pjs/xpcom/ds/pldhash.h

444 строки
17 KiB
C

/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public
* License Version 1.1 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.mozilla.org/NPL/
*
* Software distributed under the License is distributed on an "AS
* IS" basis, WITHOUT WARRANTY OF ANY KIND, either express oqr
* implied. See the License for the specific language governing
* rights and limitations under the License.
*
* The Original Code is Mozilla JavaScript code.
*
* The Initial Developer of the Original Code is Netscape
* Communications Corporation. Portions created by Netscape are
* Copyright (C) 1999,2000 Netscape Communications Corporation.
* All Rights Reserved.
*
* Original Contributor:
* Brendan Eich <brendan@mozilla.org>
*
* Contributor(s):
*
* Alternatively, the contents of this file may be used under the
* terms of the GNU Public License (the "GPL"), in which case the
* provisions of the GPL are applicable instead of those above.
* If you wish to allow use of your version of this file only
* under the terms of the GPL and not to allow others to use your
* version of this file under the NPL, indicate your decision by
* deleting the provisions above and replace them with the notice
* and other provisions required by the GPL. If you do not delete
* the provisions above, a recipient may use your version of this
* file under either the NPL or the GPL.
*/
#ifndef pldhash_h___
#define pldhash_h___
/*
* Double hashing, a la Knuth 6.
* GENERATED BY js/src/plify_jsdhash.sed -- DO NOT EDIT!!!
*/
#include "prtypes.h"
PR_BEGIN_EXTERN_C
/* Minimum table size, or gross entry count (net is at most .75 loaded). */
#ifndef PL_DHASH_MIN_SIZE
#define PL_DHASH_MIN_SIZE 16
#endif
/*
* Multiplicative hash uses an unsigned 32 bit integer and the golden ratio,
* expressed as a fixed-point 32-bit fraction.
*/
#define PL_DHASH_BITS 32
#define PL_DHASH_GOLDEN_RATIO 0x9E3779B9U
/* Primitive and forward-struct typedefs. */
typedef PRUint32 PLDHashNumber;
typedef struct PLDHashEntryHdr PLDHashEntryHdr;
typedef struct PLDHashEntryStub PLDHashEntryStub;
typedef struct PLDHashTable PLDHashTable;
typedef struct PLDHashTableOps PLDHashTableOps;
/*
* Table entry header structure.
*
* In order to allow in-line allocation of key and value, we do not declare
* either here. Instead, the API uses const void *key as a formal parameter,
* and asks each entry for its key when necessary via a getKey callback, used
* when growing or shrinking the table. Other callback types are defined
* below and grouped into the PLDHashTableOps structure, for single static
* initialization per hash table sub-type.
*
* Each hash table sub-type should nest the PLDHashEntryHdr structure at the
* front of its particular entry type. The keyHash member contains the result
* of multiplying the hash code returned from the hashKey callback (see below)
* by PL_DHASH_GOLDEN_RATIO. Its value is table size invariant. keyHash is
* maintained automatically by PL_DHashTableOperate -- users should never set
* it, and its only uses should be via the entry macros below.
*/
struct PLDHashEntryHdr {
PLDHashNumber keyHash; /* every entry must begin like this */
};
#define PL_DHASH_ENTRY_IS_FREE(entry) ((entry)->keyHash == 0)
#define PL_DHASH_ENTRY_IS_BUSY(entry) (!PL_DHASH_ENTRY_IS_FREE(entry))
/*
* A PLDHashTable is currently 8 words (without the PL_DHASHMETER overhead)
* on most architectures, and may be allocated on the stack or within another
* structure or class (see below for the Init and Finish functions to use).
*
* To decide whether to use double hashing vs. chaining, we need to develop a
* trade-off relation, as follows:
*
* Let alpha be the load factor, esize the entry size in words, count the
* entry count, and pow2 the power-of-two table size in entries.
*
* (PLDHashTable overhead) > (PLHashTable overhead)
* (unused table entry space) > (malloc and .next overhead per entry) +
* (buckets overhead)
* (1 - alpha) * esize * pow2 > 2 * count + pow2
*
* Notice that alpha is by definition (count / pow2):
*
* (1 - alpha) * esize * pow2 > 2 * alpha * pow2 + pow2
* (1 - alpha) * esize > 2 * alpha + 1
*
* esize > (1 + 2 * alpha) / (1 - alpha)
*
* This assumes both tables must keep keyHash, key, and value for each entry,
* where key and value point to separately allocated strings or structures.
