input) (index integer))
(match
t
(tuple r-e-match index (fill-capture (count-parens :disjunction)))
success-continuation))))))
(%print-actions)
(define (success-continuation (x r-e-match)) r-e-result
(oneof success x))
(define (fill-capture (i integer)) (vector capture)
(if (= i 0)
(vector-of capture)
(append (fill-capture (- i 1)) (vector (oneof absent)))))
(%subsection "Disjunctions")
(rule :disjunction ((gen-matcher matcher-generator) (count-parens integer))
(production :disjunction (:alternative) disjunction-one
(gen-matcher (gen-matcher :alternative))
(count-parens (count-parens :alternative)))
(production :disjunction (:alternative #\| :disjunction) disjunction-more
((gen-matcher (paren-index integer))
(let ((match1 matcher ((gen-matcher :alternative) paren-index))
(match2 matcher ((gen-matcher :disjunction) (+ paren-index (count-parens :alternative)))))
(function ((t r-e-input) (x r-e-match) (c continuation))
(case (match1 t x c)
((success y r-e-match) (oneof success y))
(failure (match2 t x c))))))
(count-parens (+ (count-parens :alternative) (count-parens :disjunction)))))
(%print-actions)
(%subsection "Alternatives")
(rule :alternative ((gen-matcher matcher-generator) (count-parens integer))
(production :alternative () alternative-none
((gen-matcher (paren-index integer :unused))
(function ((t r-e-input :unused) (x r-e-match) (c continuation))
(c x)))
(count-parens 0))
(production :alternative (:alternative :term) alternative-some
((gen-matcher (paren-index integer))
(let ((match1 matcher ((gen-matcher :alternative) paren-index))
(match2 matcher ((gen-matcher :term) (+ paren-index (count-parens :alternative)))))
(function ((t r-e-input) (x r-e-match) (c continuation))
(let ((d continuation (function ((y r-e-match))
(match2 t y c))))
(match1 t x d)))))
(count-parens (+ (count-parens :alternative) (count-parens :term)))))
(%print-actions)
(%subsection "Terms")
(rule :term ((gen-matcher matcher-generator) (count-parens integer))
(production :term (:assertion) term-assertion
((gen-matcher (paren-index integer :unused))
(function ((t r-e-input) (x r-e-match) (c continuation))
(if ((test-assertion :assertion) t x)
(c x)
(oneof failure))))
(count-parens 0))
(production :term (:atom) term-atom
(gen-matcher (gen-matcher :atom))
(count-parens (count-parens :atom)))
(production :term (:atom :quantifier) term-quantified-atom
((gen-matcher (paren-index integer))
(let ((match matcher ((gen-matcher :atom) paren-index))
(min integer (minimum :quantifier))
(max limit (maximum :quantifier))
(greedy boolean (greedy :quantifier)))
(if (case max
((finite m integer) (< m min))
(infinite false))
(throw (oneof syntax-error))
(repeat-matcher match min max greedy paren-index (count-parens :atom)))))
(count-parens (count-parens :atom))))
(%print-actions)
(rule :quantifier ((minimum integer) (maximum limit) (greedy boolean))
(production :quantifier (:quantifier-prefix) quantifier-eager
(minimum (minimum :quantifier-prefix))
(maximum (maximum :quantifier-prefix))
(greedy true))
(production :quantifier (:quantifier-prefix #\?) quantifier-greedy
(minimum (minimum :quantifier-prefix))
(maximum (maximum :quantifier-prefix))
(greedy false)))
(rule :quantifier-prefix ((minimum integer) (maximum limit))
(production :quantifier-prefix (#\*) quantifier-prefix-zero-or-more
(minimum 0)
(maximum (oneof infinite)))
(production :quantifier-prefix (#\+) quantifier-prefix-one-or-more
(minimum 1)
(maximum (oneof infinite)))
(production :quantifier-prefix (#\?) quantifier-prefix-zero-or-one
(minimum 0)
(maximum (oneof finite 1)))
(production :quantifier-prefix (#\{ :decimal-digits #\}) quantifier-prefix-repeat
(minimum (integer-value :decimal-digits))
(maximum (oneof finite (integer-value :decimal-digits))))
(production :quantifier-prefix (#\{ :decimal-digits #\, #\}) quantifier-prefix-repeat-or-more
(minimum (integer-value :decimal-digits))
(maximum (oneof infinite)))
