pjs/xpcom/analysis/outparams.js

876 строки
28 KiB
JavaScript

require({ version: '1.8' });
require({ after_gcc_pass: 'cfg' });
include('treehydra.js');
include('util.js');
include('gcc_util.js');
include('gcc_print.js');
include('unstable/adts.js');
include('unstable/analysis.js');
include('unstable/esp.js');
let Zero_NonZero = {};
include('unstable/zero_nonzero.js', Zero_NonZero);
include('xpcom/analysis/mayreturn.js');
function safe_location_of(t) {
if (t === undefined)
return UNKNOWN_LOCATION;
return location_of(t);
}
MapFactory.use_injective = true;
// Print a trace for each function analyzed
let TRACE_FUNCTIONS = 0;
// Trace operation of the ESP analysis, use 2 or 3 for more detail
let TRACE_ESP = 0;
// Trace determination of function call parameter semantics, 2 for detail
let TRACE_CALL_SEM = 0;
// Print time-taken stats
let TRACE_PERF = 0;
// Log analysis results in a special format
let LOG_RESULTS = false;
const WARN_ON_SET_NULL = false;
const WARN_ON_SET_FAILURE = false;
// Filter functions to process per CLI
let func_filter;
if (this.arg == undefined || this.arg == '') {
func_filter = function(fd) true;
} else {
func_filter = function(fd) function_decl_name(fd) == this.arg;
}
function process_tree(func_decl) {
if (!func_filter(func_decl)) return;
// Determine outparams and return if function not relevant
if (is_constructor(func_decl)) return;
let psem = OutparamCheck.prototype.func_param_semantics(func_decl);
if (!psem.some(function(x) x.check)) return;
let decl = rectify_function_decl(func_decl);
if (decl.resultType != 'nsresult' && decl.resultType != 'PRBool' &&
decl.resultType != 'void') {
warning("Cannot analyze outparam usage for function with return type '" +
decl.resultType + "'", location_of(func_decl));
return;
}
let params = [ v for (v in flatten_chain(DECL_ARGUMENTS(func_decl))) ];
let outparam_list = [];
let psem_list = [];
for (let i = 0; i < psem.length; ++i) {
if (psem[i].check) {
outparam_list.push(params[i]);
psem_list.push(psem[i]);
}
}
if (outparam_list.length == 0) return;
// At this point we have a function we want to analyze
let fstring = rfunc_string(decl);
if (TRACE_FUNCTIONS) {
print('* function ' + fstring);
print(' ' + loc_string(location_of(func_decl)));
}
if (TRACE_PERF) timer_start(fstring);
for (let i = 0; i < outparam_list.length; ++i) {
let p = outparam_list[i];
if (TRACE_FUNCTIONS) {
print(" outparam " + expr_display(p) + " " + DECL_UID(p) + ' ' +
psem_list[i].label);
}
}
let cfg = function_decl_cfg(func_decl);
let [retvar, retvars] = function() {
let trace = 0;
let a = new MayReturnAnalysis(cfg, trace);
a.run();
return [a.retvar, a.vbls];
}();
if (retvar == undefined && decl.resultType != 'void') throw new Error("assert");
{
let trace = TRACE_ESP;
for (let i = 0; i < outparam_list.length; ++i) {
let psem = [ psem_list[i] ];
let outparam = [ outparam_list[i] ];
let a = new OutparamCheck(cfg, psem, outparam, retvar, retvars, trace);
// This is annoying, but this field is only used for logging anyway.
a.fndecl = func_decl;
a.run();
a.check(decl.resultType == 'void', func_decl);
}
}
if (TRACE_PERF) timer_stop(fstring);
}
function is_constructor(function_decl)
{
return function_decl.decl_common.lang_specific.decl_flags.constructor_attr;
}
// Outparam check analysis
function OutparamCheck(cfg, psem_list, outparam_list, retvar, retvar_set,
trace) {
// We need to save the retvars so we can detect assignments through
// their addresses passed as arguments.