* If key and value can be combined into one pointer, then the trade-off is:
*
* esize > (1 + 3 * alpha) / (1 - alpha)
*
* If the entry value can be a subtype of PLDHashEntryHdr, rather than a type
* that must be allocated separately and referenced by an entry.value pointer
* member, and provided key's allocation can be fused with its entry's, then
* k (the words wasted per entry with chaining) is 4.
*
* To see these curves, feed gnuplot input like so:
*
* gnuplot> f(x,k) = (1 + k * x) / (1 - x)
* gnuplot> plot [0:.75] f(x,2), f(x,3), f(x,4)
*
* For k of 2 and a well-loaded table (alpha > .5), esize must be more than 4
* words for chaining to be more space-efficient than double hashing.
*
* Solving for alpha helps us decide when to shrink an underloaded table:
*
* esize > (1 + k * alpha) / (1 - alpha)
* esize - alpha * esize > 1 + k * alpha
* esize - 1 > (k + esize) * alpha
* (esize - 1) / (k + esize) > alpha
*
* alpha < (esize - 1) / (esize + k)
*
* Therefore double hashing should keep alpha >= (esize - 1) / (esize + k),
* assuming esize is not too large (in which case, chaining should probably be
* used for any alpha). For esize=2 and k=3, we want alpha >= .2; for esize=3
* and k=2, we want alpha >= .4. For k=4, esize could be 6, and alpha >= .5
* would still obtain.
*
* The current implementation uses a constant .25 as alpha's lower bound when
* deciding to shrink the table (while respecting PL_DHASH_MIN_SIZE).
*
* Note a qualitative difference between chaining and double hashing: under
* chaining, entry addresses are stable across table shrinks and grows. With
* double hashing, you can't safely hold an entry pointer and use it after an
* ADD or REMOVE operation.
*
* The moral of this story: there is no one-size-fits-all hash table scheme,
* but for small table entry size, and assuming entry address stability is not
* required, double hashing wins.
*/
struct PLDHashTable {
PLDHashTableOps *ops; /* virtual operations, see below */
void *data; /* ops- and instance-specific data */
PRInt16 hashShift; /* multiplicative hash shift */
PRInt16 sizeLog2; /* log2(table size) */
PRUint32 sizeMask; /* PR_BITMASK(log2(table size)) */
PRUint32 entrySize; /* number of bytes in an entry */
PRUint32 entryCount; /* number of entries in table */
PRUint32 removedCount; /* removed entry sentinels in table */
char *entryStore; /* entry storage */
#ifdef PL_DHASHMETER
struct PLDHashStats {
PRUint32 searches; /* total number of table searches */
PRUint32 steps; /* hash chain links traversed */
PRUint32 hits; /* searches that found key */
PRUint32 misses; /* searches that didn't find key */
PRUint32 lookups; /* number of PL_DHASH_LOOKUPs */
PRUint32 addMisses; /* adds that miss, and do work */
PRUint32 addHits; /* adds that hit an existing entry */
PRUint32 addFailures; /* out-of-memory during add growth */
PRUint32 removeHits; /* removes that hit, and do work */
PRUint32 removeMisses; /* useless removes that miss */
PRUint32 removeEnums; /* removes done by Enumerate */
PRUint32 grows; /* table expansions */
PRUint32 shrinks; /* table contractions */
PRUint32 compresses; /* table compressions */
PRUint32 enumShrinks; /* contractions after Enumerate */
} stats;
#endif
};
/*
* Table space at entryStore is allocated and freed using these callbacks.
* The allocator should return null on error only (not if called with nbytes
* equal to 0; but note that jsdhash.c code will never call with 0 nbytes).
*/
typedef void *
(* PR_CALLBACK PLDHashAllocTable)(PLDHashTable *table, PRUint32 nbytes);
typedef void
(* PR_CALLBACK PLDHashFreeTable) (PLDHashTable *table, void *ptr);
/*
* When a table grows or shrinks, each entry is queried for its key using this
* callback. NB: in that event, entry is not in table any longer; it's in the
* old entryStore vector, which is due to be freed once all entries have been
* moved via moveEntry callbacks.
*/
typedef const void *
(* PR_CALLBACK PLDHashGetKey) (PLDHashTable *table, PLDHashEntryHdr *entry);
/*
* Compute the hash code for a given key to be looked up, added, or removed
* from table. A hash code may have any PLDHashNumber value.
