pjs/media/liboggplay_audio/sydney_audio_mac.c

697 строки
22 KiB
C

/* ***** BEGIN LICENSE BLOCK *****
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Initial Developer of the Original Code is
* CSIRO
* Portions created by the Initial Developer are Copyright (C) 2007
* the Initial Developer. All Rights Reserved.
*
* Contributor(s): Michael Martin
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
* ***** END LICENSE BLOCK ***** *
*/
#include <AudioUnit/AudioUnit.h>
#include "sydney_audio.h"
/*
* The Mac's audio interface is based on a "pull" I/O model, which means you
* can't just provide a data buffer and tell the audio device to play; you must
* register a callback and provide data as the device asks for it. To support
* sydney audio's "write-to-play" style interface, we have to buffer up the
* data as it arrives and feed it to the callback as required.
*
* This is handled by a simple linked list of buffers; data is always written
* to the tail and read from the head. Each buffer tracks the start and end
* positions of its contained data. Buffers are allocated when the tail buffer
* fills, and freed when the head buffer empties. There is always at least one
* buffer allocated.
*
* s e s e s e + data read
* +++##### -> ######## -> ####---- # data written
* ^ ^ - empty
* bl_head bl_tail
*/
typedef struct sa_buf sa_buf;
struct sa_buf {
unsigned int size;
unsigned int start;
unsigned int end;
sa_buf * next;
unsigned char data[0];
};
struct sa_stream {
AudioUnit output_unit;
pthread_mutex_t mutex;
bool playing;
int64_t bytes_played;
/* audio format info */
unsigned int rate;
unsigned int n_channels;
unsigned int bytes_per_ch;
/* buffer list */
sa_buf * bl_head;
sa_buf * bl_tail;
int n_bufs;
};
/*
* Use a default buffer size with enough room for one second of audio,
* assuming stereo data at 44.1kHz with 32 bits per channel, and impose
* a generous limit on the number of buffers.
*/
#define BUF_SIZE (2 * 44100 * 4)
#define BUF_LIMIT 5
#if BUF_LIMIT < 2
#error BUF_LIMIT must be at least 2!
#endif
static OSStatus audio_callback(void *arg, AudioUnitRenderActionFlags *action_flags,
const AudioTimeStamp *time_stamp, UInt32 bus_num, UInt32 n_frames, AudioBufferList *data);
static sa_buf *new_buffer(void);
/*
* -----------------------------------------------------------------------------
* Startup and shutdown functions
* -----------------------------------------------------------------------------
*/
int
sa_stream_create_pcm(
sa_stream_t ** _s,
const char * client_name,
sa_mode_t mode,
sa_pcm_format_t format,
unsigned int rate,
unsigned int n_channels
) {
/*
* Make sure we return a NULL stream pointer on failure.
*/
if (_s == NULL) {
return SA_ERROR_INVALID;
}
*_s = NULL;
if (mode != SA_MODE_WRONLY) {
return SA_ERROR_NOT_SUPPORTED;
}
if (format != SA_PCM_FORMAT_S16_LE) {
return SA_ERROR_NOT_SUPPORTED;
}
/*
* Allocate the instance and required resources.
*/
sa_stream_t * s;
if ((s = malloc(sizeof(sa_stream_t))) == NULL) {
return SA_ERROR_OOM;
}
if ((s->bl_head = new_buffer()) == NULL) {
free(s);
return SA_ERROR_OOM;
}
if (pthread_mutex_init(&s->mutex, NULL) != 0) {
free(s->bl_head);
free(s);
return SA_ERROR_SYSTEM;
}
s->output_unit = NULL;
s->playing = FALSE;
s->bytes_played = 0;
s->rate = rate;
s->n_channels = n_channels;
s->bytes_per_ch = 2;
s->bl_tail = s->bl_head;
s->n_bufs = 1;
*_s = s;
return SA_SUCCESS;
}
int
sa_stream_open(sa_stream_t *s) {
if (s == NULL) {
return SA_ERROR_NO_INIT;
}
if (s->output_unit != NULL) {
return SA_ERROR_INVALID;
}
/*
* Open the default audio output unit.
