pjs/jpeg/simd/jimmxfst.asm

501 строка
15 KiB
NASM

;
; jimmxfst.asm - fast integer IDCT (MMX)
;
; Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
;
; Based on
; x86 SIMD extension for IJG JPEG library
; Copyright (C) 1999-2006, MIYASAKA Masaru.
; For conditions of distribution and use, see copyright notice in jsimdext.inc
;
; This file should be assembled with NASM (Netwide Assembler),
; can *not* be assembled with Microsoft's MASM or any compatible
; assembler (including Borland's Turbo Assembler).
; NASM is available from http://nasm.sourceforge.net/ or
; http://sourceforge.net/project/showfiles.php?group_id=6208
;
; This file contains a fast, not so accurate integer implementation of
; the inverse DCT (Discrete Cosine Transform). The following code is
; based directly on the IJG's original jidctfst.c; see the jidctfst.c
; for more details.
;
; [TAB8]
%include "jsimdext.inc"
%include "jdct.inc"
; --------------------------------------------------------------------------
%define CONST_BITS 8 ; 14 is also OK.
%define PASS1_BITS 2
%if IFAST_SCALE_BITS != PASS1_BITS
%error "'IFAST_SCALE_BITS' must be equal to 'PASS1_BITS'."
%endif
%if CONST_BITS == 8
F_1_082 equ 277 ; FIX(1.082392200)
F_1_414 equ 362 ; FIX(1.414213562)
F_1_847 equ 473 ; FIX(1.847759065)
F_2_613 equ 669 ; FIX(2.613125930)
F_1_613 equ (F_2_613 - 256) ; FIX(2.613125930) - FIX(1)
%else
; NASM cannot do compile-time arithmetic on floating-point constants.
%define DESCALE(x,n) (((x)+(1<<((n)-1)))>>(n))
F_1_082 equ DESCALE(1162209775,30-CONST_BITS) ; FIX(1.082392200)
F_1_414 equ DESCALE(1518500249,30-CONST_BITS) ; FIX(1.414213562)
F_1_847 equ DESCALE(1984016188,30-CONST_BITS) ; FIX(1.847759065)
F_2_613 equ DESCALE(2805822602,30-CONST_BITS) ; FIX(2.613125930)
F_1_613 equ (F_2_613 - (1 << CONST_BITS)) ; FIX(2.613125930) - FIX(1)
%endif
; --------------------------------------------------------------------------
SECTION SEG_CONST
; PRE_MULTIPLY_SCALE_BITS <= 2 (to avoid overflow)
; CONST_BITS + CONST_SHIFT + PRE_MULTIPLY_SCALE_BITS == 16 (for pmulhw)
%define PRE_MULTIPLY_SCALE_BITS 2
%define CONST_SHIFT (16 - PRE_MULTIPLY_SCALE_BITS - CONST_BITS)
alignz 16
global EXTN(jconst_idct_ifast_mmx)
EXTN(jconst_idct_ifast_mmx):
PW_F1414 times 4 dw F_1_414 << CONST_SHIFT
PW_F1847 times 4 dw F_1_847 << CONST_SHIFT
PW_MF1613 times 4 dw -F_1_613 << CONST_SHIFT
PW_F1082 times 4 dw F_1_082 << CONST_SHIFT
PB_CENTERJSAMP times 8 db CENTERJSAMPLE
alignz 16
; --------------------------------------------------------------------------
SECTION SEG_TEXT
BITS 32
;
; Perform dequantization and inverse DCT on one block of coefficients.