*/
typedef PLDHashNumber
(* PR_CALLBACK PLDHashHashKey) (PLDHashTable *table, const void *key);
/*
* Compare the key identifying entry in table with the provided key parameter.
* Return PR_TRUE if keys match, PR_FALSE otherwise.
*/
typedef PRBool
(* PR_CALLBACK PLDHashMatchEntry)(PLDHashTable *table,
const PLDHashEntryHdr *entry,
const void *key);
/*
* Copy the data starting at from to the new entry storage at to. Do not add
* reference counts for any strong references in the entry, however, as this
* is a "move" operation: the old entry storage at from will be freed without
* any reference-decrementing callback shortly.
*/
typedef void
(* PR_CALLBACK PLDHashMoveEntry)(PLDHashTable *table,
const PLDHashEntryHdr *from,
PLDHashEntryHdr *to);
/*
* Clear the entry and drop any strong references it holds. This callback is
* invoked during a PL_DHASH_REMOVE operation (see below for operation codes),
* but only if the given key is found in the table.
*/
typedef void
(* PR_CALLBACK PLDHashClearEntry)(PLDHashTable *table, PLDHashEntryHdr *entry);
/*
* Called when a table (whether allocated dynamically by itself, or nested in
* a larger structure, or allocated on the stack) is finished. This callback
* allows table->ops-specific code to finalize table->data.
*/
typedef void
(* PR_CALLBACK PLDHashFinalize) (PLDHashTable *table);
/* Finally, the "vtable" structure for PLDHashTable. */
struct PLDHashTableOps {
PLDHashAllocTable allocTable;
PLDHashFreeTable freeTable;
PLDHashGetKey getKey;
PLDHashHashKey hashKey;
PLDHashMatchEntry matchEntry;
PLDHashMoveEntry moveEntry;
PLDHashClearEntry clearEntry;
PLDHashFinalize finalize;
};
/*
* Default implementations for the above ops.
*/
PR_EXTERN(void *)
PL_DHashAllocTable(PLDHashTable *table, PRUint32 nbytes);
PR_EXTERN(void)
PL_DHashFreeTable(PLDHashTable *table, void *ptr);
PR_EXTERN(PLDHashNumber)
PL_DHashStringKey(PLDHashTable *table, const void *key);
/* A minimal entry contains a keyHash header and a void key pointer. */
struct PLDHashEntryStub {
PLDHashEntryHdr hdr;
const void *key;
};
PR_EXTERN(const void *)
PL_DHashGetKeyStub(PLDHashTable *table, PLDHashEntryHdr *entry);
PR_EXTERN(PLDHashNumber)
PL_DHashVoidPtrKeyStub(PLDHashTable *table, const void *key);
PR_EXTERN(PRBool)
PL_DHashMatchEntryStub(PLDHashTable *table,
const PLDHashEntryHdr *entry,
const void *key);
PR_EXTERN(void)
PL_DHashMoveEntryStub(PLDHashTable *table,
const PLDHashEntryHdr *from,
PLDHashEntryHdr *to);
PR_EXTERN(void)
PL_DHashClearEntryStub(PLDHashTable *table, PLDHashEntryHdr *entry);
PR_EXTERN(void)
PL_DHashFinalizeStub(PLDHashTable *table);
/*
* If you use PLDHashEntryStub or a subclass of it as your entry struct, and
* if your entries move via memcpy and clear via memset(0), you can use these
* stub operations.
*/
PR_EXTERN(PLDHashTableOps *)
PL_DHashGetStubOps(void);
/*
* Dynamically allocate a new PLDHashTable using malloc, initialize it using
* PL_DHashTableInit, and return its address. Return null on malloc failure.
* Note that the entry storage at table->entryStore will be allocated using
* the ops->allocTable callback.
*/
PR_EXTERN(PLDHashTable *)
PR_NewDHashTable(PLDHashTableOps *ops, void *data, PRUint32 entrySize,
PRUint32 capacity);
/*
* Finalize table's data, free its entry storage (via table->ops->freeTable),
* and return the memory starting at table to the malloc heap.
*/
PR_EXTERN(void)
PL_DHashTableDestroy(PLDHashTable *table);
/*
* Initialize table with ops, data, entrySize, and capacity. Capacity is a
* guess for the smallest table size at which the table will usually be less
* than 75% loaded (the table will grow or shrink as needed; capacity serves
* only to avoid inevitable early growth from PL_DHASH_MIN_SIZE).
