pjs/media/libtheora/lib/decode.c

2944 строки
102 KiB
C

/********************************************************************
* *
* THIS FILE IS PART OF THE OggTheora SOFTWARE CODEC SOURCE CODE. *
* USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS *
* GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE *
* IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING. *
* *
* THE Theora SOURCE CODE IS COPYRIGHT (C) 2002-2009 *
* by the Xiph.Org Foundation and contributors http://www.xiph.org/ *
* *
********************************************************************
function:
last mod: $Id: decode.c 16581 2009-09-25 22:56:16Z gmaxwell $
********************************************************************/
#include <stdlib.h>
#include <string.h>
#include <ogg/ogg.h>
#include "decint.h"
#if defined(OC_DUMP_IMAGES)
# include <stdio.h>
# include "png.h"
#endif
#if defined(HAVE_CAIRO)
# include <cairo.h>
#endif
/*No post-processing.*/
#define OC_PP_LEVEL_DISABLED (0)
/*Keep track of DC qi for each block only.*/
#define OC_PP_LEVEL_TRACKDCQI (1)
/*Deblock the luma plane.*/
#define OC_PP_LEVEL_DEBLOCKY (2)
/*Dering the luma plane.*/
#define OC_PP_LEVEL_DERINGY (3)
/*Stronger luma plane deringing.*/
#define OC_PP_LEVEL_SDERINGY (4)
/*Deblock the chroma planes.*/
#define OC_PP_LEVEL_DEBLOCKC (5)
/*Dering the chroma planes.*/
#define OC_PP_LEVEL_DERINGC (6)
/*Stronger chroma plane deringing.*/
#define OC_PP_LEVEL_SDERINGC (7)
/*Maximum valid post-processing level.*/
#define OC_PP_LEVEL_MAX (7)
/*The mode alphabets for the various mode coding schemes.
Scheme 0 uses a custom alphabet, which is not stored in this table.*/
static const unsigned char OC_MODE_ALPHABETS[7][OC_NMODES]={
/*Last MV dominates */
{
OC_MODE_INTER_MV_LAST,OC_MODE_INTER_MV_LAST2,OC_MODE_INTER_MV,
OC_MODE_INTER_NOMV,OC_MODE_INTRA,OC_MODE_GOLDEN_NOMV,OC_MODE_GOLDEN_MV,
OC_MODE_INTER_MV_FOUR
},
{
OC_MODE_INTER_MV_LAST,OC_MODE_INTER_MV_LAST2,OC_MODE_INTER_NOMV,
OC_MODE_INTER_MV,OC_MODE_INTRA,OC_MODE_GOLDEN_NOMV,OC_MODE_GOLDEN_MV,
OC_MODE_INTER_MV_FOUR
},
{
OC_MODE_INTER_MV_LAST,OC_MODE_INTER_MV,OC_MODE_INTER_MV_LAST2,
OC_MODE_INTER_NOMV,OC_MODE_INTRA,OC_MODE_GOLDEN_NOMV,OC_MODE_GOLDEN_MV,
OC_MODE_INTER_MV_FOUR
},
{
OC_MODE_INTER_MV_LAST,OC_MODE_INTER_MV,OC_MODE_INTER_NOMV,
OC_MODE_INTER_MV_LAST2,OC_MODE_INTRA,OC_MODE_GOLDEN_NOMV,
OC_MODE_GOLDEN_MV,OC_MODE_INTER_MV_FOUR
},
/*No MV dominates.*/
{
OC_MODE_INTER_NOMV,OC_MODE_INTER_MV_LAST,OC_MODE_INTER_MV_LAST2,
OC_MODE_INTER_MV,OC_MODE_INTRA,OC_MODE_GOLDEN_NOMV,OC_MODE_GOLDEN_MV,
OC_MODE_INTER_MV_FOUR
},
{
OC_MODE_INTER_NOMV,OC_MODE_GOLDEN_NOMV,OC_MODE_INTER_MV_LAST,
OC_MODE_INTER_MV_LAST2,OC_MODE_INTER_MV,OC_MODE_INTRA,OC_MODE_GOLDEN_MV,
OC_MODE_INTER_MV_FOUR
},
/*Default ordering.*/
{
OC_MODE_INTER_NOMV,OC_MODE_INTRA,OC_MODE_INTER_MV,OC_MODE_INTER_MV_LAST,
OC_MODE_INTER_MV_LAST2,OC_MODE_GOLDEN_NOMV,OC_MODE_GOLDEN_MV,
OC_MODE_INTER_MV_FOUR
}
};
/*The original DCT tokens are extended and reordered during the construction of
the Huffman tables.
The extension means more bits can be read with fewer calls to the bitpacker
during the Huffman decoding process (at the cost of larger Huffman tables),
and fewer tokens require additional extra bits (reducing the average storage
per decoded token).
The revised ordering reveals essential information in the token value
itself; specifically, whether or not there are additional extra bits to read
and the parameter to which those extra bits are applied.
The token is used to fetch a code word from the OC_DCT_CODE_WORD table below.
The extra bits are added into code word at the bit position inferred from the
token value, giving the final code word from which all required parameters
are derived.
The number of EOBs and the leading zero run length can be extracted directly.
The coefficient magnitude is optionally negated before extraction, according
to a 'flip' bit.*/
/*The number of additional extra bits that are decoded with each of the
internal DCT tokens.*/
static const unsigned char OC_INTERNAL_DCT_TOKEN_EXTRA_BITS[15]={
12,4,3,3,4,4,5,5,8,8,8,8,3,3,6
};
/*Whether or not an internal token needs any additional extra bits.*/
#define OC_DCT_TOKEN_NEEDS_MORE(token) \
(token<(sizeof(OC_INTERNAL_DCT_TOKEN_EXTRA_BITS)/ \
sizeof(*OC_INTERNAL_DCT_TOKEN_EXTRA_BITS)))
/*This token (OC_DCT_REPEAT_RUN3_TOKEN) requires more than 8 extra bits.*/
#define OC_DCT_TOKEN_FAT_EOB (0)
/*The number of EOBs to use for an end-of-frame token.
Note: We want to set eobs to PTRDIFF_MAX here, but that requires C99, which
is not yet available everywhere; this should be equivalent.*/
#define OC_DCT_EOB_FINISH (~(size_t)0>>1)
/*The location of the (6) run legth bits in the code word.
These are placed at index 0 and given 8 bits (even though 6 would suffice)
because it may be faster to extract the lower byte on some platforms.*/
#define OC_DCT_CW_RLEN_SHIFT (0)
/*The location of the (12) EOB bits in the code word.*/
#define OC_DCT_CW_EOB_SHIFT (8)
/*The location of the (1) flip bit in the code word.
This must be right under the magnitude bits.*/
#define OC_DCT_CW_FLIP_BIT (20)
/*The location of the (11) token magnitude bits in the code word.
These must be last, and rely on a sign-extending right shift.*/
#define OC_DCT_CW_MAG_SHIFT (21)
/*Pack the given fields into a code word.*/
#define OC_DCT_CW_PACK(_eobs,_rlen,_mag,_flip) \
((_eobs)<<OC_DCT_CW_EOB_SHIFT| \
(_rlen)<<OC_DCT_CW_RLEN_SHIFT| \
(_flip)<<OC_DCT_CW_FLIP_BIT| \
(_mag)-(_flip)<<OC_DCT_CW_MAG_SHIFT)
/*A special code word value that signals the end of the frame (a long EOB run
of zero).*/
#define OC_DCT_CW_FINISH (0)
/*The position at which to insert the extra bits in the code word.
We use this formulation because Intel has no useful cmov.
A real architecture would probably do better with two of those.
This translates to 11 instructions(!), and is _still_ faster than either a
table lookup (just barely) or the naive double-ternary implementation (which
gcc translates to a jump and a cmov).
This assumes OC_DCT_CW_RLEN_SHIFT is zero, but could easily be reworked if
you want to make one of the other shifts zero.*/
#define OC_DCT_TOKEN_EB_POS(_token) \
((OC_DCT_CW_EOB_SHIFT-OC_DCT_CW_MAG_SHIFT&-((_token)<2)) \
+(OC_DCT_CW_MAG_SHIFT&-((_token)<12)))
/*The code words for each internal token.
See the notes at OC_DCT_TOKEN_MAP for the reasons why things are out of
order.*/
static const ogg_int32_t OC_DCT_CODE_WORD[92]={
/*These tokens require additional extra bits for the EOB count.*/
/*OC_DCT_REPEAT_RUN3_TOKEN (12 extra bits)*/
OC_DCT_CW_FINISH,
/*OC_DCT_REPEAT_RUN2_TOKEN (4 extra bits)*/
OC_DCT_CW_PACK(16, 0, 0,0),
/*These tokens require additional extra bits for the magnitude.*/
/*OC_DCT_VAL_CAT5 (4 extra bits-1 already read)*/
OC_DCT_CW_PACK( 0, 0, 13,0),
OC_DCT_CW_PACK( 0, 0, 13,1),
/*OC_DCT_VAL_CAT6 (5 extra bits-1 already read)*/
OC_DCT_CW_PACK( 0, 0, 21,0),
OC_DCT_CW_PACK( 0, 0, 21,1),
/*OC_DCT_VAL_CAT7 (6 extra bits-1 already read)*/
OC_DCT_CW_PACK( 0, 0, 37,0),
OC_DCT_CW_PACK( 0, 0, 37,1),
/*OC_DCT_VAL_CAT8 (10 extra bits-2 already read)*/
OC_DCT_CW_PACK( 0, 0, 69,0),
OC_DCT_CW_PACK( 0, 0,325,0),
OC_DCT_CW_PACK( 0, 0, 69,1),
OC_DCT_CW_PACK( 0, 0,325,1),
/*These tokens require additional extra bits for the run length.*/
/*OC_DCT_RUN_CAT1C (4 extra bits-1 already read)*/
OC_DCT_CW_PACK( 0,10, +1,0),
OC_DCT_CW_PACK( 0,10, -1,0),
/*OC_DCT_ZRL_TOKEN (6 extra bits)
Flip is set to distinguish this from OC_DCT_CW_FINISH.*/
OC_DCT_CW_PACK( 0, 0, 0,1),
/*The remaining tokens require no additional extra bits.*/
/*OC_DCT_EOB1_TOKEN (0 extra bits)*/
OC_DCT_CW_PACK( 1, 0, 0,0),
/*OC_DCT_EOB2_TOKEN (0 extra bits)*/
OC_DCT_CW_PACK( 2, 0, 0,0),
/*OC_DCT_EOB3_TOKEN (0 extra bits)*/
OC_DCT_CW_PACK( 3, 0, 0,0),
/*OC_DCT_RUN_CAT1A (1 extra bit-1 already read)x5*/
OC_DCT_CW_PACK( 0, 1, +1,0),
OC_DCT_CW_PACK( 0, 1, -1,0),
OC_DCT_CW_PACK( 0, 2, +1,0),
OC_DCT_CW_PACK( 0, 2, -1,0),
OC_DCT_CW_PACK( 0, 3, +1,0),
OC_DCT_CW_PACK( 0, 3, -1,0),
OC_DCT_CW_PACK( 0, 4, +1,0),
OC_DCT_CW_PACK( 0, 4, -1,0),
OC_DCT_CW_PACK( 0, 5, +1,0),
OC_DCT_CW_PACK( 0, 5, -1,0),
/*OC_DCT_RUN_CAT2A (2 extra bits-2 already read)*/
OC_DCT_CW_PACK( 0, 1, +2,0),
OC_DCT_CW_PACK( 0, 1, +3,0),
OC_DCT_CW_PACK( 0, 1, -2,0),
OC_DCT_CW_PACK( 0, 1, -3,0),
/*OC_DCT_RUN_CAT1B (3 extra bits-3 already read)*/
OC_DCT_CW_PACK( 0, 6, +1,0),
OC_DCT_CW_PACK( 0, 7, +1,0),
OC_DCT_CW_PACK( 0, 8, +1,0),
OC_DCT_CW_PACK( 0, 9, +1,0),
OC_DCT_CW_PACK( 0, 6, -1,0),
OC_DCT_CW_PACK( 0, 7, -1,0),
OC_DCT_CW_PACK( 0, 8, -1,0),
OC_DCT_CW_PACK( 0, 9, -1,0),
/*OC_DCT_RUN_CAT2B (3 extra bits-3 already read)*/
OC_DCT_CW_PACK( 0, 2, +2,0),
OC_DCT_CW_PACK( 0, 3, +2,0),
OC_DCT_CW_PACK( 0, 2, +3,0),
OC_DCT_CW_PACK( 0, 3, +3,0),
OC_DCT_CW_PACK( 0, 2, -2,0),
OC_DCT_CW_PACK( 0, 3, -2,0),
OC_DCT_CW_PACK( 0, 2, -3,0),
OC_DCT_CW_PACK( 0, 3, -3,0),
/*OC_DCT_SHORT_ZRL_TOKEN (3 extra bits-3 already read)
Flip is set on the first one to distinguish it from OC_DCT_CW_FINISH.*/
OC_DCT_CW_PACK( 0, 0, 0,1),
OC_DCT_CW_PACK( 0, 1, 0,0),
OC_DCT_CW_PACK( 0, 2, 0,0),
OC_DCT_CW_PACK( 0, 3, 0,0),
OC_DCT_CW_PACK( 0, 4, 0,0),
OC_DCT_CW_PACK( 0, 5, 0,0),
OC_DCT_CW_PACK( 0, 6, 0,0),
OC_DCT_CW_PACK( 0, 7, 0,0),
/*OC_ONE_TOKEN (0 extra bits)*/
OC_DCT_CW_PACK( 0, 0, +1,0),
/*OC_MINUS_ONE_TOKEN (0 extra bits)*/
OC_DCT_CW_PACK( 0, 0, -1,0),
/*OC_TWO_TOKEN (0 extra bits)*/
OC_DCT_CW_PACK( 0, 0, +2,0),
/*OC_MINUS_TWO_TOKEN (0 extra bits)*/
OC_DCT_CW_PACK( 0, 0, -2,0),
/*OC_DCT_VAL_CAT2 (1 extra bit-1 already read)x4*/
OC_DCT_CW_PACK( 0, 0, +3,0),
OC_DCT_CW_PACK( 0, 0, -3,0),
OC_DCT_CW_PACK( 0, 0, +4,0),
OC_DCT_CW_PACK( 0, 0, -4,0),
OC_DCT_CW_PACK( 0, 0, +5,0),
OC_DCT_CW_PACK( 0, 0, -5,0),
OC_DCT_CW_PACK( 0, 0, +6,0),
OC_DCT_CW_PACK( 0, 0, -6,0),
/*OC_DCT_VAL_CAT3 (2 extra bits-2 already read)*/
OC_DCT_CW_PACK( 0, 0, +7,0),
OC_DCT_CW_PACK( 0, 0, +8,0),
OC_DCT_CW_PACK( 0, 0, -7,0),