;
; GLOBAL(void)
; jsimd_idct_ifast_mmx (void * dct_table, JCOEFPTR coef_block,
; JSAMPARRAY output_buf, JDIMENSION output_col)
;
%define dct_table(b) (b)+8 ; jpeg_component_info * compptr
%define coef_block(b) (b)+12 ; JCOEFPTR coef_block
%define output_buf(b) (b)+16 ; JSAMPARRAY output_buf
%define output_col(b) (b)+20 ; JDIMENSION output_col
%define original_ebp ebp+0
%define wk(i) ebp-(WK_NUM-(i))*SIZEOF_MMWORD ; mmword wk[WK_NUM]
%define WK_NUM 2
%define workspace wk(0)-DCTSIZE2*SIZEOF_JCOEF
; JCOEF workspace[DCTSIZE2]
align 16
global EXTN(jsimd_idct_ifast_mmx)
EXTN(jsimd_idct_ifast_mmx):
push ebp
mov eax,esp ; eax = original ebp
sub esp, byte 4
and esp, byte (-SIZEOF_MMWORD) ; align to 64 bits
mov [esp],eax
mov ebp,esp ; ebp = aligned ebp
lea esp, [workspace]
push ebx
; push ecx ; need not be preserved
; push edx ; need not be preserved
push esi
push edi
get_GOT ebx ; get GOT address
; ---- Pass 1: process columns from input, store into work array.
; mov eax, [original_ebp]
mov edx, POINTER [dct_table(eax)] ; quantptr
mov esi, JCOEFPTR [coef_block(eax)] ; inptr
lea edi, [workspace] ; JCOEF * wsptr
mov ecx, DCTSIZE/4 ; ctr
alignx 16,7
.columnloop:
%ifndef NO_ZERO_COLUMN_TEST_IFAST_MMX
mov eax, DWORD [DWBLOCK(1,0,esi,SIZEOF_JCOEF)]
or eax, DWORD [DWBLOCK(2,0,esi,SIZEOF_JCOEF)]
jnz short .columnDCT
movq mm0, MMWORD [MMBLOCK(1,0,esi,SIZEOF_JCOEF)]
movq mm1, MMWORD [MMBLOCK(2,0,esi,SIZEOF_JCOEF)]
por mm0, MMWORD [MMBLOCK(3,0,esi,SIZEOF_JCOEF)]
por mm1, MMWORD [MMBLOCK(4,0,esi,SIZEOF_JCOEF)]
por mm0, MMWORD [MMBLOCK(5,0,esi,SIZEOF_JCOEF)]
por mm1, MMWORD [MMBLOCK(6,0,esi,SIZEOF_JCOEF)]
por mm0, MMWORD [MMBLOCK(7,0,esi,SIZEOF_JCOEF)]
por mm1,mm0
packsswb mm1,mm1
movd eax,mm1
test eax,eax
jnz short .columnDCT
; -- AC terms all zero
movq mm0, MMWORD [MMBLOCK(0,0,esi,SIZEOF_JCOEF)]
pmullw mm0, MMWORD [MMBLOCK(0,0,edx,SIZEOF_IFAST_MULT_TYPE)]
movq mm2,mm0 ; mm0=in0=(00 01 02 03)
punpcklwd mm0,mm0 ; mm0=(00 00 01 01)
punpckhwd mm2,mm2 ; mm2=(02 02 03 03)
movq mm1,mm0
punpckldq mm0,mm0 ; mm0=(00 00 00 00)
punpckhdq mm1,mm1 ; mm1=(01 01 01 01)
movq mm3,mm2
punpckldq mm2,mm2 ; mm2=(02 02 02 02)
punpckhdq mm3,mm3 ; mm3=(03 03 03 03)