(production :quantifier-prefix (#\{ :decimal-digits #\, :decimal-digits #\}) quantifier-prefix-repeat-range
(minimum (integer-value :decimal-digits 1))
(maximum (oneof finite (integer-value :decimal-digits 2)))))
(rule :decimal-digits ((integer-value integer))
(production :decimal-digits (:decimal-digit) decimal-digits-first
(integer-value (decimal-value :decimal-digit)))
(production :decimal-digits (:decimal-digits :decimal-digit) decimal-digits-rest
(integer-value (+ (* 10 (integer-value :decimal-digits)) (decimal-value :decimal-digit)))))
(%charclass :decimal-digit)
(deftype limit (oneof (finite integer) infinite))
(define (reset-parens (x r-e-match) (p integer) (n-parens integer)) r-e-match
(if (= n-parens 0)
x
(let ((y r-e-match (tuple r-e-match (& end-index x)
(set-nth (& captures x) p (oneof absent)))))
(reset-parens y (+ p 1) (- n-parens 1)))))
(define (repeat-matcher (body matcher) (min integer) (max limit) (greedy boolean) (paren-index integer) (n-body-parens integer)) matcher
(function ((t r-e-input) (x r-e-match) (c continuation))
(if (case max
((finite m integer) (= m 0))
(infinite false))
(c x)
(let ((d continuation (function ((y r-e-match))
(if (and (= min 0)
(= (& end-index y) (& end-index x)))
(oneof failure)
(let ((new-min integer (if (= min 0) 0 (- min 1)))
(new-max limit (case max
((finite m integer) (oneof finite (- m 1)))
(infinite (oneof infinite)))))
((repeat-matcher body new-min new-max greedy paren-index n-body-parens) t y c)))))
(xr r-e-match (reset-parens x paren-index n-body-parens)))
(if (/= min 0)
(body t xr d)
(if greedy
(case (body t xr d)
((success z r-e-match) (oneof success z))
(failure (c x)))
(case (c x)
((success z r-e-match) (oneof success z))
(failure (body t xr d)))))))))
(%print-actions)
(%subsection "Assertions")
(rule :assertion ((test-assertion (-> (r-e-input r-e-match) boolean)))
(production :assertion (#\^) assertion-beginning
((test-assertion (t r-e-input) (x r-e-match))
(if (= (& end-index x) 0)
true
(and (& multiline t)
(character-set-member (nth (& str t) (- (& end-index x) 1)) line-terminators)))))
(production :assertion (#\$) assertion-end
((test-assertion (t r-e-input) (x r-e-match))
(if (= (& end-index x) (length (& str t)))
true
(and (& multiline t)
(character-set-member (nth (& str t) (& end-index x)) line-terminators)))))
(production :assertion (#\\ #\b) assertion-word-boundary
((test-assertion (t r-e-input) (x r-e-match))
(at-word-boundary (& end-index x) (& str t))))
(production :assertion (#\\ #\B) assertion-non-word-boundary
((test-assertion (t r-e-input) (x r-e-match))
(not (at-word-boundary (& end-index x) (& str t))))))
(%print-actions)
(define (at-word-boundary (i integer) (s string)) boolean
(xor (in-word (- i 1) s) (in-word i s)))
(define (in-word (i integer) (s string)) boolean
(if (or (= i -1) (= i (length s)))
false
(character-set-member (nth s i) re-word-characters)))
(%section "Atoms")
(rule :atom ((gen-matcher matcher-generator) (count-parens integer))
(production :atom (:pattern-character) atom-pattern-character
((gen-matcher (paren-index integer :unused))
(character-matcher ($default-action :pattern-character)))
(count-parens 0))
(production :atom (#\.) atom-dot
((gen-matcher (paren-index integer :unused))
(character-set-matcher line-terminators true))
(count-parens 0))
(production :atom (:null-escape) atom-null-escape
((gen-matcher (paren-index integer :unused))
(function ((t r-e-input :unused) (x r-e-match) (c continuation))
(c x)))
(count-parens 0))
(production :atom (#\\ :atom-escape) atom-atom-escape
(gen-matcher (gen-matcher :atom-escape))
(count-parens 0))
(production :atom (:character-class) atom-character-class
((gen-matcher (paren-index integer :unused))
(let ((a (set character) (acceptance-set :character-class)))
(character-set-matcher a (invert :character-class))))
(count-parens 0))
(production :atom (#\( :disjunction #\)) atom-parentheses
((gen-matcher (paren-index integer))
(let ((match matcher ((gen-matcher :disjunction) (+ paren-index 1))))