OC_DCT_CW_PACK( 0, 0, -8,0),
/*OC_DCT_VAL_CAT4 (3 extra bits-3 already read)*/
OC_DCT_CW_PACK( 0, 0, +9,0),
OC_DCT_CW_PACK( 0, 0,+10,0),
OC_DCT_CW_PACK( 0, 0,+11,0),
OC_DCT_CW_PACK( 0, 0,+12,0),
OC_DCT_CW_PACK( 0, 0, -9,0),
OC_DCT_CW_PACK( 0, 0,-10,0),
OC_DCT_CW_PACK( 0, 0,-11,0),
OC_DCT_CW_PACK( 0, 0,-12,0),
/*OC_DCT_REPEAT_RUN1_TOKEN (3 extra bits-3 already read)*/
OC_DCT_CW_PACK( 8, 0, 0,0),
OC_DCT_CW_PACK( 9, 0, 0,0),
OC_DCT_CW_PACK(10, 0, 0,0),
OC_DCT_CW_PACK(11, 0, 0,0),
OC_DCT_CW_PACK(12, 0, 0,0),
OC_DCT_CW_PACK(13, 0, 0,0),
OC_DCT_CW_PACK(14, 0, 0,0),
OC_DCT_CW_PACK(15, 0, 0,0),
/*OC_DCT_REPEAT_RUN0_TOKEN (2 extra bits-2 already read)*/
OC_DCT_CW_PACK( 4, 0, 0,0),
OC_DCT_CW_PACK( 5, 0, 0,0),
OC_DCT_CW_PACK( 6, 0, 0,0),
OC_DCT_CW_PACK( 7, 0, 0,0),
};
static int oc_sb_run_unpack(oc_pack_buf *_opb){
long bits;
int ret;
/*Coding scheme:
Codeword Run Length
0 1
10x 2-3
110x 4-5
1110xx 6-9
11110xxx 10-17
111110xxxx 18-33
111111xxxxxxxxxxxx 34-4129*/
bits=oc_pack_read1(_opb);
if(bits==0)return 1;
bits=oc_pack_read(_opb,2);
if((bits&2)==0)return 2+(int)bits;
else if((bits&1)==0){
bits=oc_pack_read1(_opb);
return 4+(int)bits;
}
bits=oc_pack_read(_opb,3);
if((bits&4)==0)return 6+(int)bits;
else if((bits&2)==0){
ret=10+((bits&1)<<2);
bits=oc_pack_read(_opb,2);
return ret+(int)bits;
}
else if((bits&1)==0){
bits=oc_pack_read(_opb,4);
return 18+(int)bits;
}
bits=oc_pack_read(_opb,12);
return 34+(int)bits;
}
static int oc_block_run_unpack(oc_pack_buf *_opb){
long bits;
long bits2;
/*Coding scheme:
Codeword Run Length
0x 1-2
10x 3-4
110x 5-6
1110xx 7-10
11110xx 11-14
11111xxxx 15-30*/
bits=oc_pack_read(_opb,2);
if((bits&2)==0)return 1+(int)bits;
else if((bits&1)==0){
bits=oc_pack_read1(_opb);
return 3+(int)bits;
}
bits=oc_pack_read(_opb,2);
if((bits&2)==0)return 5+(int)bits;
else if((bits&1)==0){
bits=oc_pack_read(_opb,2);
return 7+(int)bits;
}
bits=oc_pack_read(_opb,3);
if((bits&4)==0)return 11+bits;
bits2=oc_pack_read(_opb,2);
return 15+((bits&3)<<2)+bits2;
}
static int oc_dec_init(oc_dec_ctx *_dec,const th_info *_info,
const th_setup_info *_setup){
int qti;
int pli;
int qi;
int ret;
ret=oc_state_init(&_dec->state,_info,3);
if(ret<0)return ret;
ret=oc_huff_trees_copy(_dec->huff_tables,
(const oc_huff_node *const *)_setup->huff_tables);
if(ret<0){
oc_state_clear(&_dec->state);
return ret;
}
/*For each fragment, allocate one byte for every DCT coefficient token, plus
one byte for extra-bits for each token, plus one more byte for the long
EOB run, just in case it's the very last token and has a run length of
one.*/
_dec->dct_tokens=(unsigned char *)_ogg_malloc((64+64+1)*
_dec->state.nfrags*sizeof(_dec->dct_tokens[0]));
if(_dec->dct_tokens==NULL){
oc_huff_trees_clear(_dec->huff_tables);
oc_state_clear(&_dec->state);
return TH_EFAULT;
}
for(qi=0;qi<64;qi++)for(pli=0;pli<3;pli++)for(qti=0;qti<2;qti++){
_dec->state.dequant_tables[qi][pli][qti]=
_dec->state.dequant_table_data[qi][pli][qti];
}
oc_dequant_tables_init(_dec->state.dequant_tables,_dec->pp_dc_scale,
&_setup->qinfo);
for(qi=0;qi<64;qi++){
int qsum;
qsum=0;
for(qti=0;qti<2;qti++)for(pli=0;pli<3;pli++){
qsum+=_dec->state.dequant_tables[qti][pli][qi][12]+
_dec->state.dequant_tables[qti][pli][qi][17]+
_dec->state.dequant_tables[qti][pli][qi][18]+
_dec->state.dequant_tables[qti][pli][qi][24]<<(pli==0);
}
_dec->pp_sharp_mod[qi]=-(qsum>>11);
}
memcpy(_dec->state.loop_filter_limits,_setup->qinfo.loop_filter_limits,
sizeof(_dec->state.loop_filter_limits));
_dec->pp_level=OC_PP_LEVEL_DISABLED;
_dec->dc_qis=NULL;
_dec->variances=NULL;
_dec->pp_frame_data=NULL;
_dec->stripe_cb.ctx=NULL;
_dec->stripe_cb.stripe_decoded=NULL;
#if defined(HAVE_CAIRO)
_dec->telemetry=0;
_dec->telemetry_bits=0;
_dec->telemetry_qi=0;
_dec->telemetry_mbmode=0;
_dec->telemetry_mv=0;
_dec->telemetry_frame_data=NULL;
#endif
return 0;
}
static void oc_dec_clear(oc_dec_ctx *_dec){
#if defined(HAVE_CAIRO)
_ogg_free(_dec->telemetry_frame_data);
#endif
_ogg_free(_dec->pp_frame_data);
_ogg_free(_dec->variances);
_ogg_free(_dec->dc_qis);
_ogg_free(_dec->dct_tokens);
oc_huff_trees_clear(_dec->huff_tables);
oc_state_clear(&_dec->state);
}
static int oc_dec_frame_header_unpack(oc_dec_ctx *_dec){
long val;
/*Check to make sure this is a data packet.*/
val=oc_pack_read1(&_dec->opb);
if(val!=0)return TH_EBADPACKET;
/*Read in the frame type (I or P).*/
val=oc_pack_read1(&_dec->opb);
_dec->state.frame_type=(int)val;
/*Read in the qi list.*/
val=oc_pack_read(&_dec->opb,6);
_dec->state.qis[0]=(unsigned char)val;
val=oc_pack_read1(&_dec->opb);
if(!val)_dec->state.nqis=1;
else{
val=oc_pack_read(&_dec->opb,6);
_dec->state.qis[1]=(unsigned char)val;
val=oc_pack_read1(&_dec->opb);
if(!val)_dec->state.nqis=2;
else{
val=oc_pack_read(&_dec->opb,6);
_dec->state.qis[2]=(unsigned char)val;
_dec->state.nqis=3;
}
}
if(_dec->state.frame_type==OC_INTRA_FRAME){
/*Keyframes have 3 unused configuration bits, holdovers from VP3 days.
Most of the other unused bits in the VP3 headers were eliminated.
I don't know why these remain.*/
/*I wanted to eliminate wasted bits, but not all config wiggle room
--Monty.*/
val=oc_pack_read(&_dec->opb,3);
if(val!=0)return TH_EIMPL;
}
return 0;
}
/*Mark all fragments as coded and in OC_MODE_INTRA.
This also builds up the coded fragment list (in coded order), and clears the
uncoded fragment list.
It does not update the coded macro block list nor the super block flags, as
those are not used when decoding INTRA frames.*/
static void oc_dec_mark_all_intra(oc_dec_ctx *_dec){
const oc_sb_map *sb_maps;
const oc_sb_flags *sb_flags;
oc_fragment *frags;
ptrdiff_t *coded_fragis;
ptrdiff_t ncoded_fragis;
ptrdiff_t prev_ncoded_fragis;
unsigned nsbs;
unsigned sbi;
int pli;
coded_fragis=_dec->state.coded_fragis;
prev_ncoded_fragis=ncoded_fragis=0;
sb_maps=(const oc_sb_map *)_dec->state.sb_maps;
sb_flags=_dec->state.sb_flags;
frags=_dec->state.frags;
sbi=nsbs=0;
for(pli=0;pli<3;pli++){
nsbs+=_dec->state.fplanes[pli].nsbs;
for(;sbi<nsbs;sbi++){
int quadi;
for(quadi=0;quadi<4;quadi++)if(sb_flags[sbi].quad_valid&1<<quadi){
int bi;
for(bi=0;bi<4;bi++){
ptrdiff_t fragi;
fragi=sb_maps[sbi][quadi][bi];
if(fragi>=0){
frags[fragi].coded=1;
frags[fragi].mb_mode=OC_MODE_INTRA;
coded_fragis[ncoded_fragis++]=fragi;
}
}
}
}
_dec->state.ncoded_fragis[pli]=ncoded_fragis-prev_ncoded_fragis;
prev_ncoded_fragis=ncoded_fragis;
}
_dec->state.ntotal_coded_fragis=ncoded_fragis;
}
/*Decodes the bit flags indicating whether each super block is partially coded
or not.
Return: The number of partially coded super blocks.*/
static unsigned oc_dec_partial_sb_flags_unpack(oc_dec_ctx *_dec){
oc_sb_flags *sb_flags;
unsigned nsbs;
unsigned sbi;
unsigned npartial;
unsigned run_count;
long val;
int flag;
val=oc_pack_read1(&_dec->opb);
flag=(int)val;
sb_flags=_dec->state.sb_flags;
nsbs=_dec->state.nsbs;
sbi=npartial=0;
while(sbi<nsbs){
int full_run;
run_count=oc_sb_run_unpack(&_dec->opb);
full_run=run_count>=4129;
do{
sb_flags[sbi].coded_partially=flag;
sb_flags[sbi].coded_fully=0;
npartial+=flag;
sbi++;
}
while(--run_count>0&&sbi<nsbs);
if(full_run&&sbi<nsbs){
val=oc_pack_read1(&_dec->opb);
flag=(int)val;
}
else flag=!flag;
}
/*TODO: run_count should be 0 here.
If it's not, we should issue a warning of some kind.*/
return npartial;
}
/*Decodes the bit flags for whether or not each non-partially-coded super
block is fully coded or not.
This function should only be called if there is at least one
non-partially-coded super block.
Return: The number of partially coded super blocks.*/
static void oc_dec_coded_sb_flags_unpack(oc_dec_ctx *_dec){
oc_sb_flags *sb_flags;
unsigned nsbs;
unsigned sbi;
unsigned run_count;
long val;
int flag;
sb_flags=_dec->state.sb_flags;
nsbs=_dec->state.nsbs;
/*Skip partially coded super blocks.*/
for(sbi=0;sb_flags[sbi].coded_partially;sbi++);
val=oc_pack_read1(&_dec->opb);
flag=(int)val;
do{
int full_run;
run_count=oc_sb_run_unpack(&_dec->opb);
full_run=run_count>=4129;
for(;sbi<nsbs;sbi++){
if(sb_flags[sbi].coded_partially)continue;
if(run_count--<=0)break;
sb_flags[sbi].coded_fully=flag;
}
if(full_run&&sbi<nsbs){
val=oc_pack_read1(&_dec->opb);
flag=(int)val;
}
else flag=!flag;
}
while(sbi<nsbs);
/*TODO: run_count should be 0 here.
If it's not, we should issue a warning of some kind.*/
}
static void oc_dec_coded_flags_unpack(oc_dec_ctx *_dec){
const oc_sb_map *sb_maps;
const oc_sb_flags *sb_flags;
oc_fragment *frags;
unsigned nsbs;
unsigned sbi;
unsigned npartial;
long val;
int pli;
int flag;
int run_count;
ptrdiff_t *coded_fragis;
ptrdiff_t *uncoded_fragis;
ptrdiff_t ncoded_fragis;
ptrdiff_t nuncoded_fragis;
ptrdiff_t prev_ncoded_fragis;
npartial=oc_dec_partial_sb_flags_unpack(_dec);
if(npartial<_dec->state.nsbs)oc_dec_coded_sb_flags_unpack(_dec);
if(npartial>0){
val=oc_pack_read1(&_dec->opb);
flag=!(int)val;
}
else flag=0;
sb_maps=(const oc_sb_map *)_dec->state.sb_maps;
sb_flags=_dec->state.sb_flags;
frags=_dec->state.frags;
sbi=nsbs=run_count=0;
coded_fragis=_dec->state.coded_fragis;
uncoded_fragis=coded_fragis+_dec->state.nfrags;
prev_ncoded_fragis=ncoded_fragis=nuncoded_fragis=0;
for(pli=0;pli<3;pli++){
nsbs+=_dec->state.fplanes[pli].nsbs;
for(;sbi<nsbs;sbi++){
int quadi;
for(quadi=0;quadi<4;quadi++)if(sb_flags[sbi].quad_valid&1<<quadi){
int bi;
for(bi=0;bi<4;bi++){
ptrdiff_t fragi;
fragi=sb_maps[sbi][quadi][bi];
if(fragi>=0){
int coded;
if(sb_flags[sbi].coded_fully)coded=1;
else if(!sb_flags[sbi].coded_partially)coded=0;
else{
if(run_count<=0){
run_count=oc_block_run_unpack(&_dec->opb);
flag=!flag;
}
run_count--;
coded=flag;
}
if(coded)coded_fragis[ncoded_fragis++]=fragi;
else *(uncoded_fragis-++nuncoded_fragis)=fragi;
frags[fragi].coded=coded;
}
}
}
}
_dec->state.ncoded_fragis[pli]=ncoded_fragis-prev_ncoded_fragis;
prev_ncoded_fragis=ncoded_fragis;
}
_dec->state.ntotal_coded_fragis=ncoded_fragis;
/*TODO: run_count should be 0 here.