movq MMWORD [MMBLOCK(0,0,edi,SIZEOF_JCOEF)], mm0
movq MMWORD [MMBLOCK(0,1,edi,SIZEOF_JCOEF)], mm0
movq MMWORD [MMBLOCK(1,0,edi,SIZEOF_JCOEF)], mm1
movq MMWORD [MMBLOCK(1,1,edi,SIZEOF_JCOEF)], mm1
movq MMWORD [MMBLOCK(2,0,edi,SIZEOF_JCOEF)], mm2
movq MMWORD [MMBLOCK(2,1,edi,SIZEOF_JCOEF)], mm2
movq MMWORD [MMBLOCK(3,0,edi,SIZEOF_JCOEF)], mm3
movq MMWORD [MMBLOCK(3,1,edi,SIZEOF_JCOEF)], mm3
jmp near .nextcolumn
alignx 16,7
%endif
.columnDCT:
; -- Even part
movq mm0, MMWORD [MMBLOCK(0,0,esi,SIZEOF_JCOEF)]
movq mm1, MMWORD [MMBLOCK(2,0,esi,SIZEOF_JCOEF)]
pmullw mm0, MMWORD [MMBLOCK(0,0,edx,SIZEOF_IFAST_MULT_TYPE)]
pmullw mm1, MMWORD [MMBLOCK(2,0,edx,SIZEOF_IFAST_MULT_TYPE)]
movq mm2, MMWORD [MMBLOCK(4,0,esi,SIZEOF_JCOEF)]
movq mm3, MMWORD [MMBLOCK(6,0,esi,SIZEOF_JCOEF)]
pmullw mm2, MMWORD [MMBLOCK(4,0,edx,SIZEOF_IFAST_MULT_TYPE)]
pmullw mm3, MMWORD [MMBLOCK(6,0,edx,SIZEOF_IFAST_MULT_TYPE)]
movq mm4,mm0
movq mm5,mm1
psubw mm0,mm2 ; mm0=tmp11
psubw mm1,mm3
paddw mm4,mm2 ; mm4=tmp10
paddw mm5,mm3 ; mm5=tmp13
psllw mm1,PRE_MULTIPLY_SCALE_BITS
pmulhw mm1,[GOTOFF(ebx,PW_F1414)]
psubw mm1,mm5 ; mm1=tmp12
movq mm6,mm4
movq mm7,mm0
psubw mm4,mm5 ; mm4=tmp3
psubw mm0,mm1 ; mm0=tmp2
paddw mm6,mm5 ; mm6=tmp0
paddw mm7,mm1 ; mm7=tmp1
movq MMWORD [wk(1)], mm4 ; wk(1)=tmp3
movq MMWORD [wk(0)], mm0 ; wk(0)=tmp2
; -- Odd part
movq mm2, MMWORD [MMBLOCK(1,0,esi,SIZEOF_JCOEF)]
movq mm3, MMWORD [MMBLOCK(3,0,esi,SIZEOF_JCOEF)]
pmullw mm2, MMWORD [MMBLOCK(1,0,edx,SIZEOF_IFAST_MULT_TYPE)]
pmullw mm3, MMWORD [MMBLOCK(3,0,edx,SIZEOF_IFAST_MULT_TYPE)]
movq mm5, MMWORD [MMBLOCK(5,0,esi,SIZEOF_JCOEF)]
movq mm1, MMWORD [MMBLOCK(7,0,esi,SIZEOF_JCOEF)]
pmullw mm5, MMWORD [MMBLOCK(5,0,edx,SIZEOF_IFAST_MULT_TYPE)]
pmullw mm1, MMWORD [MMBLOCK(7,0,edx,SIZEOF_IFAST_MULT_TYPE)]
movq mm4,mm2
movq mm0,mm5
psubw mm2,mm1 ; mm2=z12
psubw mm5,mm3 ; mm5=z10
paddw mm4,mm1 ; mm4=z11
paddw mm0,mm3 ; mm0=z13
movq mm1,mm5 ; mm1=z10(unscaled)
psllw mm2,PRE_MULTIPLY_SCALE_BITS
psllw mm5,PRE_MULTIPLY_SCALE_BITS
movq mm3,mm4
psubw mm4,mm0
paddw mm3,mm0 ; mm3=tmp7
psllw mm4,PRE_MULTIPLY_SCALE_BITS
pmulhw mm4,[GOTOFF(ebx,PW_F1414)] ; mm4=tmp11
; To avoid overflow...