this.retvar_set = retvar_set;
this.retvar = retvar;
// We need both an ordered set and a lookup structure
this.outparam_list = outparam_list
this.outparams = create_decl_set(outparam_list);
this.psem_list = psem_list;
// Set up property state vars for ESP
let psvar_list = [];
for each (let v in outparam_list) {
psvar_list.push(new ESP.PropVarSpec(v, true, av.NOT_WRITTEN));
}
for (let v in retvar_set.items()) {
psvar_list.push(new ESP.PropVarSpec(v, v == this.retvar, ESP.TOP));
}
if (trace) {
print("PS vars");
for each (let v in this.psvar_list) {
print(" " + expr_display(v.vbl));
}
}
this.zeroNonzero = new Zero_NonZero.Zero_NonZero();
ESP.Analysis.call(this, cfg, psvar_list, av.meet, trace);
}
// Abstract values for outparam check
function AbstractValue(name, ch) {
this.name = name;
this.ch = ch;
}
AbstractValue.prototype.equals = function(v) {
return this === v;
}
AbstractValue.prototype.toString = function() {
return this.name + ' (' + this.ch + ')';
}
AbstractValue.prototype.toShortString = function() {
return this.ch;
}
let avspec = [
// Abstract values for outparam contents write status
[ 'NULL', 'x' ], // is a null pointer
[ 'NOT_WRITTEN', '-' ], // not written
[ 'WROTE_NULL', '/' ], // had NULL written to
[ 'WRITTEN', '+' ], // had anything written to
// MAYBE_WRITTEN is special. "Officially", it means the same thing as
// NOT_WRITTEN. What it really means is that an outparam was passed
// to another function as a possible outparam (outparam type, but not
// in last position), so if there is an error with it not being written,
// we can give a hint about the possible outparam in the warning.
[ 'MAYBE_WRITTEN', '?' ], // written if possible outparam is one
];
let av = {};
for each (let [name, ch] in avspec) {
av[name] = new AbstractValue(name, ch);
}
av.ZERO = Zero_NonZero.Lattice.ZERO;
av.NONZERO = Zero_NonZero.Lattice.NONZERO;
/*
av.ZERO.negation = av.NONZERO;
av.NONZERO.negation = av.ZERO;
// Abstract values for int constants. We use these to figure out feasible
// paths in the presence of GCC finally_tmp-controlled switches.
function makeIntAV(v) {
let key = 'int_' + v;
if (cachedAVs.hasOwnProperty(key)) return cachedAVs[key];
let s = "" + v;
let ans = cachedAVs[key] = new AbstractValue(s, s);
ans.int_val = v;
return ans;
}
*/
let cachedAVs = {};
// Abstract values for pointers that contain a copy of an outparam
// pointer. We use these to figure out writes to a casted copy of
// an outparam passed to another method.
function makeOutparamAV(v) {
let key = 'outparam_' + DECL_UID(v);
if (key in cachedAVs) return cachedAVs[key];
let ans = cachedAVs[key] =
new AbstractValue('OUTPARAM:' + expr_display(v), 'P');
ans.outparam = v;
return ans;
}
/** Return the integer value if this is an integer av, otherwise undefined. */
av.intVal = function(v) {
if (v.hasOwnProperty('int_val'))
return v.int_val;
return undefined;
}
/** Meet function for our abstract values. */
av.meet = function(v1, v2) {
// At this point we know v1 != v2.
let values = [v1,v2]
if (values.indexOf(av.LOCKED) != -1
|| values.indexOf(av.UNLOCKED) != -1)
return ESP.NOT_REACHED;
return Zero_NonZero.meet(v1, v2)
};
// Outparam check analysis
OutparamCheck.prototype = new ESP.Analysis;
OutparamCheck.prototype.split = function(vbl, v) {
// Can't happen for current version of ESP, but could change
if (v != ESP.TOP) throw new Error("not implemented");
return [ av.ZERO, av.NONZERO ];
}
OutparamCheck.prototype.updateEdgeState = function(e) {
e.state.keepOnly(e.dest.keepVars);
}
OutparamCheck.prototype.flowState = function(isn, state) {
switch (TREE_CODE(isn)) {
case GIMPLE_MODIFY_STMT:
this.processAssign(isn, state);
break;
case CALL_EXPR:
this.processCall(undefined, isn, isn, state);
break;
case SWITCH_EXPR:
case COND_EXPR:
// This gets handled by flowStateCond instead, has no exec effect
break;
default:
this.zeroNonzero.flowState(isn, state);
}
}
OutparamCheck.prototype.flowStateCond = function(isn, truth, state) {
this.zeroNonzero.flowStateCond(isn, truth, state);
}
// For any outparams-specific semantics, we handle it here and then
// return. Otherwise we delegate to the zero-nonzero analysis.