If it's not, we should issue a warning of some kind.*/
}
typedef int (*oc_mode_unpack_func)(oc_pack_buf *_opb);
static int oc_vlc_mode_unpack(oc_pack_buf *_opb){
long val;
int i;
for(i=0;i<7;i++){
val=oc_pack_read1(_opb);
if(!val)break;
}
return i;
}
static int oc_clc_mode_unpack(oc_pack_buf *_opb){
long val;
val=oc_pack_read(_opb,3);
return (int)val;
}
/*Unpacks the list of macro block modes for INTER frames.*/
static void oc_dec_mb_modes_unpack(oc_dec_ctx *_dec){
const oc_mb_map *mb_maps;
signed char *mb_modes;
const oc_fragment *frags;
const unsigned char *alphabet;
unsigned char scheme0_alphabet[8];
oc_mode_unpack_func mode_unpack;
size_t nmbs;
size_t mbi;
long val;
int mode_scheme;
val=oc_pack_read(&_dec->opb,3);
mode_scheme=(int)val;
if(mode_scheme==0){
int mi;
/*Just in case, initialize the modes to something.
If the bitstream doesn't contain each index exactly once, it's likely
corrupt and the rest of the packet is garbage anyway, but this way we
won't crash, and we'll decode SOMETHING.*/
/*LOOP VECTORIZES*/
for(mi=0;mi<OC_NMODES;mi++)scheme0_alphabet[mi]=OC_MODE_INTER_NOMV;
for(mi=0;mi<OC_NMODES;mi++){
val=oc_pack_read(&_dec->opb,3);
scheme0_alphabet[val]=OC_MODE_ALPHABETS[6][mi];
}
alphabet=scheme0_alphabet;
}
else alphabet=OC_MODE_ALPHABETS[mode_scheme-1];
if(mode_scheme==7)mode_unpack=oc_clc_mode_unpack;
else mode_unpack=oc_vlc_mode_unpack;
mb_modes=_dec->state.mb_modes;
mb_maps=(const oc_mb_map *)_dec->state.mb_maps;
nmbs=_dec->state.nmbs;
frags=_dec->state.frags;
for(mbi=0;mbi<nmbs;mbi++){
if(mb_modes[mbi]!=OC_MODE_INVALID){
int bi;
/*Check for a coded luma block in this macro block.*/
for(bi=0;bi<4&&!frags[mb_maps[mbi][0][bi]].coded;bi++);
/*We found one, decode a mode.*/
if(bi<4)mb_modes[mbi]=alphabet[(*mode_unpack)(&_dec->opb)];
/*There were none: INTER_NOMV is forced.*/
else mb_modes[mbi]=OC_MODE_INTER_NOMV;
}
}
}
typedef int (*oc_mv_comp_unpack_func)(oc_pack_buf *_opb);
static int oc_vlc_mv_comp_unpack(oc_pack_buf *_opb){
long bits;
int mask;
int mv;
bits=oc_pack_read(_opb,3);
switch(bits){
case 0:return 0;
case 1:return 1;
case 2:return -1;
case 3:
case 4:{
mv=(int)(bits-1);
bits=oc_pack_read1(_opb);
}break;
/*case 5:
case 6:
case 7:*/
default:{
mv=1<<bits-3;
bits=oc_pack_read(_opb,bits-2);
mv+=(int)(bits>>1);
bits&=1;
}break;
}
mask=-(int)bits;
return mv+mask^mask;
}
static int oc_clc_mv_comp_unpack(oc_pack_buf *_opb){
long bits;
int mask;
int mv;
bits=oc_pack_read(_opb,6);
mv=(int)bits>>1;
mask=-((int)bits&1);
return mv+mask^mask;
}
/*Unpacks the list of motion vectors for INTER frames, and propagtes the macro
block modes and motion vectors to the individual fragments.*/
static void oc_dec_mv_unpack_and_frag_modes_fill(oc_dec_ctx *_dec){
const oc_mb_map *mb_maps;
const signed char *mb_modes;
oc_set_chroma_mvs_func set_chroma_mvs;
oc_mv_comp_unpack_func mv_comp_unpack;
oc_fragment *frags;
oc_mv *frag_mvs;
const unsigned char *map_idxs;
int map_nidxs;
oc_mv last_mv[2];
oc_mv cbmvs[4];
size_t nmbs;
size_t mbi;
long val;
set_chroma_mvs=OC_SET_CHROMA_MVS_TABLE[_dec->state.info.pixel_fmt];
val=oc_pack_read1(&_dec->opb);
mv_comp_unpack=val?oc_clc_mv_comp_unpack:oc_vlc_mv_comp_unpack;
map_idxs=OC_MB_MAP_IDXS[_dec->state.info.pixel_fmt];
map_nidxs=OC_MB_MAP_NIDXS[_dec->state.info.pixel_fmt];
memset(last_mv,0,sizeof(last_mv));
frags=_dec->state.frags;
frag_mvs=_dec->state.frag_mvs;
mb_maps=(const oc_mb_map *)_dec->state.mb_maps;
mb_modes=_dec->state.mb_modes;
nmbs=_dec->state.nmbs;
for(mbi=0;mbi<nmbs;mbi++){
int mb_mode;
mb_mode=mb_modes[mbi];
if(mb_mode!=OC_MODE_INVALID){
oc_mv mbmv;
ptrdiff_t fragi;
int coded[13];
int codedi;
int ncoded;
int mapi;
int mapii;
/*Search for at least one coded fragment.*/
ncoded=mapii=0;
do{
mapi=map_idxs[mapii];
fragi=mb_maps[mbi][mapi>>2][mapi&3];
if(frags[fragi].coded)coded[ncoded++]=mapi;
}
while(++mapii<map_nidxs);
if(ncoded<=0)continue;
switch(mb_mode){
case OC_MODE_INTER_MV_FOUR:{
oc_mv lbmvs[4];
int bi;
/*Mark the tail of the list, so we don't accidentally go past it.*/
coded[ncoded]=-1;
for(bi=codedi=0;bi<4;bi++){
if(coded[codedi]==bi){
codedi++;
fragi=mb_maps[mbi][0][bi];
frags[fragi].mb_mode=mb_mode;
lbmvs[bi][0]=(signed char)(*mv_comp_unpack)(&_dec->opb);
lbmvs[bi][1]=(signed char)(*mv_comp_unpack)(&_dec->opb);
memcpy(frag_mvs[fragi],lbmvs[bi],sizeof(lbmvs[bi]));
}
else lbmvs[bi][0]=lbmvs[bi][1]=0;
}
if(codedi>0){
memcpy(last_mv[1],last_mv[0],sizeof(last_mv[1]));
memcpy(last_mv[0],lbmvs[coded[codedi-1]],sizeof(last_mv[0]));
}
if(codedi<ncoded){
(*set_chroma_mvs)(cbmvs,(const oc_mv *)lbmvs);
for(;codedi<ncoded;codedi++){
mapi=coded[codedi];
bi=mapi&3;
fragi=mb_maps[mbi][mapi>>2][bi];
frags[fragi].mb_mode=mb_mode;
memcpy(frag_mvs[fragi],cbmvs[bi],sizeof(cbmvs[bi]));
}
}
}break;
case OC_MODE_INTER_MV:{
memcpy(last_mv[1],last_mv[0],sizeof(last_mv[1]));
mbmv[0]=last_mv[0][0]=(signed char)(*mv_comp_unpack)(&_dec->opb);
mbmv[1]=last_mv[0][1]=(signed char)(*mv_comp_unpack)(&_dec->opb);
}break;
case OC_MODE_INTER_MV_LAST:memcpy(mbmv,last_mv[0],sizeof(mbmv));break;
case OC_MODE_INTER_MV_LAST2:{
memcpy(mbmv,last_mv[1],sizeof(mbmv));
memcpy(last_mv[1],last_mv[0],sizeof(last_mv[1]));
memcpy(last_mv[0],mbmv,sizeof(last_mv[0]));
}break;
case OC_MODE_GOLDEN_MV:{
mbmv[0]=(signed char)(*mv_comp_unpack)(&_dec->opb);
mbmv[1]=(signed char)(*mv_comp_unpack)(&_dec->opb);
}break;
default:memset(mbmv,0,sizeof(mbmv));break;
}
/*4MV mode fills in the fragments itself.
For all other modes we can use this common code.*/
if(mb_mode!=OC_MODE_INTER_MV_FOUR){
for(codedi=0;codedi<ncoded;codedi++){
mapi=coded[codedi];
fragi=mb_maps[mbi][mapi>>2][mapi&3];
frags[fragi].mb_mode=mb_mode;
memcpy(frag_mvs[fragi],mbmv,sizeof(mbmv));
}
}
}
}
}
static void oc_dec_block_qis_unpack(oc_dec_ctx *_dec){
oc_fragment *frags;
const ptrdiff_t *coded_fragis;
ptrdiff_t ncoded_fragis;
ptrdiff_t fragii;
ptrdiff_t fragi;
ncoded_fragis=_dec->state.ntotal_coded_fragis;
if(ncoded_fragis<=0)return;
frags=_dec->state.frags;
coded_fragis=_dec->state.coded_fragis;
if(_dec->state.nqis==1){
/*If this frame has only a single qi value, then just use it for all coded
fragments.*/
for(fragii=0;fragii<ncoded_fragis;fragii++){
frags[coded_fragis[fragii]].qii=0;
}
}
else{
long val;
int flag;
int nqi1;
int run_count;
/*Otherwise, we decode a qi index for each fragment, using two passes of
the same binary RLE scheme used for super-block coded bits.
The first pass marks each fragment as having a qii of 0 or greater than
0, and the second pass (if necessary), distinguishes between a qii of
1 and 2.
At first we just store the qii in the fragment.
After all the qii's are decoded, we make a final pass to replace them
with the corresponding qi's for this frame.*/
val=oc_pack_read1(&_dec->opb);
flag=(int)val;
nqi1=0;
fragii=0;
while(fragii<ncoded_fragis){
int full_run;
run_count=oc_sb_run_unpack(&_dec->opb);
full_run=run_count>=4129;
do{
frags[coded_fragis[fragii++]].qii=flag;
nqi1+=flag;
}
while(--run_count>0&&fragii<ncoded_fragis);
if(full_run&&fragii<ncoded_fragis){
val=oc_pack_read1(&_dec->opb);
flag=(int)val;
}
else flag=!flag;
}
/*TODO: run_count should be 0 here.
If it's not, we should issue a warning of some kind.*/
/*If we have 3 different qi's for this frame, and there was at least one
fragment with a non-zero qi, make the second pass.*/
if(_dec->state.nqis==3&&nqi1>0){
/*Skip qii==0 fragments.*/
for(fragii=0;frags[coded_fragis[fragii]].qii==0;fragii++);
val=oc_pack_read1(&_dec->opb);
flag=(int)val;
do{
int full_run;
run_count=oc_sb_run_unpack(&_dec->opb);
full_run=run_count>=4129;
for(;fragii<ncoded_fragis;fragii++){
fragi=coded_fragis[fragii];
if(frags[fragi].qii==0)continue;
if(run_count--<=0)break;
frags[fragi].qii+=flag;
}
if(full_run&&fragii<ncoded_fragis){
val=oc_pack_read1(&_dec->opb);
flag=(int)val;
}
else flag=!flag;
}
while(fragii<ncoded_fragis);
/*TODO: run_count should be 0 here.
If it's not, we should issue a warning of some kind.*/
}
}
}
/*Unpacks the DC coefficient tokens.
Unlike when unpacking the AC coefficient tokens, we actually need to decode
the DC coefficient values now so that we can do DC prediction.
_huff_idx: The index of the Huffman table to use for each color plane.
_ntoks_left: The number of tokens left to be decoded in each color plane for
each coefficient.
This is updated as EOB tokens and zero run tokens are decoded.