*/
ComponentDescription desc;
desc.componentType = kAudioUnitType_Output;
desc.componentSubType = kAudioUnitSubType_DefaultOutput;
desc.componentManufacturer = kAudioUnitManufacturer_Apple;
desc.componentFlags = 0;
desc.componentFlagsMask = 0;
Component comp = FindNextComponent(NULL, &desc);
if (comp == NULL) {
return SA_ERROR_NO_DEVICE;
}
if (OpenAComponent(comp, &s->output_unit) != noErr) {
return SA_ERROR_NO_DEVICE;
}
/*
* Set up the render callback used to feed audio data into the output unit.
*/
AURenderCallbackStruct input;
input.inputProc = audio_callback;
input.inputProcRefCon = s;
if (AudioUnitSetProperty(s->output_unit, kAudioUnitProperty_SetRenderCallback,
kAudioUnitScope_Input, 0, &input, sizeof(input)) != 0) {
return SA_ERROR_SYSTEM;
}
/*
* Set up the format description for our audio data. Apple uses the
* following terminology:
*
* sample = a single data value for one channel
* frame = a set of samples that includes one sample for each channel
* packet = the smallest indivisible block of audio data; for uncompressed
* audio (which is what we have), this is one frame
* rate = the number of complete frames per second
*
* Note that this definition of frame differs from, well, pretty much everyone
* else's. See this really long link for more info:
*
* http://developer.apple.com/documentation/MusicAudio/Reference/CoreAudioDataTypesRef/Reference/reference.html#//apple_ref/c/tdef/AudioStreamBasicDescription
*/
AudioStreamBasicDescription fmt;
fmt.mFormatID = kAudioFormatLinearPCM;
fmt.mFormatFlags = kLinearPCMFormatFlagIsSignedInteger |
#ifdef __BIG_ENDIAN__
kLinearPCMFormatFlagIsBigEndian |
#endif
kLinearPCMFormatFlagIsPacked;
fmt.mSampleRate = s->rate;
fmt.mChannelsPerFrame = s->n_channels;
fmt.mBitsPerChannel = s->bytes_per_ch * 8;
fmt.mFramesPerPacket = 1; /* uncompressed audio */
fmt.mBytesPerFrame = fmt.mChannelsPerFrame * fmt.mBitsPerChannel / 8;
fmt.mBytesPerPacket = fmt.mBytesPerFrame * fmt.mFramesPerPacket;
/*
* We're feeding data in to the output bus of the audio system, so we set
* the format description on the input scope of the device, using the very
* obvious element value of 0 to indicate the output bus.
*
* http://developer.apple.com/technotes/tn2002/tn2091.html
*/
if (AudioUnitSetProperty(s->output_unit, kAudioUnitProperty_StreamFormat,
kAudioUnitScope_Input, 0, &fmt, sizeof(AudioStreamBasicDescription)) != 0) {
return SA_ERROR_NOT_SUPPORTED;
}
if (AudioUnitInitialize(s->output_unit) != 0) {
return SA_ERROR_SYSTEM;
}
return SA_SUCCESS;
}
int
sa_stream_destroy(sa_stream_t *s) {
if (s == NULL) {
return SA_SUCCESS;
}
pthread_mutex_lock(&s->mutex);
/*
* Shut down the audio output device.
*/
int result = SA_SUCCESS;
if (s->output_unit != NULL) {
if (s->playing && AudioOutputUnitStop(s->output_unit) != 0) {
result = SA_ERROR_SYSTEM;
}
if (AudioUnitUninitialize(s->output_unit) != 0) {
result = SA_ERROR_SYSTEM;
}
if (CloseComponent(s->output_unit) != noErr) {
result = SA_ERROR_SYSTEM;
}
}
pthread_mutex_unlock(&s->mutex);
/*
* Release resources.