OutparamCheck.prototype.processAssign = function(isn, state) {
let lhs = isn.operands()[0];
let rhs = isn.operands()[1];
if (DECL_P(lhs)) {
// Unwrap NOP_EXPR, which is semantically a copy.
if (TREE_CODE(rhs) == NOP_EXPR) {
rhs = rhs.operands()[0];
}
if (DECL_P(rhs) && this.outparams.has(rhs)) {
// Copying an outparam pointer. We have to remember this so that
// if it is assigned thru later, we pick up the write.
state.assignValue(lhs, makeOutparamAV(rhs), isn);
return;
}
// Cases of this switch that handle something should return from
// the function. Anything that does not return is picked up afteward.
switch (TREE_CODE(rhs)) {
case INTEGER_CST:
if (this.outparams.has(lhs)) {
warning("assigning to outparam pointer");
return;
}
break;
case EQ_EXPR: {
// We only care about testing outparams for NULL (and then not writing)
let [op1, op2] = rhs.operands();
if (DECL_P(op1) && this.outparams.has(op1) && expr_literal_int(op2) == 0) {
state.update(function(ss) {
let [s1, s2] = [ss, ss.copy()]; // s1 true, s2 false
s1.assignValue(lhs, av.NONZERO, isn);
s1.assignValue(op1, av.NULL, isn);
s2.assignValue(lhs, av.ZERO, isn);
return [s1, s2];
});
return;
}
}
break;
case CALL_EXPR:
let fname = call_function_name(rhs);
if (fname == 'NS_FAILED') {
this.processTest(lhs, rhs, av.NONZERO, isn, state);
} else if (fname == 'NS_SUCCEEDED') {
this.processTest(lhs, rhs, av.ZERO, isn, state);
} else if (fname == '__builtin_expect') {
// Same as an assign from arg 0 to lhs
state.assign(lhs, call_args(rhs)[0], isn);
} else {
this.processCall(lhs, rhs, isn, state);
}
return;
case INDIRECT_REF:
// If rhs is *outparam and pointer-typed, lhs is NULL iff rhs is
// WROTE_NULL. Required for testcase onull.cpp.
let v = rhs.operands()[0];
if (DECL_P(v) && this.outparams.has(v) &&
TREE_CODE(TREE_TYPE(v)) == POINTER_TYPE) {
state.update(function(ss) {
let val = ss.get(v) == av.WROTE_NULL ? av.ZERO : av.NONZERO;
ss.assignValue(lhs, val, isn);
return [ ss ];
});
return;
}
}
// Nothing special -- delegate
this.zeroNonzero.processAssign(isn, state);
return;
}
switch (TREE_CODE(lhs)) {
case INDIRECT_REF:
// Writing to an outparam. We want to try to figure out if we're
// writing NULL.
let e = TREE_OPERAND(lhs, 0);
if (this.outparams.has(e)) {
if (expr_literal_int(rhs) == 0) {
state.assignValue(e, av.WROTE_NULL, isn);
} else if (DECL_P(rhs)) {
state.update(function(ss) {
let [s1, s2] = [ss.copy(), ss]; // s1 NULL, s2 non-NULL
s1.assignValue(e, av.WROTE_NULL, isn);
s1.assignValue(rhs, av.ZERO, isn);
s2.assignValue(e, av.WRITTEN, isn);
s2.assignValue(rhs, av.NONZERO, isn);
return [s1,s2];
});
} else {
state.assignValue(e, av.WRITTEN, isn);
}
} else {
// unsound -- could be writing to anything through this ptr
}
break;
case COMPONENT_REF: // unsound
case ARRAY_REF: // unsound
case EXC_PTR_EXPR:
case FILTER_EXPR:
break;
default:
print(TREE_CODE(lhs));
throw new Error("ni");
}
}
// Handle an assignment x := test(foo) where test is a simple predicate
OutparamCheck.prototype.processTest = function(lhs, call, val, blame, state) {
let arg = call_arg(call, 0);
if (DECL_P(arg)) {
this.zeroNonzero.predicate(state, lhs, val, arg, blame);
} else {
state.assignValue(lhs, ESP.TOP, blame);
}
};
// The big one: outparam semantics of function calls.