Return: The length of any outstanding EOB run.*/
static ptrdiff_t oc_dec_dc_coeff_unpack(oc_dec_ctx *_dec,int _huff_idxs[2],
ptrdiff_t _ntoks_left[3][64]){
unsigned char *dct_tokens;
oc_fragment *frags;
const ptrdiff_t *coded_fragis;
ptrdiff_t ncoded_fragis;
ptrdiff_t fragii;
ptrdiff_t eobs;
ptrdiff_t ti;
int pli;
dct_tokens=_dec->dct_tokens;
frags=_dec->state.frags;
coded_fragis=_dec->state.coded_fragis;
ncoded_fragis=fragii=eobs=ti=0;
for(pli=0;pli<3;pli++){
ptrdiff_t run_counts[64];
ptrdiff_t eob_count;
ptrdiff_t eobi;
int rli;
ncoded_fragis+=_dec->state.ncoded_fragis[pli];
memset(run_counts,0,sizeof(run_counts));
_dec->eob_runs[pli][0]=eobs;
_dec->ti0[pli][0]=ti;
/*Continue any previous EOB run, if there was one.*/
eobi=eobs;
if(ncoded_fragis-fragii<eobi)eobi=ncoded_fragis-fragii;
eob_count=eobi;
eobs-=eobi;
while(eobi-->0)frags[coded_fragis[fragii++]].dc=0;
while(fragii<ncoded_fragis){
int token;
int cw;
int eb;
int skip;
token=oc_huff_token_decode(&_dec->opb,
_dec->huff_tables[_huff_idxs[pli+1>>1]]);
dct_tokens[ti++]=(unsigned char)token;
if(OC_DCT_TOKEN_NEEDS_MORE(token)){
eb=(int)oc_pack_read(&_dec->opb,
OC_INTERNAL_DCT_TOKEN_EXTRA_BITS[token]);
dct_tokens[ti++]=(unsigned char)eb;
if(token==OC_DCT_TOKEN_FAT_EOB)dct_tokens[ti++]=(unsigned char)(eb>>8);
eb<<=OC_DCT_TOKEN_EB_POS(token);
}
else eb=0;
cw=OC_DCT_CODE_WORD[token]+eb;
eobs=cw>>OC_DCT_CW_EOB_SHIFT&0xFFF;
if(cw==OC_DCT_CW_FINISH)eobs=OC_DCT_EOB_FINISH;
if(eobs){
eobi=OC_MINI(eobs,ncoded_fragis-fragii);
eob_count+=eobi;
eobs-=eobi;
while(eobi-->0)frags[coded_fragis[fragii++]].dc=0;
}
else{
int coeff;
skip=(unsigned char)(cw>>OC_DCT_CW_RLEN_SHIFT);
cw^=-(cw&1<<OC_DCT_CW_FLIP_BIT);
coeff=cw>>OC_DCT_CW_MAG_SHIFT;
if(skip)coeff=0;
run_counts[skip]++;
frags[coded_fragis[fragii++]].dc=coeff;
}
}
/*Add the total EOB count to the longest run length.*/
run_counts[63]+=eob_count;
/*And convert the run_counts array to a moment table.*/
for(rli=63;rli-->0;)run_counts[rli]+=run_counts[rli+1];
/*Finally, subtract off the number of coefficients that have been
accounted for by runs started in this coefficient.*/
for(rli=64;rli-->0;)_ntoks_left[pli][rli]-=run_counts[rli];
}
_dec->dct_tokens_count=ti;
return eobs;
}
/*Unpacks the AC coefficient tokens.
This can completely discard coefficient values while unpacking, and so is
somewhat simpler than unpacking the DC coefficient tokens.
_huff_idx: The index of the Huffman table to use for each color plane.
_ntoks_left: The number of tokens left to be decoded in each color plane for
each coefficient.
This is updated as EOB tokens and zero run tokens are decoded.
_eobs: The length of any outstanding EOB run from previous
coefficients.
Return: The length of any outstanding EOB run.*/
static int oc_dec_ac_coeff_unpack(oc_dec_ctx *_dec,int _zzi,int _huff_idxs[2],
ptrdiff_t _ntoks_left[3][64],ptrdiff_t _eobs){
unsigned char *dct_tokens;
ptrdiff_t ti;
int pli;
dct_tokens=_dec->dct_tokens;
ti=_dec->dct_tokens_count;
for(pli=0;pli<3;pli++){
ptrdiff_t run_counts[64];
ptrdiff_t eob_count;
size_t ntoks_left;
size_t ntoks;
int rli;
_dec->eob_runs[pli][_zzi]=_eobs;
_dec->ti0[pli][_zzi]=ti;
ntoks_left=_ntoks_left[pli][_zzi];
memset(run_counts,0,sizeof(run_counts));
eob_count=0;
ntoks=0;
while(ntoks+_eobs<ntoks_left){
int token;
int cw;
int eb;
int skip;
ntoks+=_eobs;
eob_count+=_eobs;
token=oc_huff_token_decode(&_dec->opb,
_dec->huff_tables[_huff_idxs[pli+1>>1]]);
dct_tokens[ti++]=(unsigned char)token;
if(OC_DCT_TOKEN_NEEDS_MORE(token)){
eb=(int)oc_pack_read(&_dec->opb,
OC_INTERNAL_DCT_TOKEN_EXTRA_BITS[token]);
dct_tokens[ti++]=(unsigned char)eb;
if(token==OC_DCT_TOKEN_FAT_EOB)dct_tokens[ti++]=(unsigned char)(eb>>8);
eb<<=OC_DCT_TOKEN_EB_POS(token);
}
else eb=0;
cw=OC_DCT_CODE_WORD[token]+eb;
skip=(unsigned char)(cw>>OC_DCT_CW_RLEN_SHIFT);
_eobs=cw>>OC_DCT_CW_EOB_SHIFT&0xFFF;
if(cw==OC_DCT_CW_FINISH)_eobs=OC_DCT_EOB_FINISH;
if(_eobs==0){
run_counts[skip]++;
ntoks++;
}
}
/*Add the portion of the last EOB run actually used by this coefficient.*/
eob_count+=ntoks_left-ntoks;
/*And remove it from the remaining EOB count.*/
_eobs-=ntoks_left-ntoks;
/*Add the total EOB count to the longest run length.*/
run_counts[63]+=eob_count;
/*And convert the run_counts array to a moment table.*/
for(rli=63;rli-->0;)run_counts[rli]+=run_counts[rli+1];
/*Finally, subtract off the number of coefficients that have been
accounted for by runs started in this coefficient.*/
for(rli=64-_zzi;rli-->0;)_ntoks_left[pli][_zzi+rli]-=run_counts[rli];
}
_dec->dct_tokens_count=ti;
return _eobs;
}
/*Tokens describing the DCT coefficients that belong to each fragment are
stored in the bitstream grouped by coefficient, not by fragment.
This means that we either decode all the tokens in order, building up a
separate coefficient list for each fragment as we go, and then go back and
do the iDCT on each fragment, or we have to create separate lists of tokens
for each coefficient, so that we can pull the next token required off the
head of the appropriate list when decoding a specific fragment.
The former was VP3's choice, and it meant 2*w*h extra storage for all the
decoded coefficient values.
We take the second option, which lets us store just one to three bytes per
token (generally far fewer than the number of coefficients, due to EOB
tokens and zero runs), and which requires us to only maintain a counter for
each of the 64 coefficients, instead of a counter for every fragment to
determine where the next token goes.
We actually use 3 counters per coefficient, one for each color plane, so we
can decode all color planes simultaneously.
This lets color conversion, etc., be done as soon as a full MCU (one or
two super block rows) is decoded, while the image data is still in cache.*/
static void oc_dec_residual_tokens_unpack(oc_dec_ctx *_dec){
static const unsigned char OC_HUFF_LIST_MAX[5]={1,6,15,28,64};
ptrdiff_t ntoks_left[3][64];
int huff_idxs[2];
ptrdiff_t eobs;
long val;
int pli;
int zzi;
int hgi;
for(pli=0;pli<3;pli++)for(zzi=0;zzi<64;zzi++){
ntoks_left[pli][zzi]=_dec->state.ncoded_fragis[pli];
}
val=oc_pack_read(&_dec->opb,4);
huff_idxs[0]=(int)val;
val=oc_pack_read(&_dec->opb,4);
huff_idxs[1]=(int)val;
_dec->eob_runs[0][0]=0;
eobs=oc_dec_dc_coeff_unpack(_dec,huff_idxs,ntoks_left);
#if defined(HAVE_CAIRO)
_dec->telemetry_dc_bytes=oc_pack_bytes_left(&_dec->opb);
#endif
val=oc_pack_read(&_dec->opb,4);
huff_idxs[0]=(int)val;
val=oc_pack_read(&_dec->opb,4);
huff_idxs[1]=(int)val;
zzi=1;
for(hgi=1;hgi<5;hgi++){
huff_idxs[0]+=16;
huff_idxs[1]+=16;
for(;zzi<OC_HUFF_LIST_MAX[hgi];zzi++){
eobs=oc_dec_ac_coeff_unpack(_dec,zzi,huff_idxs,ntoks_left,eobs);
}
}
/*TODO: eobs should be exactly zero, or 4096 or greater.
The second case occurs when an EOB run of size zero is encountered, which
gets treated as an infinite EOB run (where infinity is PTRDIFF_MAX).
If neither of these conditions holds, then a warning should be issued.*/
}
static int oc_dec_postprocess_init(oc_dec_ctx *_dec){
/*pp_level 0: disabled; free any memory used and return*/
if(_dec->pp_level<=OC_PP_LEVEL_DISABLED){
if(_dec->dc_qis!=NULL){
_ogg_free(_dec->dc_qis);
_dec->dc_qis=NULL;
_ogg_free(_dec->variances);
_dec->variances=NULL;
_ogg_free(_dec->pp_frame_data);
_dec->pp_frame_data=NULL;
}
return 1;
}
if(_dec->dc_qis==NULL){
/*If we haven't been tracking DC quantization indices, there's no point in
starting now.*/
if(_dec->state.frame_type!=OC_INTRA_FRAME)return 1;
_dec->dc_qis=(unsigned char *)_ogg_malloc(
_dec->state.nfrags*sizeof(_dec->dc_qis[0]));
if(_dec->dc_qis==NULL)return 1;
memset(_dec->dc_qis,_dec->state.qis[0],_dec->state.nfrags);
}
else{
unsigned char *dc_qis;
const ptrdiff_t *coded_fragis;
ptrdiff_t ncoded_fragis;
ptrdiff_t fragii;
unsigned char qi0;
/*Update the DC quantization index of each coded block.*/
dc_qis=_dec->dc_qis;
coded_fragis=_dec->state.coded_fragis;
ncoded_fragis=_dec->state.ncoded_fragis[0]+
_dec->state.ncoded_fragis[1]+_dec->state.ncoded_fragis[2];
qi0=(unsigned char)_dec->state.qis[0];
for(fragii=0;fragii<ncoded_fragis;fragii++){
dc_qis[coded_fragis[fragii]]=qi0;
}
}
/*pp_level 1: Stop after updating DC quantization indices.*/
if(_dec->pp_level<=OC_PP_LEVEL_TRACKDCQI){
if(_dec->variances!=NULL){
_ogg_free(_dec->variances);
_dec->variances=NULL;
_ogg_free(_dec->pp_frame_data);
_dec->pp_frame_data=NULL;
}
return 1;
}
if(_dec->variances==NULL){
size_t frame_sz;
size_t c_sz;
int c_w;
int c_h;
frame_sz=_dec->state.info.frame_width*(size_t)_dec->state.info.frame_height;
c_w=_dec->state.info.frame_width>>!(_dec->state.info.pixel_fmt&1);
c_h=_dec->state.info.frame_height>>!(_dec->state.info.pixel_fmt&2);
c_sz=c_w*(size_t)c_h;
/*Allocate space for the chroma planes, even if we're not going to use
them; this simplifies allocation state management, though it may waste
memory on the few systems that don't overcommit pages.*/
frame_sz+=c_sz<<1;
_dec->pp_frame_data=(unsigned char *)_ogg_malloc(
frame_sz*sizeof(_dec->pp_frame_data[0]));
_dec->variances=(int *)_ogg_malloc(
_dec->state.nfrags*sizeof(_dec->variances[0]));
if(_dec->variances==NULL||_dec->pp_frame_data==NULL){
_ogg_free(_dec->pp_frame_data);
_dec->pp_frame_data=NULL;
_ogg_free(_dec->variances);
_dec->variances=NULL;
return 1;
}
/*Force an update of the PP buffer pointers.*/
_dec->pp_frame_state=0;
}
/*Update the PP buffer pointers if necessary.*/
if(_dec->pp_frame_state!=1+(_dec->pp_level>=OC_PP_LEVEL_DEBLOCKC)){
if(_dec->pp_level<OC_PP_LEVEL_DEBLOCKC){
/*If chroma processing is disabled, just use the PP luma plane.*/
_dec->pp_frame_buf[0].width=_dec->state.info.frame_width;
_dec->pp_frame_buf[0].height=_dec->state.info.frame_height;
_dec->pp_frame_buf[0].stride=-_dec->pp_frame_buf[0].width;
_dec->pp_frame_buf[0].data=_dec->pp_frame_data+
(1-_dec->pp_frame_buf[0].height)*(ptrdiff_t)_dec->pp_frame_buf[0].stride;
}
else{
size_t y_sz;
size_t c_sz;
int c_w;
int c_h;
/*Otherwise, set up pointers to all three PP planes.*/
y_sz=_dec->state.info.frame_width*(size_t)_dec->state.info.frame_height;
c_w=_dec->state.info.frame_width>>!(_dec->state.info.pixel_fmt&1);
c_h=_dec->state.info.frame_height>>!(_dec->state.info.pixel_fmt&2);
c_sz=c_w*(size_t)c_h;
_dec->pp_frame_buf[0].width=_dec->state.info.frame_width;
_dec->pp_frame_buf[0].height=_dec->state.info.frame_height;
_dec->pp_frame_buf[0].stride=_dec->pp_frame_buf[0].width;
_dec->pp_frame_buf[0].data=_dec->pp_frame_data;
_dec->pp_frame_buf[1].width=c_w;
_dec->pp_frame_buf[1].height=c_h;
_dec->pp_frame_buf[1].stride=_dec->pp_frame_buf[1].width;
_dec->pp_frame_buf[1].data=_dec->pp_frame_buf[0].data+y_sz;
_dec->pp_frame_buf[2].width=c_w;
_dec->pp_frame_buf[2].height=c_h;
_dec->pp_frame_buf[2].stride=_dec->pp_frame_buf[2].width;
_dec->pp_frame_buf[2].data=_dec->pp_frame_buf[1].data+c_sz;
oc_ycbcr_buffer_flip(_dec->pp_frame_buf,_dec->pp_frame_buf);
}
_dec->pp_frame_state=1+(_dec->pp_level>=OC_PP_LEVEL_DEBLOCKC);
}
/*If we're not processing chroma, copy the reference frame's chroma planes.*/
if(_dec->pp_level<OC_PP_LEVEL_DEBLOCKC){
memcpy(_dec->pp_frame_buf+1,
_dec->state.ref_frame_bufs[_dec->state.ref_frame_idx[OC_FRAME_SELF]]+1,
sizeof(_dec->pp_frame_buf[1])*2);
}
return 0;
}
typedef struct{
int bounding_values[256];
ptrdiff_t ti[3][64];
ptrdiff_t eob_runs[3][64];
const ptrdiff_t *coded_fragis[3];
const ptrdiff_t *uncoded_fragis[3];
ptrdiff_t ncoded_fragis[3];
ptrdiff_t nuncoded_fragis[3];
const ogg_uint16_t *dequant[3][3][2];
int fragy0[3];
int fragy_end[3];
int pred_last[3][3];
int mcu_nvfrags;
int loop_filter;
int pp_level;
}oc_dec_pipeline_state;
/*Initialize the main decoding pipeline.*/
static void oc_dec_pipeline_init(oc_dec_ctx *_dec,
oc_dec_pipeline_state *_pipe){
const ptrdiff_t *coded_fragis;
const ptrdiff_t *uncoded_fragis;
int pli;
int qii;
int qti;
/*If chroma is sub-sampled in the vertical direction, we have to decode two
super block rows of Y' for each super block row of Cb and Cr.*/
_pipe->mcu_nvfrags=4<<!(_dec->state.info.pixel_fmt&2);
/*Initialize the token and extra bits indices for each plane and
coefficient.*/
memcpy(_pipe->ti,_dec->ti0,sizeof(_pipe->ti));
/*Also copy over the initial the EOB run counts.*/
memcpy(_pipe->eob_runs,_dec->eob_runs,sizeof(_pipe->eob_runs));
/*Set up per-plane pointers to the coded and uncoded fragments lists.*/
coded_fragis=_dec->state.coded_fragis;
uncoded_fragis=coded_fragis+_dec->state.nfrags;
for(pli=0;pli<3;pli++){
ptrdiff_t ncoded_fragis;
_pipe->coded_fragis[pli]=coded_fragis;
_pipe->uncoded_fragis[pli]=uncoded_fragis;
ncoded_fragis=_dec->state.ncoded_fragis[pli];
coded_fragis+=ncoded_fragis;
uncoded_fragis+=ncoded_fragis-_dec->state.fplanes[pli].nfrags;
}
/*Set up condensed quantizer tables.*/
for(pli=0;pli<3;pli++){
for(qii=0;qii<_dec->state.nqis;qii++){
for(qti=0;qti<2;qti++){
_pipe->dequant[pli][qii][qti]=
_dec->state.dequant_tables[_dec->state.qis[qii]][pli][qti];
}
}
}
/*Set the previous DC predictor to 0 for all color planes and frame types.*/
memset(_pipe->pred_last,0,sizeof(_pipe->pred_last));
/*Initialize the bounding value array for the loop filter.*/
_pipe->loop_filter=!oc_state_loop_filter_init(&_dec->state,
_pipe->bounding_values);
/*Initialize any buffers needed for post-processing.