*/
if (pthread_mutex_destroy(&s->mutex) != 0) {
result = SA_ERROR_SYSTEM;
}
while (s->bl_head != NULL) {
sa_buf * next = s->bl_head->next;
free(s->bl_head);
s->bl_head = next;
}
free(s);
return result;
}
/*
* -----------------------------------------------------------------------------
* Data read and write functions
* -----------------------------------------------------------------------------
*/
int
sa_stream_write(sa_stream_t *s, const void *data, size_t nbytes) {
if (s == NULL || s->output_unit == NULL) {
return SA_ERROR_NO_INIT;
}
if (nbytes == 0) {
return SA_SUCCESS;
}
pthread_mutex_lock(&s->mutex);
/*
* Append the new data to the end of our buffer list.
*/
int result = SA_SUCCESS;
while (1) {
unsigned int avail = s->bl_tail->size - s->bl_tail->end;
if (nbytes <= avail) {
/*
* The new data will fit into the current tail buffer, so
* just copy it in and we're done.
*/
memcpy(s->bl_tail->data + s->bl_tail->end, data, nbytes);
s->bl_tail->end += nbytes;
break;
} else {
/*
* Copy what we can into the tail and allocate a new buffer
* for the rest.
*/
memcpy(s->bl_tail->data + s->bl_tail->end, data, avail);
s->bl_tail->end += avail;
data = ((unsigned char *)data) + avail;
nbytes -= avail;
/*
* If we still have data left to copy but we've hit the limit of
* allowable buffer allocations, we need to spin for a bit to allow
* the audio callback function to slurp some more data up.
*/
if (nbytes > 0 && s->n_bufs == BUF_LIMIT) {
#ifdef TIMING_TRACE
printf("#"); /* too much audio data */
#endif
if (!s->playing) {
/*
* We haven't even started playing yet! That means the
* BUF_SIZE/BUF_LIMIT values are too low... Not much we can
* do here; spinning won't help because the audio callback
* hasn't been enabled yet. Oh well, error time.
*/
printf("Too much audio data received before audio device enabled!\n");
result = SA_ERROR_SYSTEM;
break;
}
while (s->n_bufs == BUF_LIMIT) {
pthread_mutex_unlock(&s->mutex);
struct timespec ts = {0, 1000000};
nanosleep(&ts, NULL);
pthread_mutex_lock(&s->mutex);
}
}
/*
* Allocate a new tail buffer, and go 'round again to fill it up.
*/
if ((s->bl_tail->next = new_buffer()) == NULL) {
result = SA_ERROR_OOM;
break;
}
s->n_bufs++;
s->bl_tail = s->bl_tail->next;
} /* if (nbytes <= avail), else */
} /* while (1) */
pthread_mutex_unlock(&s->mutex);
/*
* Once we have our first block of audio data, enable the audio callback
* function. This doesn't need to be protected by the mutex, because
* s->playing is not used in the audio callback thread, and it's probably
* better not to be inside the lock when we enable the audio callback.
*/
if (!s->playing) {
s->playing = TRUE;
if (AudioOutputUnitStart(s->output_unit) != 0) {
result = SA_ERROR_SYSTEM;
}
}
return result;
}
static OSStatus
audio_callback(
void * arg,
AudioUnitRenderActionFlags * action_flags,
const AudioTimeStamp * time_stamp,
UInt32 bus_num,
UInt32 n_frames,
AudioBufferList * data
) {
#ifdef TIMING_TRACE
printf("."); /* audio read 'tick' */
#endif
/*
* We're dealing with interleaved data, so the system should only
* have provided one buffer to be filled.
*/
assert(data->mNumberBuffers == 1);
sa_stream_t * s = arg;
pthread_mutex_lock(&s->mutex);
unsigned char * dst = data->mBuffers[0].mData;
unsigned int bytes_per_frame = s->n_channels * s->bytes_per_ch;
unsigned int bytes_to_copy = n_frames * bytes_per_frame;
/*
* Keep track of the number of bytes we've consumed so far. mSampleTime
* is actually the number of *frames* that have been consumed by the
* audio output unit so far. I don't know why it's a float.