OutparamCheck.prototype.processCall = function(dest, expr, blame, state) {
let args = call_args(expr);
let callable = callable_arg_function_decl(CALL_EXPR_FN(expr));
let psem = this.func_param_semantics(callable);
if (TRACE_CALL_SEM) {
print("param semantics:" + psem);
}
if (args.length != psem.length) {
let ct = TREE_TYPE(callable);
if (TREE_CODE(ct) == POINTER_TYPE) ct = TREE_TYPE(ct);
if (args.length < psem.length || !stdarg_p(ct)) {
let name = function_decl_name(callable);
// TODO Can __builtin_memcpy write to an outparam? Probably not.
if (name != 'operator new' && name != 'operator delete' &&
name != 'operator new []' && name != 'operator delete []' &&
name.substr(0, 5) != '__cxa' &&
name.substr(0, 9) != '__builtin') {
throw Error("bad len for '" + name + "': " + args.length + ' args, ' +
psem.length + ' params');
}
}
}
// Collect variables that are possibly written to on callee success
let updates = [];
for (let i = 0; i < psem.length; ++i) {
let arg = args[i];
// The arg could be the address of a return-value variable.
// This means it's really the nsresult code for the call,
// so we treat it the same as the target of an rv assignment.
if (TREE_CODE(arg) == ADDR_EXPR) {
let v = arg.operands()[0];
if (DECL_P(v) && this.retvar_set.has(v)) {
dest = v;
}
}
// The arg could be a copy of an outparam. We'll unwrap to the
// outparam if it is. The following is cheating a bit because
// we munge states together, but it should be OK in practice.
arg = unwrap_outparam(arg, state);
let sem = psem[i];
if (sem == ps.CONST) continue;
// At this point, we know the call can write thru this param.
// Invalidate any vars whose addresses are passed here. This
// is distinct from the rv handling above.
if (TREE_CODE(arg) == ADDR_EXPR) {
let v = arg.operands()[0];
if (DECL_P(v)) {
state.remove(v);
}
}
if (!DECL_P(arg) || !this.outparams.has(arg)) continue;
// At this point, we may be writing to an outparam
updates.push([arg, sem]);
}
if (updates.length) {
if (dest != undefined && DECL_P(dest)) {
// Update & stored rv. Do updates predicated on success.
let [ succ_ret, fail_ret ] = ret_coding(callable);
state.update(function(ss) {
let [s1, s2] = [ss.copy(), ss]; // s1 success, s2 fail
for each (let [vbl, sem] in updates) {
s1.assignValue(vbl, sem.val, blame);
s1.assignValue(dest, succ_ret, blame);
}
s2.assignValue(dest, fail_ret, blame);
return [s1,s2];
});
} else {
// Discarded rv. Per spec in the bug, we assume that either success
// or failure is possible (if not, callee should return void).
// Exceptions: Methods that return void and string mutators are
// considered no-fail.
state.update(function(ss) {
for each (let [vbl, sem] in updates) {
if (sem == ps.OUTNOFAIL || sem == ps.OUTNOFAILNOCHECK) {
ss.assignValue(vbl, av.WRITTEN, blame);
return [ss];
} else {
let [s1, s2] = [ss.copy(), ss]; // s1 success, s2 fail
for each (let [vbl, sem] in updates) {
s1.assignValue(vbl, sem.val, blame);
}
return [s1,s2];
}
}
});
}
} else {
// no updates, just kill any destination for the rv
if (dest != undefined && DECL_P(dest)) {
state.remove(dest, blame);
}
}
};
/** Return the return value coding of the given function. This is a pair
* [ succ, fail ] giving the abstract values of the return value under
* success and failure conditions. */
function ret_coding(callable) {
let type = TREE_TYPE(callable);
if (TREE_CODE(type) == POINTER_TYPE) type = TREE_TYPE(type);
let rtname = TYPE_NAME(TREE_TYPE(type));
if (rtname && IDENTIFIER_POINTER(DECL_NAME(rtname)) == 'PRBool') {
return [ av.NONZERO, av.ZERO ];
} else {
return [ av.ZERO, av.NONZERO ];
}
}
function unwrap_outparam(arg, state) {
if (!DECL_P(arg) || state.factory.outparams.has(arg)) return arg;
let outparam;
for (let ss in state.substates.getValues()) {
let val = ss.get(arg);
if (val != undefined && val.hasOwnProperty('outparam')) {
outparam = val.outparam;
}
}
if (outparam) return outparam;
return arg;
}
// Check for errors. Must .run() analysis before calling this.