;
; (Original)
; tmp12 = -2.613125930 * z10 + z5;
;
; (This implementation)
; tmp12 = (-1.613125930 - 1) * z10 + z5;
; = -1.613125930 * z10 - z10 + z5;
movq mm0,mm5
paddw mm5,mm2
pmulhw mm5,[GOTOFF(ebx,PW_F1847)] ; mm5=z5
pmulhw mm0,[GOTOFF(ebx,PW_MF1613)]
pmulhw mm2,[GOTOFF(ebx,PW_F1082)]
psubw mm0,mm1
psubw mm2,mm5 ; mm2=tmp10
paddw mm0,mm5 ; mm0=tmp12
; -- Final output stage
psubw mm0,mm3 ; mm0=tmp6
movq mm1,mm6
movq mm5,mm7
paddw mm6,mm3 ; mm6=data0=(00 01 02 03)
paddw mm7,mm0 ; mm7=data1=(10 11 12 13)
psubw mm1,mm3 ; mm1=data7=(70 71 72 73)
psubw mm5,mm0 ; mm5=data6=(60 61 62 63)
psubw mm4,mm0 ; mm4=tmp5
movq mm3,mm6 ; transpose coefficients(phase 1)
punpcklwd mm6,mm7 ; mm6=(00 10 01 11)
punpckhwd mm3,mm7 ; mm3=(02 12 03 13)
movq mm0,mm5 ; transpose coefficients(phase 1)
punpcklwd mm5,mm1 ; mm5=(60 70 61 71)
punpckhwd mm0,mm1 ; mm0=(62 72 63 73)
movq mm7, MMWORD [wk(0)] ; mm7=tmp2
movq mm1, MMWORD [wk(1)] ; mm1=tmp3
movq MMWORD [wk(0)], mm5 ; wk(0)=(60 70 61 71)
movq MMWORD [wk(1)], mm0 ; wk(1)=(62 72 63 73)
paddw mm2,mm4 ; mm2=tmp4
movq mm5,mm7
movq mm0,mm1
paddw mm7,mm4 ; mm7=data2=(20 21 22 23)
paddw mm1,mm2 ; mm1=data4=(40 41 42 43)
psubw mm5,mm4 ; mm5=data5=(50 51 52 53)
psubw mm0,mm2 ; mm0=data3=(30 31 32 33)
movq mm4,mm7 ; transpose coefficients(phase 1)
punpcklwd mm7,mm0 ; mm7=(20 30 21 31)
punpckhwd mm4,mm0 ; mm4=(22 32 23 33)
movq mm2,mm1 ; transpose coefficients(phase 1)
punpcklwd mm1,mm5 ; mm1=(40 50 41 51)
punpckhwd mm2,mm5 ; mm2=(42 52 43 53)
movq mm0,mm6 ; transpose coefficients(phase 2)
punpckldq mm6,mm7 ; mm6=(00 10 20 30)
punpckhdq mm0,mm7 ; mm0=(01 11 21 31)
movq mm5,mm3 ; transpose coefficients(phase 2)
punpckldq mm3,mm4 ; mm3=(02 12 22 32)
punpckhdq mm5,mm4 ; mm5=(03 13 23 33)
movq mm7, MMWORD [wk(0)] ; mm7=(60 70 61 71)
movq mm4, MMWORD [wk(1)] ; mm4=(62 72 63 73)
movq MMWORD [MMBLOCK(0,0,edi,SIZEOF_JCOEF)], mm6
movq MMWORD [MMBLOCK(1,0,edi,SIZEOF_JCOEF)], mm0
movq MMWORD [MMBLOCK(2,0,edi,SIZEOF_JCOEF)], mm3
movq MMWORD [MMBLOCK(3,0,edi,SIZEOF_JCOEF)], mm5
movq mm6,mm1 ; transpose coefficients(phase 2)
punpckldq mm1,mm7 ; mm1=(40 50 60 70)
punpckhdq mm6,mm7 ; mm6=(41 51 61 71)
movq mm0,mm2 ; transpose coefficients(phase 2)
punpckldq mm2,mm4 ; mm2=(42 52 62 72)
punpckhdq mm0,mm4 ; mm0=(43 53 63 73)
movq MMWORD [MMBLOCK(0,1,edi,SIZEOF_JCOEF)], mm1
movq MMWORD [MMBLOCK(1,1,edi,SIZEOF_JCOEF)], mm6
movq MMWORD [MMBLOCK(2,1,edi,SIZEOF_JCOEF)], mm2
movq MMWORD [MMBLOCK(3,1,edi,SIZEOF_JCOEF)], mm0
.nextcolumn:
add esi, byte 4*SIZEOF_JCOEF ; coef_block
add edx, byte 4*SIZEOF_IFAST_MULT_TYPE ; quantptr
add edi, byte 4*DCTSIZE*SIZEOF_JCOEF ; wsptr
dec ecx ; ctr
jnz near .columnloop
; ---- Pass 2: process rows from work array, store into output array.