*/
assert(time_stamp->mFlags & kAudioTimeStampSampleTimeValid);
s->bytes_played = (int64_t)time_stamp->mSampleTime * bytes_per_frame;
/*
* Consume data from the start of the buffer list.
*/
while (1) {
assert(s->bl_head->start <= s->bl_head->end);
unsigned int avail = s->bl_head->end - s->bl_head->start;
if (avail >= bytes_to_copy) {
/*
* We have all we need in the head buffer, so just grab it and go.
*/
memcpy(dst, s->bl_head->data + s->bl_head->start, bytes_to_copy);
s->bl_head->start += bytes_to_copy;
break;
} else {
/*
* Copy what we can from the head and move on to the next buffer.
*/
memcpy(dst, s->bl_head->data + s->bl_head->start, avail);
s->bl_head->start += avail;
dst += avail;
bytes_to_copy -= avail;
/*
* We want to free the now-empty buffer, but not if it's also the
* current tail. If it is the tail, we don't have enough data to fill
* the destination buffer, so we'll just zero it out and give up.
*/
sa_buf * next = s->bl_head->next;
if (next == NULL) {
#ifdef TIMING_TRACE
printf("!"); /* not enough audio data */
#endif
memset(dst, 0, bytes_to_copy);
break;
}
free(s->bl_head);
s->bl_head = next;
s->n_bufs--;
} /* if (avail >= bytes_to_copy), else */
} /* while (1) */
pthread_mutex_unlock(&s->mutex);
return noErr;
}
/*
* -----------------------------------------------------------------------------
* General query and support functions
* -----------------------------------------------------------------------------
*/
int
sa_stream_get_write_size(sa_stream_t *s, size_t *size) {
if (s == NULL || s->output_unit == NULL) {
return SA_ERROR_NO_INIT;
}
pthread_mutex_lock(&s->mutex);
/*
* Sum up the used portions of our buffers and subtract that from
* the pre-defined max allowed allocation.
*/
sa_buf * b;
size_t used = 0;
for (b = s->bl_head; b != NULL; b = b->next) {
used += b->end - b->start;
}
*size = BUF_SIZE * BUF_LIMIT - used;
pthread_mutex_unlock(&s->mutex);
return SA_SUCCESS;
}
int
sa_stream_get_position(sa_stream_t *s, sa_position_t position, int64_t *pos) {
if (s == NULL || s->output_unit == NULL) {
return SA_ERROR_NO_INIT;
}
if (position != SA_POSITION_WRITE_SOFTWARE) {
return SA_ERROR_NOT_SUPPORTED;
}
pthread_mutex_lock(&s->mutex);
*pos = s->bytes_played;
pthread_mutex_unlock(&s->mutex);
return SA_SUCCESS;
}
int
sa_stream_pause(sa_stream_t *s) {
if (s == NULL || s->output_unit == NULL) {
return SA_ERROR_NO_INIT;
}
pthread_mutex_lock(&s->mutex);
AudioOutputUnitStop(s->output_unit);
pthread_mutex_unlock(&s->mutex);
return SA_SUCCESS;
}
int
sa_stream_resume(sa_stream_t *s) {
if (s == NULL || s->output_unit == NULL) {
return SA_ERROR_NO_INIT;
}
pthread_mutex_lock(&s->mutex);
/*
* The audio device resets its mSampleTime counter after pausing,
* so we need to clear our tracking value to keep that in sync.