(function ((t r-e-input) (x r-e-match) (c continuation))
(let ((d continuation
(function ((y r-e-match))
(let ((updated-captures (vector capture)
(set-nth (& captures y) paren-index
(oneof present (subseq (& str t) (& end-index x) (- (& end-index y) 1))))))
(c (tuple r-e-match (& end-index y) updated-captures))))))
(match t x d)))))
(count-parens (+ (count-parens :disjunction) 1)))
(production :atom (#\( #\? #\: :disjunction #\)) atom-non-capturing-parentheses
(gen-matcher (gen-matcher :disjunction))
(count-parens (count-parens :disjunction)))
(production :atom (#\( #\? #\= :disjunction #\)) atom-positive-lookahead
((gen-matcher (paren-index integer))
(let ((match matcher ((gen-matcher :disjunction) paren-index)))
(function ((t r-e-input) (x r-e-match) (c continuation))
;(let ((d continuation
; (function ((y r-e-match))
; (c (tuple r-e-match (& end-index x) (& captures y))))))
; (match t x d)))))
(case (match t x success-continuation)
((success y r-e-match)
(c (tuple r-e-match (& end-index x) (& captures y))))
(failure (oneof failure))))))
(count-parens (count-parens :disjunction)))
(production :atom (#\( #\? #\! :disjunction #\)) atom-negative-lookahead
((gen-matcher (paren-index integer))
(let ((match matcher ((gen-matcher :disjunction) paren-index)))
(function ((t r-e-input) (x r-e-match) (c continuation))
(case (match t x success-continuation)
((success y r-e-match :unused) (oneof failure))
(failure (c x))))))
(count-parens (count-parens :disjunction))))
(%charclass :pattern-character)
(%print-actions)
(%section "Escapes")
(production :null-escape (#\\ #\Q) null-escape-q)
(rule :atom-escape ((gen-matcher matcher-generator))
(production :atom-escape (:decimal-escape) atom-escape-decimal
((gen-matcher (paren-index integer))
(let ((n integer (escape-value :decimal-escape)))
(if (= n 0)
(character-matcher #?0000)
(if (> n paren-index)
(throw (oneof syntax-error))
(backreference-matcher n))))))
(production :atom-escape (:character-escape) atom-escape-character
((gen-matcher (paren-index integer :unused))
(character-matcher (character-value :character-escape))))
(production :atom-escape (:character-class-escape) atom-escape-character-class
((gen-matcher (paren-index integer :unused))
(character-set-matcher (acceptance-set :character-class-escape) false))))
(%print-actions)
(define (backreference-matcher (n integer)) matcher
(function ((t r-e-input) (x r-e-match) (c continuation))
(case (nth-backreference x n)
((present ref string)
(let ((i integer (& end-index x))
(s string (& str t)))
(let ((j integer (+ i (length ref))))
(if (> j (length s))
(oneof failure)
(if (string-equal (subseq s i (- j 1)) ref) ;*********ignore case?
(c (tuple r-e-match j (& captures x)))
(oneof failure))))))
(absent (c x)))))
(define (nth-backreference (x r-e-match) (n integer)) capture
(nth (& captures x) (- n 1)))
(rule :character-escape ((character-value character))
(production :character-escape (:control-escape) character-escape-control
(character-value (character-value :control-escape)))
(production :character-escape (#\c :control-letter) character-escape-control-letter
(character-value (code-to-character (bitwise-and (character-to-code ($default-action :control-letter)) 31))))
(production :character-escape (:hex-escape) character-escape-hex
(character-value (character-value :hex-escape)))
(production :character-escape (:identity-escape) character-escape-identity
(character-value ($default-action :identity-escape))))
(%charclass :control-letter)
(%charclass :identity-escape)
(rule :control-escape ((character-value character))
(production :control-escape (#\f) control-escape-form-feed (character-value #?000C))
(production :control-escape (#\n) control-escape-new-line (character-value #?000A))
(production :control-escape (#\r) control-escape-return (character-value #?000D))
(production :control-escape (#\t) control-escape-tab (character-value #?0009))