*/
PR_EXTERN(PRBool)
PL_DHashTableInit(PLDHashTable *table, PLDHashTableOps *ops, void *data,
PRUint32 entrySize, PRUint32 capacity);
/*
* Finalize table's data, free its entry storage using table->ops->freeTable,
* and leave its members unchanged from their last live values (which leaves
* pointers dangling). If you want to burn cycles clearing table, it's up to
* your code to call memset.
*/
PR_EXTERN(void)
PL_DHashTableFinish(PLDHashTable *table);
/*
* To consolidate keyHash computation and table grow/shrink code, we use a
* single entry point for lookup, add, and remove operations. The operation
* codes are declared here, along with codes returned by PLDHashEnumerator
* functions, which control PL_DHashTableEnumerate's behavior.
*/
typedef enum PLDHashOperator {
PL_DHASH_LOOKUP = 0, /* lookup entry */
PL_DHASH_ADD = 1, /* add entry */
PL_DHASH_REMOVE = 2, /* remove entry, or enumerator says remove */
PL_DHASH_NEXT = 0, /* enumerator says continue */
PL_DHASH_STOP = 1 /* enumerator says stop */
} PLDHashOperator;
/*
* To lookup a key in table, call:
*
* entry = PL_DHashTableOperate(table, key, PL_DHASH_LOOKUP);
*
* If PL_DHASH_ENTRY_IS_BUSY(entry) is true, key was found and it identifies
* entry. If PL_DHASH_ENTRY_IS_FREE(entry) is true, key was not found.
*
* To add an entry identified by key to table, call:
*
* entry = PL_DHashTableOperate(table, key, PL_DHASH_ADD);
*
* If entry is null upon return, the table is severely overloaded, and new
* memory can't be allocated for new entry storage via table->ops->allocTable.
* Otherwise, entry->keyHash has been set so that PL_DHASH_ENTRY_IS_BUSY(entry)
* is true, and it is up to the caller to initialize the key and value parts
* of the entry sub-type, if they have not been set already (i.e. if entry was
* not already in the table).
*
* To remove an entry identified by key from table, call:
*
* (void) PL_DHashTableOperate(table, key, PL_DHASH_REMOVE);
*
* If key's entry is found, it is cleared (via table->ops->clearEntry) and
* the entry is marked so that PL_DHASH_ENTRY_IS_FREE(entry). This operation
* returns null unconditionally; you should ignore its return value.
*/
PR_EXTERN(PLDHashEntryHdr *)
PL_DHashTableOperate(PLDHashTable *table, const void *key, PLDHashOperator op);
/*
* Remove an entry already accessed via LOOKUP or ADD.
*
* NB: this is a "raw" or low-level routine, intended to be used only where
* the inefficiency of a full PL_DHashTableOperate (which rehashes in order
* to find the entry given its key) is not tolerable. This function does not
* shrink the table if it is underloaded. It does not update stats #ifdef
* PL_DHASHMETER, either.
*/
PR_EXTERN(void)
PL_DHashTableRawRemove(PLDHashTable *table, PLDHashEntryHdr *entry);
/*
* Enumerate entries in table using etor:
*
* count = PL_DHashTableEnumerate(table, etor, arg);
*
* PL_DHashTableEnumerate calls etor like so:
*
* op = etor(table, entry, number, arg);
*
* where number is a zero-based ordinal assigned to live entries according to
* their order in table->entryStore.
*
* The return value, op, is treated as a set of flags. If op is PL_DHASH_NEXT,
* then continue enumerating. If op contains PL_DHASH_REMOVE, then clear (via
* table->ops->clearEntry) and free entry. Then we check whether op contains
* PL_DHASH_STOP; if so, stop enumerating and return the number of live entries
* that were enumerated so far. Return the total number of live entries when
* enumeration completes normally.
*
* If etor calls PL_DHashTableOperate on table, it must return PL_DHASH_STOP;
* otherwise undefined behavior results.
*/
typedef PLDHashOperator
(* PR_CALLBACK PLDHashEnumerator)(PLDHashTable *table, PLDHashEntryHdr *hdr,
PRUint32 number, void *arg);
PR_EXTERN(PRUint32)
PL_DHashTableEnumerate(PLDHashTable *table, PLDHashEnumerator etor, void *arg);
#ifdef PL_DHASHMETER
#include <stdio.h>
PR_EXTERN(void)
PL_DHashTableDumpMeter(PLDHashTable *table, PLDHashEnumerator dump, FILE *fp);
#endif
PR_END_EXTERN_C
#endif /* pldhash_h___ */