We also save the current post-processing level, to guard against the user
changing it from a callback.*/
if(!oc_dec_postprocess_init(_dec))_pipe->pp_level=_dec->pp_level;
/*If we don't have enough information to post-process, disable it, regardless
of the user-requested level.*/
else{
_pipe->pp_level=OC_PP_LEVEL_DISABLED;
memcpy(_dec->pp_frame_buf,
_dec->state.ref_frame_bufs[_dec->state.ref_frame_idx[OC_FRAME_SELF]],
sizeof(_dec->pp_frame_buf[0])*3);
}
}
/*Undo the DC prediction in a single plane of an MCU (one or two super block
rows).
As a side effect, the number of coded and uncoded fragments in this plane of
the MCU is also computed.*/
static void oc_dec_dc_unpredict_mcu_plane(oc_dec_ctx *_dec,
oc_dec_pipeline_state *_pipe,int _pli){
const oc_fragment_plane *fplane;
oc_fragment *frags;
int *pred_last;
ptrdiff_t ncoded_fragis;
ptrdiff_t fragi;
int fragx;
int fragy;
int fragy0;
int fragy_end;
int nhfrags;
/*Compute the first and last fragment row of the current MCU for this
plane.*/
fplane=_dec->state.fplanes+_pli;
fragy0=_pipe->fragy0[_pli];
fragy_end=_pipe->fragy_end[_pli];
nhfrags=fplane->nhfrags;
pred_last=_pipe->pred_last[_pli];
frags=_dec->state.frags;
ncoded_fragis=0;
fragi=fplane->froffset+fragy0*(ptrdiff_t)nhfrags;
for(fragy=fragy0;fragy<fragy_end;fragy++){
if(fragy==0){
/*For the first row, all of the cases reduce to just using the previous
predictor for the same reference frame.*/
for(fragx=0;fragx<nhfrags;fragx++,fragi++){
if(frags[fragi].coded){
int ref;
ref=OC_FRAME_FOR_MODE(frags[fragi].mb_mode);
pred_last[ref]=frags[fragi].dc+=pred_last[ref];
ncoded_fragis++;
}
}
}
else{
oc_fragment *u_frags;
int l_ref;
int ul_ref;
int u_ref;
u_frags=frags-nhfrags;
l_ref=-1;
ul_ref=-1;
u_ref=u_frags[fragi].coded?OC_FRAME_FOR_MODE(u_frags[fragi].mb_mode):-1;
for(fragx=0;fragx<nhfrags;fragx++,fragi++){
int ur_ref;
if(fragx+1>=nhfrags)ur_ref=-1;
else{
ur_ref=u_frags[fragi+1].coded?
OC_FRAME_FOR_MODE(u_frags[fragi+1].mb_mode):-1;
}
if(frags[fragi].coded){
int pred;
int ref;
ref=OC_FRAME_FOR_MODE(frags[fragi].mb_mode);
/*We break out a separate case based on which of our neighbors use
the same reference frames.
This is somewhat faster than trying to make a generic case which
handles all of them, since it reduces lots of poorly predicted
jumps to one switch statement, and also lets a number of the
multiplications be optimized out by strength reduction.*/
switch((l_ref==ref)|(ul_ref==ref)<<1|
(u_ref==ref)<<2|(ur_ref==ref)<<3){
default:pred=pred_last[ref];break;
case 1:
case 3:pred=frags[fragi-1].dc;break;
case 2:pred=u_frags[fragi-1].dc;break;
case 4:
case 6:
case 12:pred=u_frags[fragi].dc;break;
case 5:pred=(frags[fragi-1].dc+u_frags[fragi].dc)/2;break;
case 8:pred=u_frags[fragi+1].dc;break;
case 9:
case 11:
case 13:{
pred=(75*frags[fragi-1].dc+53*u_frags[fragi+1].dc)/128;
}break;
case 10:pred=(u_frags[fragi-1].dc+u_frags[fragi+1].dc)/2;break;
case 14:{
pred=(3*(u_frags[fragi-1].dc+u_frags[fragi+1].dc)
+10*u_frags[fragi].dc)/16;
}break;
case 7:
case 15:{
int p0;
int p1;
int p2;
p0=frags[fragi-1].dc;
p1=u_frags[fragi-1].dc;
p2=u_frags[fragi].dc;
pred=(29*(p0+p2)-26*p1)/32;
if(abs(pred-p2)>128)pred=p2;
else if(abs(pred-p0)>128)pred=p0;
else if(abs(pred-p1)>128)pred=p1;
}break;
}
pred_last[ref]=frags[fragi].dc+=pred;
ncoded_fragis++;
l_ref=ref;
}
else l_ref=-1;
ul_ref=u_ref;
u_ref=ur_ref;
}
}
}
_pipe->ncoded_fragis[_pli]=ncoded_fragis;
/*Also save the number of uncoded fragments so we know how many to copy.*/
_pipe->nuncoded_fragis[_pli]=
(fragy_end-fragy0)*(ptrdiff_t)nhfrags-ncoded_fragis;
}
/*Reconstructs all coded fragments in a single MCU (one or two super block
rows).
This requires that each coded fragment have a proper macro block mode and
motion vector (if not in INTRA mode), and have it's DC value decoded, with
the DC prediction process reversed, and the number of coded and uncoded
fragments in this plane of the MCU be counted.
The token lists for each color plane and coefficient should also be filled
in, along with initial token offsets, extra bits offsets, and EOB run
counts.*/
static void oc_dec_frags_recon_mcu_plane(oc_dec_ctx *_dec,
oc_dec_pipeline_state *_pipe,int _pli){
unsigned char *dct_tokens;
const unsigned char *dct_fzig_zag;
ogg_uint16_t dc_quant[2];
const oc_fragment *frags;
const ptrdiff_t *coded_fragis;
ptrdiff_t ncoded_fragis;
ptrdiff_t fragii;
ptrdiff_t *ti;
ptrdiff_t *eob_runs;
int qti;
dct_tokens=_dec->dct_tokens;
dct_fzig_zag=_dec->state.opt_data.dct_fzig_zag;
frags=_dec->state.frags;
coded_fragis=_pipe->coded_fragis[_pli];
ncoded_fragis=_pipe->ncoded_fragis[_pli];
ti=_pipe->ti[_pli];
eob_runs=_pipe->eob_runs[_pli];
for(qti=0;qti<2;qti++)dc_quant[qti]=_pipe->dequant[_pli][0][qti][0];
for(fragii=0;fragii<ncoded_fragis;fragii++){
/*This array is made one element larger because the zig-zag index array
uses the final element as a dumping ground for out-of-range indices
to protect us from buffer overflow.*/
OC_ALIGN8(ogg_int16_t dct_coeffs[65]);
const ogg_uint16_t *ac_quant;
ptrdiff_t fragi;
int last_zzi;
int zzi;
fragi=coded_fragis[fragii];
for(zzi=0;zzi<64;zzi++)dct_coeffs[zzi]=0;
qti=frags[fragi].mb_mode!=OC_MODE_INTRA;
ac_quant=_pipe->dequant[_pli][frags[fragi].qii][qti];
/*Decode the AC coefficients.*/
for(zzi=0;zzi<64;){
int token;
last_zzi=zzi;
if(eob_runs[zzi]){
eob_runs[zzi]--;
break;
}
else{
ptrdiff_t eob;
int cw;
int rlen;
int coeff;
int lti;
lti=ti[zzi];
token=dct_tokens[lti++];
cw=OC_DCT_CODE_WORD[token];
/*These parts could be done branchless, but the branches are fairly
predictable and the C code translates into more than a few
instructions, so it's worth it to avoid them.*/
if(OC_DCT_TOKEN_NEEDS_MORE(token)){
cw+=dct_tokens[lti++]<<OC_DCT_TOKEN_EB_POS(token);
}
eob=cw>>OC_DCT_CW_EOB_SHIFT&0xFFF;
if(token==OC_DCT_TOKEN_FAT_EOB){
eob+=dct_tokens[lti++]<<8;
if(eob==0)eob=OC_DCT_EOB_FINISH;
}
rlen=(unsigned char)(cw>>OC_DCT_CW_RLEN_SHIFT);
cw^=-(cw&1<<OC_DCT_CW_FLIP_BIT);
coeff=cw>>OC_DCT_CW_MAG_SHIFT;
eob_runs[zzi]=eob;
ti[zzi]=lti;
zzi+=rlen;
dct_coeffs[dct_fzig_zag[zzi]]=(ogg_int16_t)(coeff*(int)ac_quant[zzi]);
zzi+=!eob;
}
}
/*TODO: zzi should be exactly 64 here.
If it's not, we should report some kind of warning.*/
zzi=OC_MINI(zzi,64);
dct_coeffs[0]=(ogg_int16_t)frags[fragi].dc;
/*last_zzi is always initialized.
If your compiler thinks otherwise, it is dumb.*/
oc_state_frag_recon(&_dec->state,fragi,_pli,
dct_coeffs,last_zzi,dc_quant[qti]);
}
_pipe->coded_fragis[_pli]+=ncoded_fragis;
/*Right now the reconstructed MCU has only the coded blocks in it.*/
/*TODO: We make the decision here to always copy the uncoded blocks into it
from the reference frame.
We could also copy the coded blocks back over the reference frame, if we
wait for an additional MCU to be decoded, which might be faster if only a
small number of blocks are coded.
However, this introduces more latency, creating a larger cache footprint.