*/
s->bytes_played = 0;
AudioOutputUnitStart(s->output_unit);
pthread_mutex_unlock(&s->mutex);
return SA_SUCCESS;
}
static sa_buf *
new_buffer(void) {
sa_buf * b = malloc(sizeof(sa_buf) + BUF_SIZE);
if (b != NULL) {
b->size = BUF_SIZE;
b->start = 0;
b->end = 0;
b->next = NULL;
}
return b;
}
/*
* -----------------------------------------------------------------------------
* Extension functions
* -----------------------------------------------------------------------------
*/
int
sa_stream_set_volume_abs(sa_stream_t *s, float vol) {
if (s == NULL || s->output_unit == NULL) {
return SA_ERROR_NO_INIT;
}
pthread_mutex_lock(&s->mutex);
AudioUnitSetParameter(s->output_unit, kHALOutputParam_Volume,
kAudioUnitParameterFlag_Output, 0, vol, 0);
pthread_mutex_unlock(&s->mutex);
return SA_SUCCESS;
}
int
sa_stream_get_volume_abs(sa_stream_t *s, float *vol) {
if (s == NULL || s->output_unit == NULL) {
return SA_ERROR_NO_INIT;
}
pthread_mutex_lock(&s->mutex);
Float32 local_vol = 0;
AudioUnitGetParameter(s->output_unit, kHALOutputParam_Volume,
kAudioUnitParameterFlag_Output, 0, &local_vol);
*vol = local_vol;
pthread_mutex_unlock(&s->mutex);
return SA_SUCCESS;
}
/*
* -----------------------------------------------------------------------------
* Unsupported functions
* -----------------------------------------------------------------------------
*/
#define UNSUPPORTED(func) func { return SA_ERROR_NOT_SUPPORTED; }
UNSUPPORTED(int sa_stream_create_opaque(sa_stream_t **s, const char *client_name, sa_mode_t mode, const char *codec))
UNSUPPORTED(int sa_stream_set_write_lower_watermark(sa_stream_t *s, size_t size))
UNSUPPORTED(int sa_stream_set_read_lower_watermark(sa_stream_t *s, size_t size))
UNSUPPORTED(int sa_stream_set_write_upper_watermark(sa_stream_t *s, size_t size))
UNSUPPORTED(int sa_stream_set_read_upper_watermark(sa_stream_t *s, size_t size))
UNSUPPORTED(int sa_stream_set_channel_map(sa_stream_t *s, const sa_channel_t map[], unsigned int n))
UNSUPPORTED(int sa_stream_set_xrun_mode(sa_stream_t *s, sa_xrun_mode_t mode))
UNSUPPORTED(int sa_stream_set_non_interleaved(sa_stream_t *s, int enable))
UNSUPPORTED(int sa_stream_set_dynamic_rate(sa_stream_t *s, int enable))
UNSUPPORTED(int sa_stream_set_driver(sa_stream_t *s, const char *driver))
UNSUPPORTED(int sa_stream_start_thread(sa_stream_t *s, sa_event_callback_t callback))
UNSUPPORTED(int sa_stream_stop_thread(sa_stream_t *s))
UNSUPPORTED(int sa_stream_change_device(sa_stream_t *s, const char *device_name))
UNSUPPORTED(int sa_stream_change_read_volume(sa_stream_t *s, const int32_t vol[], unsigned int n))
UNSUPPORTED(int sa_stream_change_write_volume(sa_stream_t *s, const int32_t vol[], unsigned int n))
UNSUPPORTED(int sa_stream_change_rate(sa_stream_t *s, unsigned int rate))
UNSUPPORTED(int sa_stream_change_meta_data(sa_stream_t *s, const char *name, const void *data, size_t size))
UNSUPPORTED(int sa_stream_change_user_data(sa_stream_t *s, const void *value))
UNSUPPORTED(int sa_stream_set_adjust_rate(sa_stream_t *s, sa_adjust_t direction))
UNSUPPORTED(int sa_stream_set_adjust_nchannels(sa_stream_t *s, sa_adjust_t direction))