(production :control-escape (#\v) control-escape-vertical-tab (character-value #?000B)))
(%print-actions)
(%subsection "Decimal Escapes")
(rule :decimal-escape ((escape-value integer))
(production :decimal-escape (:decimal-integer-literal (:- :decimal-digit)) decimal-escape-integer
(escape-value (integer-value :decimal-integer-literal))))
(rule :decimal-integer-literal ((integer-value integer))
(production :decimal-integer-literal (#\0) decimal-integer-literal-0
(integer-value 0))
(production :decimal-integer-literal (:non-zero-decimal-digits) decimal-integer-literal-nonzero
(integer-value (integer-value :non-zero-decimal-digits))))
(rule :non-zero-decimal-digits ((integer-value integer))
(production :non-zero-decimal-digits (:non-zero-digit) non-zero-decimal-digits-first
(integer-value (decimal-value :non-zero-digit)))
(production :non-zero-decimal-digits (:non-zero-decimal-digits :decimal-digit) non-zero-decimal-digits-rest
(integer-value (+ (* 10 (integer-value :non-zero-decimal-digits)) (decimal-value :decimal-digit)))))
(%charclass :non-zero-digit)
(%print-actions)
(%subsection "Hexadecimal Escapes")
(rule :hex-escape ((character-value character))
(production :hex-escape (#\x :hex-digit :hex-digit) hex-escape-2
(character-value (code-to-character (+ (* 16 (hex-value :hex-digit 1))
(hex-value :hex-digit 2)))))
(production :hex-escape (#\u :hex-digit :hex-digit :hex-digit :hex-digit) hex-escape-4
(character-value (code-to-character (+ (+ (+ (* 4096 (hex-value :hex-digit 1))
(* 256 (hex-value :hex-digit 2)))
(* 16 (hex-value :hex-digit 3)))
(hex-value :hex-digit 4))))))
(%charclass :hex-digit)
(%print-actions)
(%subsection "Character Class Escapes")
(rule :character-class-escape ((acceptance-set (set character)))
(production :character-class-escape (#\s) character-class-escape-whitespace
(acceptance-set re-whitespaces))
(production :character-class-escape (#\S) character-class-escape-non-whitespace
(acceptance-set (character-set-difference (set-of-ranges character #?0000 #?FFFF) re-whitespaces)))
(production :character-class-escape (#\d) character-class-escape-digit
(acceptance-set re-digits))
(production :character-class-escape (#\D) character-class-escape-non-digit
(acceptance-set (character-set-difference (set-of-ranges character #?0000 #?FFFF) re-digits)))
(production :character-class-escape (#\w) character-class-escape-word
(acceptance-set re-word-characters))
(production :character-class-escape (#\W) character-class-escape-non-word
(acceptance-set (character-set-difference (set-of-ranges character #?0000 #?FFFF) re-word-characters))))
(%print-actions)
(%section "User-Specified Character Classes")
(rule :character-class ((acceptance-set (set character)) (invert boolean))
(production :character-class (#\[ (:- #\^) :class-ranges #\]) character-class-positive
(acceptance-set (acceptance-set :class-ranges))
(invert false))
(production :character-class (#\[ #\^ :class-ranges #\]) character-class-negative
(acceptance-set (acceptance-set :class-ranges))
(invert true)))
(rule :class-ranges ((acceptance-set (set character)))
(production :class-ranges () class-ranges-none
(acceptance-set (set-of character)))
(production :class-ranges ((:nonempty-class-ranges dash)) class-ranges-some
(acceptance-set (acceptance-set :nonempty-class-ranges))))
(grammar-argument :delta dash no-dash)
(rule (:nonempty-class-ranges :delta) ((acceptance-set (set character)))
(production (:nonempty-class-ranges :delta) ((:class-atom dash)) nonempty-class-ranges-final
(acceptance-set (acceptance-set :class-atom)))
(production (:nonempty-class-ranges :delta) ((:class-atom :delta) (:nonempty-class-ranges no-dash)) nonempty-class-ranges-non-final
(acceptance-set
(character-set-union (acceptance-set :class-atom)
(acceptance-set :nonempty-class-ranges))))
(production (:nonempty-class-ranges :delta) ((:class-atom :delta) #\- (:class-atom dash) :class-ranges) nonempty-class-ranges-range
(acceptance-set