It's unknown which decision is better, but this one results in simpler
code, and the hard case (high bitrate, high resolution) is handled
correctly.*/
/*Copy the uncoded blocks from the previous reference frame.*/
_pipe->uncoded_fragis[_pli]-=_pipe->nuncoded_fragis[_pli];
oc_state_frag_copy_list(&_dec->state,_pipe->uncoded_fragis[_pli],
_pipe->nuncoded_fragis[_pli],OC_FRAME_SELF,OC_FRAME_PREV,_pli);
}
/*Filter a horizontal block edge.*/
static void oc_filter_hedge(unsigned char *_dst,int _dst_ystride,
const unsigned char *_src,int _src_ystride,int _qstep,int _flimit,
int *_variance0,int *_variance1){
unsigned char *rdst;
const unsigned char *rsrc;
unsigned char *cdst;
const unsigned char *csrc;
int r[10];
int sum0;
int sum1;
int bx;
int by;
rdst=_dst;
rsrc=_src;
for(bx=0;bx<8;bx++){
cdst=rdst;
csrc=rsrc;
for(by=0;by<10;by++){
r[by]=*csrc;
csrc+=_src_ystride;
}
sum0=sum1=0;
for(by=0;by<4;by++){
sum0+=abs(r[by+1]-r[by]);
sum1+=abs(r[by+5]-r[by+6]);
}
*_variance0+=OC_MINI(255,sum0);
*_variance1+=OC_MINI(255,sum1);
if(sum0<_flimit&&sum1<_flimit&&r[5]-r[4]<_qstep&&r[4]-r[5]<_qstep){
*cdst=(unsigned char)(r[0]*3+r[1]*2+r[2]+r[3]+r[4]+4>>3);
cdst+=_dst_ystride;
*cdst=(unsigned char)(r[0]*2+r[1]+r[2]*2+r[3]+r[4]+r[5]+4>>3);
cdst+=_dst_ystride;
for(by=0;by<4;by++){
*cdst=(unsigned char)(r[by]+r[by+1]+r[by+2]+r[by+3]*2+
r[by+4]+r[by+5]+r[by+6]+4>>3);
cdst+=_dst_ystride;
}
*cdst=(unsigned char)(r[4]+r[5]+r[6]+r[7]*2+r[8]+r[9]*2+4>>3);
cdst+=_dst_ystride;
*cdst=(unsigned char)(r[5]+r[6]+r[7]+r[8]*2+r[9]*3+4>>3);
}
else{
for(by=1;by<=8;by++){
*cdst=(unsigned char)r[by];
cdst+=_dst_ystride;
}
}
rdst++;
rsrc++;
}
}
/*Filter a vertical block edge.*/
static void oc_filter_vedge(unsigned char *_dst,int _dst_ystride,
int _qstep,int _flimit,int *_variances){
unsigned char *rdst;
const unsigned char *rsrc;
unsigned char *cdst;
int r[10];
int sum0;
int sum1;
int bx;
int by;
cdst=_dst;
for(by=0;by<8;by++){
rsrc=cdst-1;
rdst=cdst;
for(bx=0;bx<10;bx++)r[bx]=*rsrc++;
sum0=sum1=0;
for(bx=0;bx<4;bx++){
sum0+=abs(r[bx+1]-r[bx]);
sum1+=abs(r[bx+5]-r[bx+6]);
}
_variances[0]+=OC_MINI(255,sum0);
_variances[1]+=OC_MINI(255,sum1);
if(sum0<_flimit&&sum1<_flimit&&r[5]-r[4]<_qstep&&r[4]-r[5]<_qstep){
*rdst++=(unsigned char)(r[0]*3+r[1]*2+r[2]+r[3]+r[4]+4>>3);
*rdst++=(unsigned char)(r[0]*2+r[1]+r[2]*2+r[3]+r[4]+r[5]+4>>3);
for(bx=0;bx<4;bx++){
*rdst++=(unsigned char)(r[bx]+r[bx+1]+r[bx+2]+r[bx+3]*2+
r[bx+4]+r[bx+5]+r[bx+6]+4>>3);
}
*rdst++=(unsigned char)(r[4]+r[5]+r[6]+r[7]*2+r[8]+r[9]*2+4>>3);
*rdst=(unsigned char)(r[5]+r[6]+r[7]+r[8]*2+r[9]*3+4>>3);
}
cdst+=_dst_ystride;
}
}
static void oc_dec_deblock_frag_rows(oc_dec_ctx *_dec,
th_img_plane *_dst,th_img_plane *_src,int _pli,int _fragy0,
int _fragy_end){
oc_fragment_plane *fplane;
int *variance;
unsigned char *dc_qi;
unsigned char *dst;
const unsigned char *src;
ptrdiff_t froffset;
int dst_ystride;
int src_ystride;
int nhfrags;
int width;
int notstart;
int notdone;
int flimit;
int qstep;
int y_end;
int y;
int x;
_dst+=_pli;
_src+=_pli;
fplane=_dec->state.fplanes+_pli;
nhfrags=fplane->nhfrags;
froffset=fplane->froffset+_fragy0*(ptrdiff_t)nhfrags;
variance=_dec->variances+froffset;
dc_qi=_dec->dc_qis+froffset;
notstart=_fragy0>0;
notdone=_fragy_end<fplane->nvfrags;
/*We want to clear an extra row of variances, except at the end.*/
memset(variance+(nhfrags&-notstart),0,
(_fragy_end+notdone-_fragy0-notstart)*(nhfrags*sizeof(variance[0])));
/*Except for the first time, we want to point to the middle of the row.*/
y=(_fragy0<<3)+(notstart<<2);
dst_ystride=_dst->stride;
src_ystride=_src->stride;
dst=_dst->data+y*(ptrdiff_t)dst_ystride;
src=_src->data+y*(ptrdiff_t)src_ystride;
width=_dst->width;
for(;y<4;y++){
memcpy(dst,src,width*sizeof(dst[0]));
dst+=dst_ystride;
src+=src_ystride;
}
/*We also want to skip the last row in the frame for this loop.*/
y_end=_fragy_end-!notdone<<3;
for(;y<y_end;y+=8){
qstep=_dec->pp_dc_scale[*dc_qi];
flimit=(qstep*3)>>2;
oc_filter_hedge(dst,dst_ystride,src-src_ystride,src_ystride,
qstep,flimit,variance,variance+nhfrags);
variance++;
dc_qi++;
for(x=8;x<width;x+=8){
qstep=_dec->pp_dc_scale[*dc_qi];
flimit=(qstep*3)>>2;
oc_filter_hedge(dst+x,dst_ystride,src+x-src_ystride,src_ystride,
qstep,flimit,variance,variance+nhfrags);
oc_filter_vedge(dst+x-(dst_ystride<<2)-4,dst_ystride,
qstep,flimit,variance-1);
variance++;
dc_qi++;
}
dst+=dst_ystride<<3;
src+=src_ystride<<3;
}
/*And finally, handle the last row in the frame, if it's in the range.*/
if(!notdone){
int height;
height=_dst->height;
for(;y<height;y++){
memcpy(dst,src,width*sizeof(dst[0]));
dst+=dst_ystride;
src+=src_ystride;
}
/*Filter the last row of vertical block edges.*/
dc_qi++;
for(x=8;x<width;x+=8){
qstep=_dec->pp_dc_scale[*dc_qi++];
flimit=(qstep*3)>>2;
oc_filter_vedge(dst+x-(dst_ystride<<3)-4,dst_ystride,
qstep,flimit,variance++);
}
}
}
static void oc_dering_block(unsigned char *_idata,int _ystride,int _b,
int _dc_scale,int _sharp_mod,int _strong){
static const unsigned char OC_MOD_MAX[2]={24,32};
static const unsigned char OC_MOD_SHIFT[2]={1,0};
const unsigned char *psrc;
const unsigned char *src;
const unsigned char *nsrc;
unsigned char *dst;
int vmod[72];
int hmod[72];
int mod_hi;
int by;
int bx;
mod_hi=OC_MINI(3*_dc_scale,OC_MOD_MAX[_strong]);
dst=_idata;
src=dst;
psrc=src-(_ystride&-!(_b&4));
for(by=0;by<9;by++){
for(bx=0;bx<8;bx++){
int mod;
mod=32+_dc_scale-(abs(src[bx]-psrc[bx])<<OC_MOD_SHIFT[_strong]);
vmod[(by<<3)+bx]=mod<-64?_sharp_mod:OC_CLAMPI(0,mod,mod_hi);
}
psrc=src;
src+=_ystride&-(!(_b&8)|by<7);
}
nsrc=dst;
psrc=dst-!(_b&1);
for(bx=0;bx<9;bx++){
src=nsrc;
for(by=0;by<8;by++){
int mod;
mod=32+_dc_scale-(abs(*src-*psrc)<<OC_MOD_SHIFT[_strong]);
hmod[(bx<<3)+by]=mod<-64?_sharp_mod:OC_CLAMPI(0,mod,mod_hi);
psrc+=_ystride;
src+=_ystride;
}
psrc=nsrc;
nsrc+=!(_b&2)|bx<7;
}
src=dst;
psrc=src-(_ystride&-!(_b&4));
nsrc=src+_ystride;
for(by=0;by<8;by++){
int a;
int b;
int w;
a=128;
b=64;
w=hmod[by];
a-=w;
b+=w**(src-!(_b&1));
w=vmod[by<<3];
a-=w;
b+=w*psrc[0];
w=vmod[by+1<<3];
a-=w;
b+=w*nsrc[0];
w=hmod[(1<<3)+by];
a-=w;
b+=w*src[1];
dst[0]=OC_CLAMP255(a*src[0]+b>>7);
for(bx=1;bx<7;bx++){
a=128;
b=64;
w=hmod[(bx<<3)+by];
a-=w;
b+=w*src[bx-1];
w=vmod[(by<<3)+bx];
a-=w;
b+=w*psrc[bx];
w=vmod[(by+1<<3)+bx];
a-=w;
b+=w*nsrc[bx];
w=hmod[(bx+1<<3)+by];
a-=w;
b+=w*src[bx+1];
dst[bx]=OC_CLAMP255(a*src[bx]+b>>7);
}
a=128;
b=64;
w=hmod[(7<<3)+by];
a-=w;
b+=w*src[6];
w=vmod[(by<<3)+7];
a-=w;
b+=w*psrc[7];
w=vmod[(by+1<<3)+7];
a-=w;
b+=w*nsrc[7];
w=hmod[(8<<3)+by];
a-=w;
b+=w*src[7+!(_b&2)];
dst[7]=OC_CLAMP255(a*src[7]+b>>7);
dst+=_ystride;
psrc=src;
src=nsrc;
nsrc+=_ystride&-(!(_b&8)|by<6);
}
}
#define OC_DERING_THRESH1 (384)
#define OC_DERING_THRESH2 (4*OC_DERING_THRESH1)
#define OC_DERING_THRESH3 (5*OC_DERING_THRESH1)
#define OC_DERING_THRESH4 (10*OC_DERING_THRESH1)
static void oc_dec_dering_frag_rows(oc_dec_ctx *_dec,th_img_plane *_img,
int _pli,int _fragy0,int _fragy_end){
th_img_plane *iplane;
oc_fragment_plane *fplane;
oc_fragment *frag;
int *variance;
unsigned char *idata;
ptrdiff_t froffset;
int ystride;
int nhfrags;
int sthresh;
int strong;
int y_end;
int width;
int height;
int y;
int x;
iplane=_img+_pli;
fplane=_dec->state.fplanes+_pli;
nhfrags=fplane->nhfrags;
froffset=fplane->froffset+_fragy0*(ptrdiff_t)nhfrags;
variance=_dec->variances+froffset;
frag=_dec->state.frags+froffset;
strong=_dec->pp_level>=(_pli?OC_PP_LEVEL_SDERINGC:OC_PP_LEVEL_SDERINGY);
sthresh=_pli?OC_DERING_THRESH4:OC_DERING_THRESH3;
y=_fragy0<<3;
ystride=iplane->stride;
idata=iplane->data+y*(ptrdiff_t)ystride;
y_end=_fragy_end<<3;
width=iplane->width;
height=iplane->height;
for(;y<y_end;y+=8){
for(x=0;x<width;x+=8){
int b;
int qi;
int var;
qi=_dec->state.qis[frag->qii];
var=*variance;
b=(x<=0)|(x+8>=width)<<1|(y<=0)<<2|(y+8>=height)<<3;
if(strong&&var>sthresh){
oc_dering_block(idata+x,ystride,b,
_dec->pp_dc_scale[qi],_dec->pp_sharp_mod[qi],1);
if(_pli||!(b&1)&&*(variance-1)>OC_DERING_THRESH4||
!(b&2)&&variance[1]>OC_DERING_THRESH4||
!(b&4)&&*(variance-nhfrags)>OC_DERING_THRESH4||
!(b&8)&&variance[nhfrags]>OC_DERING_THRESH4){
oc_dering_block(idata+x,ystride,b,
_dec->pp_dc_scale[qi],_dec->pp_sharp_mod[qi],1);
oc_dering_block(idata+x,ystride,b,
_dec->pp_dc_scale[qi],_dec->pp_sharp_mod[qi],1);
}
}
else if(var>OC_DERING_THRESH2){
oc_dering_block(idata+x,ystride,b,
_dec->pp_dc_scale[qi],_dec->pp_sharp_mod[qi],1);
}
else if(var>OC_DERING_THRESH1){
oc_dering_block(idata+x,ystride,b,
_dec->pp_dc_scale[qi],_dec->pp_sharp_mod[qi],0);
}
frag++;
variance++;
}
idata+=ystride<<3;
}
}
th_dec_ctx *th_decode_alloc(const th_info *_info,const th_setup_info *_setup){
oc_dec_ctx *dec;
if(_info==NULL||_setup==NULL)return NULL;
dec=_ogg_malloc(sizeof(*dec));
if(dec==NULL||oc_dec_init(dec,_info,_setup)<0){
_ogg_free(dec);
return NULL;
}
dec->state.curframe_num=0;
return dec;
}
void th_decode_free(th_dec_ctx *_dec){
if(_dec!=NULL){
oc_dec_clear(_dec);
_ogg_free(_dec);
}
}
int th_decode_ctl(th_dec_ctx *_dec,int _req,void *_buf,
size_t _buf_sz){
switch(_req){
case TH_DECCTL_GET_PPLEVEL_MAX:{
if(_dec==NULL||_buf==NULL)return TH_EFAULT;
if(_buf_sz!=sizeof(int))return TH_EINVAL;
(*(int *)_buf)=OC_PP_LEVEL_MAX;
return 0;
}break;
case TH_DECCTL_SET_PPLEVEL:{
int pp_level;
if(_dec==NULL||_buf==NULL)return TH_EFAULT;
if(_buf_sz!=sizeof(int))return TH_EINVAL;
pp_level=*(int *)_buf;
if(pp_level<0||pp_level>OC_PP_LEVEL_MAX)return TH_EINVAL;
_dec->pp_level=pp_level;
return 0;
}break;
case TH_DECCTL_SET_GRANPOS:{
ogg_int64_t granpos;
if(_dec==NULL||_buf==NULL)return TH_EFAULT;
if(_buf_sz!=sizeof(ogg_int64_t))return TH_EINVAL;
granpos=*(ogg_int64_t *)_buf;
if(granpos<0)return TH_EINVAL;
_dec->state.granpos=granpos;
_dec->state.keyframe_num=(granpos>>_dec->state.info.keyframe_granule_shift)
-_dec->state.granpos_bias;
_dec->state.curframe_num=_dec->state.keyframe_num
+(granpos&(1<<_dec->state.info.keyframe_granule_shift)-1);
return 0;
}break;
case TH_DECCTL_SET_STRIPE_CB:{
th_stripe_callback *cb;
if(_dec==NULL||_buf==NULL)return TH_EFAULT;
if(_buf_sz!=sizeof(th_stripe_callback))return TH_EINVAL;
cb=(th_stripe_callback *)_buf;
_dec->stripe_cb.ctx=cb->ctx;
_dec->stripe_cb.stripe_decoded=cb->stripe_decoded;
return 0;
}break;
#ifdef HAVE_CAIRO
case TH_DECCTL_SET_TELEMETRY_MBMODE:{
if(_dec==NULL||_buf==NULL)return TH_EFAULT;
if(_buf_sz!=sizeof(int))return TH_EINVAL;
_dec->telemetry=1;
_dec->telemetry_mbmode=*(int *)_buf;
return 0;
}break;
case TH_DECCTL_SET_TELEMETRY_MV:{
if(_dec==NULL||_buf==NULL)return TH_EFAULT;
if(_buf_sz!=sizeof(int))return TH_EINVAL;
_dec->telemetry=1;
_dec->telemetry_mv=*(int *)_buf;
return 0;
}break;
case TH_DECCTL_SET_TELEMETRY_QI:{
if(_dec==NULL||_buf==NULL)return TH_EFAULT;
if(_buf_sz!=sizeof(int))return TH_EINVAL;
_dec->telemetry=1;
_dec->telemetry_qi=*(int *)_buf;
return 0;
}break;
case TH_DECCTL_SET_TELEMETRY_BITS:{
if(_dec==NULL||_buf==NULL)return TH_EFAULT;
if(_buf_sz!=sizeof(int))return TH_EINVAL;
_dec->telemetry=1;
_dec->telemetry_bits=*(int *)_buf;
return 0;
}break;
#endif
default:return TH_EIMPL;
}
}
/*We're decoding an INTER frame, but have no initialized reference
buffers (i.e., decoding did not start on a key frame).