mov eax, [original_ebp]
lea esi, [workspace] ; JCOEF * wsptr
mov edi, JSAMPARRAY [output_buf(eax)] ; (JSAMPROW *)
mov eax, JDIMENSION [output_col(eax)]
mov ecx, DCTSIZE/4 ; ctr
alignx 16,7
.rowloop:
; -- Even part
movq mm0, MMWORD [MMBLOCK(0,0,esi,SIZEOF_JCOEF)]
movq mm1, MMWORD [MMBLOCK(2,0,esi,SIZEOF_JCOEF)]
movq mm2, MMWORD [MMBLOCK(4,0,esi,SIZEOF_JCOEF)]
movq mm3, MMWORD [MMBLOCK(6,0,esi,SIZEOF_JCOEF)]
movq mm4,mm0
movq mm5,mm1
psubw mm0,mm2 ; mm0=tmp11
psubw mm1,mm3
paddw mm4,mm2 ; mm4=tmp10
paddw mm5,mm3 ; mm5=tmp13
psllw mm1,PRE_MULTIPLY_SCALE_BITS
pmulhw mm1,[GOTOFF(ebx,PW_F1414)]
psubw mm1,mm5 ; mm1=tmp12
movq mm6,mm4
movq mm7,mm0
psubw mm4,mm5 ; mm4=tmp3
psubw mm0,mm1 ; mm0=tmp2
paddw mm6,mm5 ; mm6=tmp0
paddw mm7,mm1 ; mm7=tmp1
movq MMWORD [wk(1)], mm4 ; wk(1)=tmp3
movq MMWORD [wk(0)], mm0 ; wk(0)=tmp2
; -- Odd part
movq mm2, MMWORD [MMBLOCK(1,0,esi,SIZEOF_JCOEF)]
movq mm3, MMWORD [MMBLOCK(3,0,esi,SIZEOF_JCOEF)]
movq mm5, MMWORD [MMBLOCK(5,0,esi,SIZEOF_JCOEF)]
movq mm1, MMWORD [MMBLOCK(7,0,esi,SIZEOF_JCOEF)]
movq mm4,mm2
movq mm0,mm5
psubw mm2,mm1 ; mm2=z12
psubw mm5,mm3 ; mm5=z10
paddw mm4,mm1 ; mm4=z11
paddw mm0,mm3 ; mm0=z13
movq mm1,mm5 ; mm1=z10(unscaled)
psllw mm2,PRE_MULTIPLY_SCALE_BITS
psllw mm5,PRE_MULTIPLY_SCALE_BITS
movq mm3,mm4
psubw mm4,mm0
paddw mm3,mm0 ; mm3=tmp7
psllw mm4,PRE_MULTIPLY_SCALE_BITS
pmulhw mm4,[GOTOFF(ebx,PW_F1414)] ; mm4=tmp11
; To avoid overflow...
;
; (Original)
; tmp12 = -2.613125930 * z10 + z5;
;
; (This implementation)
; tmp12 = (-1.613125930 - 1) * z10 + z5;
; = -1.613125930 * z10 - z10 + z5;
movq mm0,mm5
paddw mm5,mm2
pmulhw mm5,[GOTOFF(ebx,PW_F1847)] ; mm5=z5
pmulhw mm0,[GOTOFF(ebx,PW_MF1613)]
pmulhw mm2,[GOTOFF(ebx,PW_F1082)]
psubw mm0,mm1
psubw mm2,mm5 ; mm2=tmp10
paddw mm0,mm5 ; mm0=tmp12
; -- Final output stage
psubw mm0,mm3 ; mm0=tmp6
movq mm1,mm6
movq mm5,mm7
paddw mm6,mm3 ; mm6=data0=(00 10 20 30)
paddw mm7,mm0 ; mm7=data1=(01 11 21 31)
psraw mm6,(PASS1_BITS+3) ; descale
psraw mm7,(PASS1_BITS+3) ; descale
psubw mm1,mm3 ; mm1=data7=(07 17 27 37)
psubw mm5,mm0 ; mm5=data6=(06 16 26 36)
psraw mm1,(PASS1_BITS+3) ; descale
psraw mm5,(PASS1_BITS+3) ; descale
psubw mm4,mm0 ; mm4=tmp5
packsswb mm6,mm5 ; mm6=(00 10 20 30 06 16 26 36)
packsswb mm7,mm1 ; mm7=(01 11 21 31 07 17 27 37)
movq mm3, MMWORD [wk(0)] ; mm3=tmp2