OutparamCheck.prototype.check = function(isvoid, fndecl) {
let state = this.cfg.x_exit_block_ptr.stateOut;
for (let substate in state.substates.getValues()) {
this.checkSubstate(isvoid, fndecl, substate);
}
}
OutparamCheck.prototype.checkSubstate = function(isvoid, fndecl, ss) {
if (isvoid) {
this.checkSubstateSuccess(ss);
} else {
let [succ, fail] = ret_coding(fndecl);
let rv = ss.get(this.retvar);
// We want to check if the abstract value of the rv is entirely
// contained in the success or failure condition.
if (av.meet(rv, succ) == rv) {
this.checkSubstateSuccess(ss);
} else if (av.meet(rv, fail) == rv) {
this.checkSubstateFailure(ss);
} else {
// This condition indicates a bug in outparams.js. We'll just
// warn so we don't break static analysis builds.
warning("Outparams checker cannot determine rv success/failure",
location_of(fndecl));
this.checkSubstateSuccess(ss);
this.checkSubstateFailure(ss);
}
}
}
/* @return The return statement in the function
* that writes the return value in the given substate.
* If the function returns void, then the substate doesn't
* matter and we just look for the return. */
OutparamCheck.prototype.findReturnStmt = function(ss) {
if (this.retvar != undefined)
return ss.getBlame(this.retvar);
if (this.cfg._cached_return)
return this.cfg._cached_return;
for (let bb in cfg_bb_iterator(this.cfg)) {
for (let isn in bb_isn_iterator(bb)) {
if (TREE_CODE(isn) == RETURN_EXPR) {
return this.cfg._cached_return = isn;
}
}
}
return undefined;
}
OutparamCheck.prototype.checkSubstateSuccess = function(ss) {
for (let i = 0; i < this.psem_list.length; ++i) {
let [v, psem] = [ this.outparam_list[i], this.psem_list[i] ];
if (psem == ps.INOUT) continue;
let val = ss.get(v);
if (val == av.NOT_WRITTEN) {
this.logResult('succ', 'not_written', 'error');
this.warn([this.findReturnStmt(ss), "outparam '" + expr_display(v) + "' not written on NS_SUCCEEDED(return value)"],
[v, "outparam declared here"]);
} else if (val == av.MAYBE_WRITTEN) {
this.logResult('succ', 'maybe_written', 'error');
let blameStmt = ss.getBlame(v);
let callMsg;
let callName = "";
try {
let callExpr = blameStmt.tree_check(GIMPLE_MODIFY_STMT).
operands()[1].tree_check(CALL_EXPR);
let callDecl = callable_arg_function_decl(CALL_EXPR_FN(callExpr));
callMsg = [callDecl, "declared here"];
callName = " '" + decl_name(callDecl) + "'";
}
catch (e if e.TreeCheckError) { }
this.warn([this.findReturnStmt(ss), "outparam '" + expr_display(v) + "' not written on NS_SUCCEEDED(return value)"],
[v, "outparam declared here"],
[blameStmt, "possibly written by unannotated function call" + callName],
callMsg);
} else {
this.logResult('succ', '', 'ok');
}
}
}
OutparamCheck.prototype.checkSubstateFailure = function(ss) {
for (let i = 0; i < this.psem_list.length; ++i) {
let [v, ps] = [ this.outparam_list[i], this.psem_list[i] ];
let val = ss.get(v);
if (val == av.WRITTEN) {
this.logResult('fail', 'written', 'error');
if (WARN_ON_SET_FAILURE) {
this.warn([this.findReturnStmt(ss), "outparam '" + expr_display(v) + "' written on NS_FAILED(return value)"],
[v, "outparam declared here"],
[ss.getBlame(v), "written here"]);
}
} else if (val == av.WROTE_NULL) {
this.logResult('fail', 'wrote_null', 'warning');
if (WARN_ON_SET_NULL) {
this.warn([this.findReturnStmt(ss), "NULL written to outparam '" + expr_display(v) + "' on NS_FAILED(return value)"],
[v, "outparam declared here"],
[ss.getBlame(v), "written here"]);
}
} else {
this.logResult('fail', '', 'ok');
}
}
}
/**
* Generate a warning from one or more tuples [treeforloc, message]
*/
OutparamCheck.prototype.warn = function(arg0) {
let loc = safe_location_of(arg0[0]);
let msg = arg0[1];
for (let i = 1; i < arguments.length; ++i) {
if (arguments[i] === undefined) continue;
let [atree, amsg] = arguments[i];
msg += "\n" + loc_string(safe_location_of(atree)) + ": " + amsg;
}
warning(msg, loc);
}
OutparamCheck.prototype.logResult = function(rv, msg, kind) {
if (LOG_RESULTS) {
let s = [ '"' + x + '"' for each (x in [ loc_string(location_of(this.fndecl)), function_decl_name(this.fndecl), rv, msg, kind ]) ].join(', ');
print(":LR: (" + s + ")");
}
}
// Parameter Semantics values -- indicates whether a parameter is
// an outparam.