We initialize them to a solid gray here.*/
static void oc_dec_init_dummy_frame(th_dec_ctx *_dec){
th_info *info;
size_t yplane_sz;
size_t cplane_sz;
int yhstride;
int yheight;
int chstride;
int cheight;
_dec->state.ref_frame_idx[OC_FRAME_GOLD]=0;
_dec->state.ref_frame_idx[OC_FRAME_PREV]=0;
_dec->state.ref_frame_idx[OC_FRAME_SELF]=1;
info=&_dec->state.info;
yhstride=info->frame_width+2*OC_UMV_PADDING;
yheight=info->frame_height+2*OC_UMV_PADDING;
chstride=yhstride>>!(info->pixel_fmt&1);
cheight=yheight>>!(info->pixel_fmt&2);
yplane_sz=yhstride*(size_t)yheight;
cplane_sz=chstride*(size_t)cheight;
memset(_dec->state.ref_frame_data[0],0x80,yplane_sz+2*cplane_sz);
}
int th_decode_packetin(th_dec_ctx *_dec,const ogg_packet *_op,
ogg_int64_t *_granpos){
int ret;
if(_dec==NULL||_op==NULL)return TH_EFAULT;
/*A completely empty packet indicates a dropped frame and is treated exactly
like an inter frame with no coded blocks.
Only proceed if we have a non-empty packet.*/
if(_op->bytes!=0){
oc_dec_pipeline_state pipe;
th_ycbcr_buffer stripe_buf;
int stripe_fragy;
int refi;
int pli;
int notstart;
int notdone;
oc_pack_readinit(&_dec->opb,_op->packet,_op->bytes);
#if defined(HAVE_CAIRO)
_dec->telemetry_frame_bytes=_op->bytes;
#endif
ret=oc_dec_frame_header_unpack(_dec);
if(ret<0)return ret;
/*Select a free buffer to use for the reconstructed version of this
frame.*/
if(_dec->state.frame_type!=OC_INTRA_FRAME&&
(_dec->state.ref_frame_idx[OC_FRAME_GOLD]<0||
_dec->state.ref_frame_idx[OC_FRAME_PREV]<0)){
/*No reference frames yet!*/
oc_dec_init_dummy_frame(_dec);
refi=_dec->state.ref_frame_idx[OC_FRAME_SELF];
}
else{
for(refi=0;refi==_dec->state.ref_frame_idx[OC_FRAME_GOLD]||
refi==_dec->state.ref_frame_idx[OC_FRAME_PREV];refi++);
_dec->state.ref_frame_idx[OC_FRAME_SELF]=refi;
}
if(_dec->state.frame_type==OC_INTRA_FRAME){
oc_dec_mark_all_intra(_dec);
_dec->state.keyframe_num=_dec->state.curframe_num;
#if defined(HAVE_CAIRO)
_dec->telemetry_coding_bytes=
_dec->telemetry_mode_bytes=
_dec->telemetry_mv_bytes=oc_pack_bytes_left(&_dec->opb);
#endif
}
else{
oc_dec_coded_flags_unpack(_dec);
#if defined(HAVE_CAIRO)
_dec->telemetry_coding_bytes=oc_pack_bytes_left(&_dec->opb);
#endif
oc_dec_mb_modes_unpack(_dec);
#if defined(HAVE_CAIRO)
_dec->telemetry_mode_bytes=oc_pack_bytes_left(&_dec->opb);
#endif
oc_dec_mv_unpack_and_frag_modes_fill(_dec);
#if defined(HAVE_CAIRO)
_dec->telemetry_mv_bytes=oc_pack_bytes_left(&_dec->opb);
#endif
}
oc_dec_block_qis_unpack(_dec);
#if defined(HAVE_CAIRO)
_dec->telemetry_qi_bytes=oc_pack_bytes_left(&_dec->opb);
#endif
oc_dec_residual_tokens_unpack(_dec);
/*Update granule position.
This must be done before the striped decode callbacks so that the
application knows what to do with the frame data.*/
_dec->state.granpos=(_dec->state.keyframe_num+_dec->state.granpos_bias<<
_dec->state.info.keyframe_granule_shift)
+(_dec->state.curframe_num-_dec->state.keyframe_num);
_dec->state.curframe_num++;
if(_granpos!=NULL)*_granpos=_dec->state.granpos;
/*All of the rest of the operations -- DC prediction reversal,
reconstructing coded fragments, copying uncoded fragments, loop
filtering, extending borders, and out-of-loop post-processing -- should
be pipelined.
I.e., DC prediction reversal, reconstruction, and uncoded fragment
copying are done for one or two super block rows, then loop filtering is
run as far as it can, then bordering copying, then post-processing.
For 4:2:0 video a Minimum Codable Unit or MCU contains two luma super
block rows, and one chroma.
Otherwise, an MCU consists of one super block row from each plane.
Inside each MCU, we perform all of the steps on one color plane before
moving on to the next.
After reconstruction, the additional filtering stages introduce a delay
since they need some pixels from the next fragment row.
Thus the actual number of decoded rows available is slightly smaller for
the first MCU, and slightly larger for the last.
This entire process allows us to operate on the data while it is still in
cache, resulting in big performance improvements.
An application callback allows further application processing (blitting
to video memory, color conversion, etc.) to also use the data while it's
in cache.*/
oc_dec_pipeline_init(_dec,&pipe);
oc_ycbcr_buffer_flip(stripe_buf,_dec->pp_frame_buf);
notstart=0;
notdone=1;
for(stripe_fragy=0;notdone;stripe_fragy+=pipe.mcu_nvfrags){
int avail_fragy0;
int avail_fragy_end;
avail_fragy0=avail_fragy_end=_dec->state.fplanes[0].nvfrags;
notdone=stripe_fragy+pipe.mcu_nvfrags<avail_fragy_end;
for(pli=0;pli<3;pli++){
oc_fragment_plane *fplane;
int frag_shift;
int pp_offset;
int sdelay;
int edelay;
fplane=_dec->state.fplanes+pli;
/*Compute the first and last fragment row of the current MCU for this
plane.*/
frag_shift=pli!=0&&!(_dec->state.info.pixel_fmt&2);
pipe.fragy0[pli]=stripe_fragy>>frag_shift;
pipe.fragy_end[pli]=OC_MINI(fplane->nvfrags,
pipe.fragy0[pli]+(pipe.mcu_nvfrags>>frag_shift));
oc_dec_dc_unpredict_mcu_plane(_dec,&pipe,pli);
oc_dec_frags_recon_mcu_plane(_dec,&pipe,pli);
sdelay=edelay=0;
if(pipe.loop_filter){
sdelay+=notstart;
edelay+=notdone;
oc_state_loop_filter_frag_rows(&_dec->state,pipe.bounding_values,
refi,pli,pipe.fragy0[pli]-sdelay,pipe.fragy_end[pli]-edelay);
}
/*To fill the borders, we have an additional two pixel delay, since a
fragment in the next row could filter its top edge, using two pixels
from a fragment in this row.
But there's no reason to delay a full fragment between the two.*/
oc_state_borders_fill_rows(&_dec->state,refi,pli,
(pipe.fragy0[pli]-sdelay<<3)-(sdelay<<1),
(pipe.fragy_end[pli]-edelay<<3)-(edelay<<1));
/*Out-of-loop post-processing.*/
pp_offset=3*(pli!=0);
if(pipe.pp_level>=OC_PP_LEVEL_DEBLOCKY+pp_offset){
/*Perform de-blocking in one plane.*/
sdelay+=notstart;
edelay+=notdone;
oc_dec_deblock_frag_rows(_dec,_dec->pp_frame_buf,
_dec->state.ref_frame_bufs[refi],pli,
pipe.fragy0[pli]-sdelay,pipe.fragy_end[pli]-edelay);
if(pipe.pp_level>=OC_PP_LEVEL_DERINGY+pp_offset){
/*Perform de-ringing in one plane.*/
sdelay+=notstart;
edelay+=notdone;
oc_dec_dering_frag_rows(_dec,_dec->pp_frame_buf,pli,
pipe.fragy0[pli]-sdelay,pipe.fragy_end[pli]-edelay);
}
}
/*If no post-processing is done, we still need to delay a row for the
loop filter, thanks to the strange filtering order VP3 chose.*/
else if(pipe.loop_filter){
sdelay+=notstart;
edelay+=notdone;
}
/*Compute the intersection of the available rows in all planes.
If chroma is sub-sampled, the effect of each of its delays is
doubled, but luma might have more post-processing filters enabled
than chroma, so we don't know up front which one is the limiting
factor.*/
avail_fragy0=OC_MINI(avail_fragy0,pipe.fragy0[pli]-sdelay<<frag_shift);
avail_fragy_end=OC_MINI(avail_fragy_end,
pipe.fragy_end[pli]-edelay<<frag_shift);
}
if(_dec->stripe_cb.stripe_decoded!=NULL){
/*The callback might want to use the FPU, so let's make sure they can.
We violate all kinds of ABI restrictions by not doing this until
now, but none of them actually matter since we don't use floating
point ourselves.*/
oc_restore_fpu(&_dec->state);
/*Make the callback, ensuring we flip the sense of the "start" and
"end" of the available region upside down.*/
(*_dec->stripe_cb.stripe_decoded)(_dec->stripe_cb.ctx,stripe_buf,
_dec->state.fplanes[0].nvfrags-avail_fragy_end,
_dec->state.fplanes[0].nvfrags-avail_fragy0);
}
notstart=1;
}
/*Finish filling in the reference frame borders.*/
for(pli=0;pli<3;pli++)oc_state_borders_fill_caps(&_dec->state,refi,pli);
/*Update the reference frame indices.*/
if(_dec->state.frame_type==OC_INTRA_FRAME){
/*The new frame becomes both the previous and gold reference frames.*/
_dec->state.ref_frame_idx[OC_FRAME_GOLD]=
_dec->state.ref_frame_idx[OC_FRAME_PREV]=
_dec->state.ref_frame_idx[OC_FRAME_SELF];
}
else{
/*Otherwise, just replace the previous reference frame.*/
_dec->state.ref_frame_idx[OC_FRAME_PREV]=
_dec->state.ref_frame_idx[OC_FRAME_SELF];
}
/*Restore the FPU before dump_frame, since that _does_ use the FPU (for PNG
gamma values, if nothing else).*/
oc_restore_fpu(&_dec->state);
#if defined(OC_DUMP_IMAGES)
/*Don't dump images for dropped frames.*/
oc_state_dump_frame(&_dec->state,OC_FRAME_SELF,"dec");
#endif
return 0;
}
else{
if(_dec->state.ref_frame_idx[OC_FRAME_GOLD]<0||
_dec->state.ref_frame_idx[OC_FRAME_PREV]<0){
int refi;
/*No reference frames yet!*/
oc_dec_init_dummy_frame(_dec);
refi=_dec->state.ref_frame_idx[OC_FRAME_PREV];
_dec->state.ref_frame_idx[OC_FRAME_SELF]=refi;
memcpy(_dec->pp_frame_buf,_dec->state.ref_frame_bufs[refi],
sizeof(_dec->pp_frame_buf[0])*3);
}
/*Just update the granule position and return.*/
_dec->state.granpos=(_dec->state.keyframe_num+_dec->state.granpos_bias<<
_dec->state.info.keyframe_granule_shift)
+(_dec->state.curframe_num-_dec->state.keyframe_num);
_dec->state.curframe_num++;
if(_granpos!=NULL)*_granpos=_dec->state.granpos;
return TH_DUPFRAME;
}
}
int th_decode_ycbcr_out(th_dec_ctx *_dec,th_ycbcr_buffer _ycbcr){
if(_dec==NULL||_ycbcr==NULL)return TH_EFAULT;
oc_ycbcr_buffer_flip(_ycbcr,_dec->pp_frame_buf);
#if defined(HAVE_CAIRO)
/*If telemetry ioctls are active, we need to draw to the output buffer.
Stuff the plane into cairo.*/
if(_dec->telemetry){
cairo_surface_t *cs;
unsigned char *data;
unsigned char *y_row;
unsigned char *u_row;
unsigned char *v_row;
unsigned char *rgb_row;
int cstride;
int w;
int h;
int x;
int y;
int hdec;
int vdec;
w=_ycbcr[0].width;
h=_ycbcr[0].height;
hdec=!(_dec->state.info.pixel_fmt&1);
vdec=!(_dec->state.info.pixel_fmt&2);
/*Lazy data buffer init.
We could try to re-use the post-processing buffer, which would save
memory, but complicate the allocation logic there.