movq mm0, MMWORD [wk(1)] ; mm0=tmp3
paddw mm2,mm4 ; mm2=tmp4
movq mm5,mm3
movq mm1,mm0
paddw mm3,mm4 ; mm3=data2=(02 12 22 32)
paddw mm0,mm2 ; mm0=data4=(04 14 24 34)
psraw mm3,(PASS1_BITS+3) ; descale
psraw mm0,(PASS1_BITS+3) ; descale
psubw mm5,mm4 ; mm5=data5=(05 15 25 35)
psubw mm1,mm2 ; mm1=data3=(03 13 23 33)
psraw mm5,(PASS1_BITS+3) ; descale
psraw mm1,(PASS1_BITS+3) ; descale
movq mm4,[GOTOFF(ebx,PB_CENTERJSAMP)] ; mm4=[PB_CENTERJSAMP]
packsswb mm3,mm0 ; mm3=(02 12 22 32 04 14 24 34)
packsswb mm1,mm5 ; mm1=(03 13 23 33 05 15 25 35)
paddb mm6,mm4
paddb mm7,mm4
paddb mm3,mm4
paddb mm1,mm4
movq mm2,mm6 ; transpose coefficients(phase 1)
punpcklbw mm6,mm7 ; mm6=(00 01 10 11 20 21 30 31)
punpckhbw mm2,mm7 ; mm2=(06 07 16 17 26 27 36 37)
movq mm0,mm3 ; transpose coefficients(phase 1)
punpcklbw mm3,mm1 ; mm3=(02 03 12 13 22 23 32 33)
punpckhbw mm0,mm1 ; mm0=(04 05 14 15 24 25 34 35)
movq mm5,mm6 ; transpose coefficients(phase 2)
punpcklwd mm6,mm3 ; mm6=(00 01 02 03 10 11 12 13)
punpckhwd mm5,mm3 ; mm5=(20 21 22 23 30 31 32 33)
movq mm4,mm0 ; transpose coefficients(phase 2)
punpcklwd mm0,mm2 ; mm0=(04 05 06 07 14 15 16 17)
punpckhwd mm4,mm2 ; mm4=(24 25 26 27 34 35 36 37)
movq mm7,mm6 ; transpose coefficients(phase 3)
punpckldq mm6,mm0 ; mm6=(00 01 02 03 04 05 06 07)
punpckhdq mm7,mm0 ; mm7=(10 11 12 13 14 15 16 17)
movq mm1,mm5 ; transpose coefficients(phase 3)
punpckldq mm5,mm4 ; mm5=(20 21 22 23 24 25 26 27)
punpckhdq mm1,mm4 ; mm1=(30 31 32 33 34 35 36 37)
pushpic ebx ; save GOT address
mov edx, JSAMPROW [edi+0*SIZEOF_JSAMPROW]
mov ebx, JSAMPROW [edi+1*SIZEOF_JSAMPROW]
movq MMWORD [edx+eax*SIZEOF_JSAMPLE], mm6
movq MMWORD [ebx+eax*SIZEOF_JSAMPLE], mm7
mov edx, JSAMPROW [edi+2*SIZEOF_JSAMPROW]
mov ebx, JSAMPROW [edi+3*SIZEOF_JSAMPROW]
movq MMWORD [edx+eax*SIZEOF_JSAMPLE], mm5
movq MMWORD [ebx+eax*SIZEOF_JSAMPLE], mm1
poppic ebx ; restore GOT address
add esi, byte 4*SIZEOF_JCOEF ; wsptr
add edi, byte 4*SIZEOF_JSAMPROW
dec ecx ; ctr
jnz near .rowloop
emms ; empty MMX state
pop edi
pop esi
; pop edx ; need not be preserved
; pop ecx ; need not be preserved
pop ebx
mov esp,ebp ; esp <- aligned ebp
pop esp ; esp <- original ebp
pop ebp
ret
; For some reason, the OS X linker does not honor the request to align the
; segment unless we do this.
align 16