// label Used for debugging output
// val Abstract value (state) that holds on an argument after
// a call
// check True if parameters with this semantics should be
// checked by this analysis
let ps = {
OUTNOFAIL: { label: 'out-no-fail', val: av.WRITTEN, check: true },
// Special value for receiver of strings methods. Callers should
// consider this to be an outparam (i.e., it modifies the string),
// but we don't want to check the method itself.
OUTNOFAILNOCHECK: { label: 'out-no-fail-no-check' },
OUT: { label: 'out', val: av.WRITTEN, check: true },
INOUT: { label: 'inout', val: av.WRITTEN, check: true },
MAYBE: { label: 'maybe', val: av.MAYBE_WRITTEN}, // maybe out
CONST: { label: 'const' } // i.e. not out
};
// Return the param semantics of a FUNCTION_DECL or VAR_DECL representing
// a function pointer. The result is a pair [ ann, sems ].
OutparamCheck.prototype.func_param_semantics = function(callable) {
let ftype = TREE_TYPE(callable);
if (TREE_CODE(ftype) == POINTER_TYPE) ftype = TREE_TYPE(ftype);
// What failure semantics to use for outparams
let rtype = TREE_TYPE(ftype);
let nofail = TREE_CODE(rtype) == VOID_TYPE;
// Whether to guess outparams by type
let guess = type_string(rtype) == 'nsresult';
// Set up param lists for analysis
let params; // param decls, if available
let types; // param types
let string_mutator = false;
if (TREE_CODE(callable) == FUNCTION_DECL) {
params = [ p for (p in function_decl_params(callable)) ];
types = [ TREE_TYPE(p) for each (p in params) ];
string_mutator = is_string_mutator(callable);
} else {
types = [ p for (p in function_type_args(ftype))
if (TREE_CODE(p) != VOID_TYPE) ];
}
// Analyze params
let ans = [];
for (let i = 0; i < types.length; ++i) {
let sem;
if (i == 0 && string_mutator) {
// Special case: string mutator receiver is an no-fail outparams
// but not checkable
sem = ps.OUTNOFAILNOCHECK;
} else {
if (params) sem = decode_attr(DECL_ATTRIBUTES(params[i]));
if (TRACE_CALL_SEM >= 2) print("param " + i + ": annotated " + sem);
if (sem == undefined) {
sem = decode_attr(TYPE_ATTRIBUTES(types[i]));
if (TRACE_CALL_SEM >= 2) print("type " + i + ": annotated " + sem);
if (sem == undefined) {
if (guess && type_is_outparam(types[i])) {
// Params other than last are guessed as MAYBE
sem = i < types.length - 1 ? ps.MAYBE : ps.OUT;
} else {
sem = ps.CONST;
}
}
}
if (sem == ps.OUT && nofail) sem = ps.OUTNOFAIL;
}
if (sem == undefined) throw new Error("assert");
ans.push(sem);
}
return ans;
}
/* Decode parameter semantics GCC attributes.