(let ((range (set character) (character-range (acceptance-set :class-atom 1)
(acceptance-set :class-atom 2))))
(character-set-union range (acceptance-set :class-ranges)))))
(production (:nonempty-class-ranges :delta) (:null-escape :class-ranges) nonempty-class-ranges-null-escape
(acceptance-set (acceptance-set :class-ranges))))
(%print-actions)
(define (character-range (low (set character)) (high (set character))) (set character)
(if (or (/= (character-set-length low) 1) (/= (character-set-length high) 1))
(throw (oneof syntax-error))
(let ((l character (character-set-min low))
(h character (character-set-min high)))
(if (char<= l h)
(set-of-ranges character l h)
(throw (oneof syntax-error))))))
(%subsection "Character Class Range Atoms")
(rule (:class-atom :delta) ((acceptance-set (set character)))
(production (:class-atom :delta) ((:class-character :delta)) class-atom-character
(acceptance-set (set-of character ($default-action :class-character))))
(production (:class-atom :delta) (#\\ :class-escape) class-atom-escape
(acceptance-set (acceptance-set :class-escape))))
(%charclass (:class-character dash))
(%charclass (:class-character no-dash))
(rule :class-escape ((acceptance-set (set character)))
(production :class-escape (:decimal-escape) class-escape-decimal
(acceptance-set
(if (= (escape-value :decimal-escape) 0)
(set-of character #?0000)
(throw (oneof syntax-error)))))
(production :class-escape (#\b) class-escape-backspace
(acceptance-set (set-of character #?0008)))
(production :class-escape (:character-escape) class-escape-character-escape
(acceptance-set (set-of character (character-value :character-escape))))
(production :class-escape (:character-class-escape) class-escape-character-class-escape
(acceptance-set (acceptance-set :character-class-escape))))
(%print-actions)
)))
(defparameter *rl* (world-lexer *rw* 'regexp-lexer))
(defparameter *rg* (lexer-grammar *rl*)))
(defun run-regexp (regexp input &optional ignore-case multiline)
(let ((exec (first (lexer-parse *rl* regexp))))
(dotimes (i (length input) '(failure))
(let ((result (funcall exec (list input ignore-case multiline) i)))
(ecase (first result)
(success
(return (list* i (subseq input i (second result)) (cddr result))))
(failure))))))
#|
(progn
(depict-rtf-to-local-file
"JS20/RegExpGrammar.rtf"
"Regular Expression Grammar"
#'(lambda (rtf-stream)
(depict-world-commands rtf-stream *rw* :visible-semantics nil)))
(depict-rtf-to-local-file
"JS20/RegExpSemantics.rtf"
"Regular Expression Semantics"
#'(lambda (rtf-stream)
(depict-world-commands rtf-stream *rw*))))
(progn
(depict-html-to-local-file
"JS20/RegExpGrammar.html"
"Regular Expression Grammar"
t
#'(lambda (html-stream)
(depict-world-commands html-stream *rw* :visible-semantics nil))
:external-link-base "notation.html")
(depict-html-to-local-file
"JS20/RegExpSemantics.html"
"Regular Expression Semantics"
t
#'(lambda (html-stream)
(depict-world-commands html-stream *rw*))
:external-link-base "notation.html"))
(with-local-output (s "JS20/RegExpGrammar.txt") (print-lexer *rl* s) (print-grammar *rg* s))
(lexer-pparse *rl* "a+" :trace t)
(lexer-pparse *rl* "[]+" :trace t)
(run-regexp "(0x|0)2" "0x20")
(run-regexp "(a*)b\\1+c" "aabaaaac")
(run-regexp "(a*)b\\1+" "baaaac")
(run-regexp "b(a+)(a+)?(a+)c" "baaaac")
(run-regexp "(((a+)?(b+)?c)*)" "aacbbbcac")
(run-regexp "(\\s\\S\\s)" "aac xa d fds fds sac")
(run-regexp "(\\s)" "aac xa deac")
(run-regexp "[01234]+aa+" "93-43aabbc")
(run-regexp "[\\101A-ae-]+" "93ABC-@ezy43abc")
(run-regexp "[\\181A-ae-]+" "93ABC-@ezy43abc")
(run-regexp "b[ace]+" "baaaacecfe")
(run-regexp "b[^a]+" "baaaabc")
(run-regexp "(?=(a+))a*b\\1" "baaabac")
(run-regexp "(?=(a+))" "baaabac")
(run-regexp "(.*?)a(?!(a+)b\\2c)\\2(.*)" "baaabaac")
(run-regexp "(aa|aabaac|ba|b|c)*" "aabaac")
(run-regexp "[\\Q^01234]+\\Qaa+" "93-43aabbc")
|#
#+allegro (clean-grammar *rg*) ;Remove this line if you wish to print the grammar's state tables.
(length (grammar-states *rg*))