UNSUPPORTED(int sa_stream_set_adjust_pcm_format(sa_stream_t *s, sa_adjust_t direction))
UNSUPPORTED(int sa_stream_set_adjust_watermarks(sa_stream_t *s, sa_adjust_t direction))
UNSUPPORTED(int sa_stream_get_mode(sa_stream_t *s, sa_mode_t *access_mode))
UNSUPPORTED(int sa_stream_get_codec(sa_stream_t *s, char *codec, size_t *size))
UNSUPPORTED(int sa_stream_get_pcm_format(sa_stream_t *s, sa_pcm_format_t *format))
UNSUPPORTED(int sa_stream_get_rate(sa_stream_t *s, unsigned int *rate))
UNSUPPORTED(int sa_stream_get_nchannels(sa_stream_t *s, int *nchannels))
UNSUPPORTED(int sa_stream_get_user_data(sa_stream_t *s, void **value))
UNSUPPORTED(int sa_stream_get_write_lower_watermark(sa_stream_t *s, size_t *size))
UNSUPPORTED(int sa_stream_get_read_lower_watermark(sa_stream_t *s, size_t *size))
UNSUPPORTED(int sa_stream_get_write_upper_watermark(sa_stream_t *s, size_t *size))
UNSUPPORTED(int sa_stream_get_read_upper_watermark(sa_stream_t *s, size_t *size))
UNSUPPORTED(int sa_stream_get_channel_map(sa_stream_t *s, sa_channel_t map[], unsigned int *n))
UNSUPPORTED(int sa_stream_get_xrun_mode(sa_stream_t *s, sa_xrun_mode_t *mode))
UNSUPPORTED(int sa_stream_get_non_interleaved(sa_stream_t *s, int *enabled))
UNSUPPORTED(int sa_stream_get_dynamic_rate(sa_stream_t *s, int *enabled))
UNSUPPORTED(int sa_stream_get_driver(sa_stream_t *s, char *driver_name, size_t *size))
UNSUPPORTED(int sa_stream_get_device(sa_stream_t *s, char *device_name, size_t *size))
UNSUPPORTED(int sa_stream_get_read_volume(sa_stream_t *s, int32_t vol[], unsigned int *n))
UNSUPPORTED(int sa_stream_get_write_volume(sa_stream_t *s, int32_t vol[], unsigned int *n))
UNSUPPORTED(int sa_stream_get_meta_data(sa_stream_t *s, const char *name, void*data, size_t *size))
UNSUPPORTED(int sa_stream_get_adjust_rate(sa_stream_t *s, sa_adjust_t *direction))
UNSUPPORTED(int sa_stream_get_adjust_nchannels(sa_stream_t *s, sa_adjust_t *direction))
UNSUPPORTED(int sa_stream_get_adjust_pcm_format(sa_stream_t *s, sa_adjust_t *direction))
UNSUPPORTED(int sa_stream_get_adjust_watermarks(sa_stream_t *s, sa_adjust_t *direction))
UNSUPPORTED(int sa_stream_get_state(sa_stream_t *s, sa_state_t *state))
UNSUPPORTED(int sa_stream_get_event_error(sa_stream_t *s, sa_error_t *error))
UNSUPPORTED(int sa_stream_get_event_notify(sa_stream_t *s, sa_notify_t *notify))
UNSUPPORTED(int sa_stream_read(sa_stream_t *s, void *data, size_t nbytes))
UNSUPPORTED(int sa_stream_read_ni(sa_stream_t *s, unsigned int channel, void *data, size_t nbytes))
UNSUPPORTED(int sa_stream_write_ni(sa_stream_t *s, unsigned int channel, const void *data, size_t nbytes))
UNSUPPORTED(int sa_stream_pwrite(sa_stream_t *s, const void *data, size_t nbytes, int64_t offset, sa_seek_t whence))
UNSUPPORTED(int sa_stream_pwrite_ni(sa_stream_t *s, unsigned int channel, const void *data, size_t nbytes, int64_t offset, sa_seek_t whence))
UNSUPPORTED(int sa_stream_get_read_size(sa_stream_t *s, size_t *size))
UNSUPPORTED(int sa_stream_drain(sa_stream_t *s))
const char *sa_strerror(int code) { return NULL; }