* @param attrs GCC attributes of a parameter. E.g., TYPE_ATTRIBUTES
* or DECL_ATTRIBUTES of an item
* @return The parameter semantics value defined by the attributes,
* or undefined if no such attributes were present. */
function decode_attr(attrs) {
// Note: we're not checking for conflicts, we just take the first
// one we find.
for each (let attr in rectify_attributes(attrs)) {
if (attr.name == 'user') {
for each (let arg in attr.args) {
if (arg == 'NS_outparam') {
return ps.OUT;
} else if (arg == 'NS_inoutparam') {
return ps.INOUT;
} else if (arg == 'NS_inparam') {
return ps.CONST;
}
}
}
}
return undefined;
}
/* @return true if the given type appears to be an outparam
* type based on the type alone (i.e., not considering
* attributes. */
function type_is_outparam(type) {
switch (TREE_CODE(type)) {
case POINTER_TYPE:
return pointer_type_is_outparam(TREE_TYPE(type));
case REFERENCE_TYPE:
let rt = TREE_TYPE(type);
return !TYPE_READONLY(rt) && is_string_type(rt);
default:
// Note: This is unsound for UNION_TYPE, because the union could
// contain a pointer.
return false;
}
}
/* Helper for type_is_outparam.
* @return true if 'pt *' looks like an outparam type. */
function pointer_type_is_outparam(pt) {
if (TYPE_READONLY(pt)) return false;
switch (TREE_CODE(pt)) {
case POINTER_TYPE:
case ARRAY_TYPE: {
// Look for void **, nsIFoo **, char **, PRUnichar **
let ppt = TREE_TYPE(pt);
let tname = TYPE_NAME(ppt);
if (tname == undefined) return false;
let name = decl_name_string(tname);
return name == 'void' || name == 'char' || name == 'PRUnichar' ||
name.substr(0, 3) == 'nsI';
}
case INTEGER_TYPE: {
// char * and PRUnichar * are probably strings, otherwise guess
// it is an integer outparam.
let name = decl_name_string(TYPE_NAME(pt));
return name != 'char' && name != 'PRUnichar';
}
case ENUMERAL_TYPE:
case REAL_TYPE:
case UNION_TYPE:
return true;
case RECORD_TYPE:
// TODO: should we consider field writes?
return false;
case FUNCTION_TYPE:
case VOID_TYPE:
return false;
default:
throw new Error("can't guess if a pointer to this type is an outparam: " +
TREE_CODE(pt) + ': ' + type_string(pt));
}
}
// Map type name to boolean as to whether it is a string.
let cached_string_types = MapFactory.create_map(
function (x, y) x == y,
function (x) x,
function (t) t,
function (t) t);
// Base string types. Others will be found by searching the inheritance
// graph.
cached_string_types.put('nsAString', true);
cached_string_types.put('nsACString', true);
cached_string_types.put('nsAString_internal', true);
cached_string_types.put('nsACString_internal', true);
// Return true if the given type represents a Mozilla string type.
// The binfo arg is the binfo to use for further iteration. This is
// for internal use only, users of this function should pass only
// one arg.
function is_string_type(type, binfo) {
if (TREE_CODE(type) != RECORD_TYPE) return false;
//print(">>>IST " + type_string(type));
let name = decl_name_string(TYPE_NAME(type));
let ans = cached_string_types.get(name);
if (ans != undefined) return ans;
ans = false;
binfo = binfo != undefined ? binfo : TYPE_BINFO(type);
if (binfo != undefined) {
for each (let base in VEC_iterate(BINFO_BASE_BINFOS(binfo))) {
let parent_ans = is_string_type(BINFO_TYPE(base), base);
if (parent_ans) {
ans = true;
break;
}
}
}
cached_string_types.put(name, ans);
//print("<<<IST " + type_string(type) + ' ' + ans);
return ans;
}
function is_string_ptr_type(type) {
return TREE_CODE(type) == POINTER_TYPE && is_string_type(TREE_TYPE(type));
}
// Return true if the given function is a mutator method of a Mozilla
// string type.
function is_string_mutator(fndecl) {
let first_param = function() {
for (let p in function_decl_params(fndecl)) {
return p;
}
return undefined;
}();
return first_param != undefined &&
decl_name_string(first_param) == 'this' &&
is_string_ptr_type(TREE_TYPE(first_param)) &&
!TYPE_READONLY(TREE_TYPE(TREE_TYPE(first_param)));
}