I don't think anyone cares about memory usage when using telemetry; it is
not meant for embedded devices.*/
if(_dec->telemetry_frame_data==NULL){
_dec->telemetry_frame_data=_ogg_malloc(
(w*h+2*(w>>hdec)*(h>>vdec))*sizeof(*_dec->telemetry_frame_data));
if(_dec->telemetry_frame_data==NULL)return 0;
}
cs=cairo_image_surface_create(CAIRO_FORMAT_RGB24,w,h);
/*Sadly, no YUV support in Cairo (yet); convert into the RGB buffer.*/
data=cairo_image_surface_get_data(cs);
if(data==NULL){
cairo_surface_destroy(cs);
return 0;
}
cstride=cairo_image_surface_get_stride(cs);
y_row=_ycbcr[0].data;
u_row=_ycbcr[1].data;
v_row=_ycbcr[2].data;
rgb_row=data;
for(y=0;y<h;y++){
for(x=0;x<w;x++){
int r;
int g;
int b;
r=(1904000*y_row[x]+2609823*v_row[x>>hdec]-363703744)/1635200;
g=(3827562*y_row[x]-1287801*u_row[x>>hdec]
-2672387*v_row[x>>hdec]+447306710)/3287200;
b=(952000*y_row[x]+1649289*u_row[x>>hdec]-225932192)/817600;
rgb_row[4*x+0]=OC_CLAMP255(b);
rgb_row[4*x+1]=OC_CLAMP255(g);
rgb_row[4*x+2]=OC_CLAMP255(r);
}
y_row+=_ycbcr[0].stride;
u_row+=_ycbcr[1].stride&-((y&1)|!vdec);
v_row+=_ycbcr[2].stride&-((y&1)|!vdec);
rgb_row+=cstride;
}
/*Draw coded identifier for each macroblock (stored in Hilbert order).*/
{
cairo_t *c;
const oc_fragment *frags;
oc_mv *frag_mvs;
const signed char *mb_modes;
oc_mb_map *mb_maps;
size_t nmbs;
size_t mbi;
int row2;
int col2;
int qim[3]={0,0,0};
if(_dec->state.nqis==2){
int bqi;
bqi=_dec->state.qis[0];
if(_dec->state.qis[1]>bqi)qim[1]=1;
if(_dec->state.qis[1]<bqi)qim[1]=-1;
}
if(_dec->state.nqis==3){
int bqi;
int cqi;
int dqi;
bqi=_dec->state.qis[0];
cqi=_dec->state.qis[1];
dqi=_dec->state.qis[2];
if(cqi>bqi&&dqi>bqi){
if(dqi>cqi){
qim[1]=1;
qim[2]=2;
}
else{
qim[1]=2;
qim[2]=1;
}
}
else if(cqi<bqi&&dqi<bqi){
if(dqi<cqi){
qim[1]=-1;
qim[2]=-2;
}
else{
qim[1]=-2;
qim[2]=-1;
}
}
else{
if(cqi<bqi)qim[1]=-1;
else qim[1]=1;
if(dqi<bqi)qim[2]=-1;
else qim[2]=1;
}
}
c=cairo_create(cs);
frags=_dec->state.frags;
frag_mvs=_dec->state.frag_mvs;
mb_modes=_dec->state.mb_modes;
mb_maps=_dec->state.mb_maps;
nmbs=_dec->state.nmbs;
row2=0;
col2=0;
for(mbi=0;mbi<nmbs;mbi++){
float x;
float y;
int bi;
y=h-(row2+((col2+1>>1)&1))*16-16;
x=(col2>>1)*16;
cairo_set_line_width(c,1.);
/*Keyframe (all intra) red box.*/
if(_dec->state.frame_type==OC_INTRA_FRAME){
if(_dec->telemetry_mbmode&0x02){
cairo_set_source_rgba(c,1.,0,0,.5);
cairo_rectangle(c,x+2.5,y+2.5,11,11);
cairo_stroke_preserve(c);
cairo_set_source_rgba(c,1.,0,0,.25);
cairo_fill(c);
}
}
else{
const signed char *frag_mv;
ptrdiff_t fragi;
for(bi=0;bi<4;bi++){
fragi=mb_maps[mbi][0][bi];
if(fragi>=0&&frags[fragi].coded){
frag_mv=frag_mvs[fragi];
break;
}
}
if(bi<4){
switch(mb_modes[mbi]){
case OC_MODE_INTRA:{
if(_dec->telemetry_mbmode&0x02){
cairo_set_source_rgba(c,1.,0,0,.5);
cairo_rectangle(c,x+2.5,y+2.5,11,11);
cairo_stroke_preserve(c);
cairo_set_source_rgba(c,1.,0,0,.25);
cairo_fill(c);
}
}break;
case OC_MODE_INTER_NOMV:{
if(_dec->telemetry_mbmode&0x01){
cairo_set_source_rgba(c,0,0,1.,.5);
cairo_rectangle(c,x+2.5,y+2.5,11,11);
cairo_stroke_preserve(c);
cairo_set_source_rgba(c,0,0,1.,.25);
cairo_fill(c);
}
}break;
case OC_MODE_INTER_MV:{
if(_dec->telemetry_mbmode&0x04){
cairo_rectangle(c,x+2.5,y+2.5,11,11);
cairo_set_source_rgba(c,0,1.,0,.5);
cairo_stroke(c);
}
if(_dec->telemetry_mv&0x04){
cairo_move_to(c,x+8+frag_mv[0],y+8-frag_mv[1]);
cairo_set_source_rgba(c,1.,1.,1.,.9);
cairo_set_line_width(c,3.);
cairo_line_to(c,x+8+frag_mv[0]*.66,y+8-frag_mv[1]*.66);
cairo_stroke_preserve(c);
cairo_set_line_width(c,2.);
cairo_line_to(c,x+8+frag_mv[0]*.33,y+8-frag_mv[1]*.33);
cairo_stroke_preserve(c);
cairo_set_line_width(c,1.);
cairo_line_to(c,x+8,y+8);
cairo_stroke(c);
}
}break;
case OC_MODE_INTER_MV_LAST:{
if(_dec->telemetry_mbmode&0x08){
cairo_rectangle(c,x+2.5,y+2.5,11,11);
cairo_set_source_rgba(c,0,1.,0,.5);
cairo_move_to(c,x+13.5,y+2.5);
cairo_line_to(c,x+2.5,y+8);
cairo_line_to(c,x+13.5,y+13.5);
cairo_stroke(c);
}
if(_dec->telemetry_mv&0x08){
cairo_move_to(c,x+8+frag_mv[0],y+8-frag_mv[1]);
cairo_set_source_rgba(c,1.,1.,1.,.9);
cairo_set_line_width(c,3.);
cairo_line_to(c,x+8+frag_mv[0]*.66,y+8-frag_mv[1]*.66);
cairo_stroke_preserve(c);
cairo_set_line_width(c,2.);
cairo_line_to(c,x+8+frag_mv[0]*.33,y+8-frag_mv[1]*.33);
cairo_stroke_preserve(c);
cairo_set_line_width(c,1.);
cairo_line_to(c,x+8,y+8);
cairo_stroke(c);
}
}break;
case OC_MODE_INTER_MV_LAST2:{
if(_dec->telemetry_mbmode&0x10){
cairo_rectangle(c,x+2.5,y+2.5,11,11);
cairo_set_source_rgba(c,0,1.,0,.5);
cairo_move_to(c,x+8,y+2.5);
cairo_line_to(c,x+2.5,y+8);
cairo_line_to(c,x+8,y+13.5);
cairo_move_to(c,x+13.5,y+2.5);
cairo_line_to(c,x+8,y+8);
cairo_line_to(c,x+13.5,y+13.5);
cairo_stroke(c);
}
if(_dec->telemetry_mv&0x10){
cairo_move_to(c,x+8+frag_mv[0],y+8-frag_mv[1]);
cairo_set_source_rgba(c,1.,1.,1.,.9);
cairo_set_line_width(c,3.);
cairo_line_to(c,x+8+frag_mv[0]*.66,y+8-frag_mv[1]*.66);
cairo_stroke_preserve(c);
cairo_set_line_width(c,2.);
cairo_line_to(c,x+8+frag_mv[0]*.33,y+8-frag_mv[1]*.33);
cairo_stroke_preserve(c);
cairo_set_line_width(c,1.);
cairo_line_to(c,x+8,y+8);
cairo_stroke(c);
}
}break;
case OC_MODE_GOLDEN_NOMV:{
if(_dec->telemetry_mbmode&0x20){
cairo_set_source_rgba(c,1.,1.,0,.5);
cairo_rectangle(c,x+2.5,y+2.5,11,11);
cairo_stroke_preserve(c);
cairo_set_source_rgba(c,1.,1.,0,.25);
cairo_fill(c);
}
}break;
case OC_MODE_GOLDEN_MV:{
if(_dec->telemetry_mbmode&0x40){
cairo_rectangle(c,x+2.5,y+2.5,11,11);
cairo_set_source_rgba(c,1.,1.,0,.5);
cairo_stroke(c);
}
if(_dec->telemetry_mv&0x40){
cairo_move_to(c,x+8+frag_mv[0],y+8-frag_mv[1]);
cairo_set_source_rgba(c,1.,1.,1.,.9);
cairo_set_line_width(c,3.);
cairo_line_to(c,x+8+frag_mv[0]*.66,y+8-frag_mv[1]*.66);
cairo_stroke_preserve(c);
cairo_set_line_width(c,2.);
cairo_line_to(c,x+8+frag_mv[0]*.33,y+8-frag_mv[1]*.33);
cairo_stroke_preserve(c);
cairo_set_line_width(c,1.);
cairo_line_to(c,x+8,y+8);
cairo_stroke(c);
}
}break;
case OC_MODE_INTER_MV_FOUR:{
if(_dec->telemetry_mbmode&0x80){
cairo_rectangle(c,x+2.5,y+2.5,4,4);
cairo_rectangle(c,x+9.5,y+2.5,4,4);
cairo_rectangle(c,x+2.5,y+9.5,4,4);
cairo_rectangle(c,x+9.5,y+9.5,4,4);
cairo_set_source_rgba(c,0,1.,0,.5);
cairo_stroke(c);
}
/*4mv is odd, coded in raster order.*/
fragi=mb_maps[mbi][0][0];
if(frags[fragi].coded&&_dec->telemetry_mv&0x80){
frag_mv=frag_mvs[fragi];
cairo_move_to(c,x+4+frag_mv[0],y+12-frag_mv[1]);
cairo_set_source_rgba(c,1.,1.,1.,.9);
cairo_set_line_width(c,3.);
cairo_line_to(c,x+4+frag_mv[0]*.66,y+12-frag_mv[1]*.66);
cairo_stroke_preserve(c);
cairo_set_line_width(c,2.);
cairo_line_to(c,x+4+frag_mv[0]*.33,y+12-frag_mv[1]*.33);
cairo_stroke_preserve(c);
cairo_set_line_width(c,1.);
cairo_line_to(c,x+4,y+12);
cairo_stroke(c);
}
fragi=mb_maps[mbi][0][1];
if(frags[fragi].coded&&_dec->telemetry_mv&0x80){
frag_mv=frag_mvs[fragi];
cairo_move_to(c,x+12+frag_mv[0],y+12-frag_mv[1]);
cairo_set_source_rgba(c,1.,1.,1.,.9);
cairo_set_line_width(c,3.);
cairo_line_to(c,x+12+frag_mv[0]*.66,y+12-frag_mv[1]*.66);
cairo_stroke_preserve(c);
cairo_set_line_width(c,2.);
cairo_line_to(c,x+12+frag_mv[0]*.33,y+12-frag_mv[1]*.33);
cairo_stroke_preserve(c);
cairo_set_line_width(c,1.);
cairo_line_to(c,x+12,y+12);
cairo_stroke(c);
}
fragi=mb_maps[mbi][0][2];
if(frags[fragi].coded&&_dec->telemetry_mv&0x80){
frag_mv=frag_mvs[fragi];
cairo_move_to(c,x+4+frag_mv[0],y+4-frag_mv[1]);
cairo_set_source_rgba(c,1.,1.,1.,.9);
cairo_set_line_width(c,3.);
cairo_line_to(c,x+4+frag_mv[0]*.66,y+4-frag_mv[1]*.66);
cairo_stroke_preserve(c);
cairo_set_line_width(c,2.);
cairo_line_to(c,x+4+frag_mv[0]*.33,y+4-frag_mv[1]*.33);
cairo_stroke_preserve(c);
cairo_set_line_width(c,1.);
cairo_line_to(c,x+4,y+4);
cairo_stroke(c);
}
fragi=mb_maps[mbi][0][3];
if(frags[fragi].coded&&_dec->telemetry_mv&0x80){
frag_mv=frag_mvs[fragi];
cairo_move_to(c,x+12+frag_mv[0],y+4-frag_mv[1]);
cairo_set_source_rgba(c,1.,1.,1.,.9);
cairo_set_line_width(c,3.);
cairo_line_to(c,x+12+frag_mv[0]*.66,y+4-frag_mv[1]*.66);
cairo_stroke_preserve(c);
cairo_set_line_width(c,2.);
cairo_line_to(c,x+12+frag_mv[0]*.33,y+4-frag_mv[1]*.33);
cairo_stroke_preserve(c);
cairo_set_line_width(c,1.);
cairo_line_to(c,x+12,y+4);
cairo_stroke(c);
}
}break;
}
}
}
/*qii illustration.*/
if(_dec->telemetry_qi&0x2){
cairo_set_line_cap(c,CAIRO_LINE_CAP_SQUARE);
for(bi=0;bi<4;bi++){
ptrdiff_t fragi;
int qiv;
int xp;
int yp;
xp=x+(bi&1)*8;
yp=y+8-(bi&2)*4;
fragi=mb_maps[mbi][0][bi];
if(fragi>=0&&frags[fragi].coded){
qiv=qim[frags[fragi].qii];
cairo_set_line_width(c,3.);
cairo_set_source_rgba(c,0.,0.,0.,.5);
switch(qiv){
/*Double plus:*/
case 2:{
if((bi&1)^((bi&2)>>1)){
cairo_move_to(c,xp+2.5,yp+1.5);
cairo_line_to(c,xp+2.5,yp+3.5);
cairo_move_to(c,xp+1.5,yp+2.5);
cairo_line_to(c,xp+3.5,yp+2.5);
cairo_move_to(c,xp+5.5,yp+4.5);
cairo_line_to(c,xp+5.5,yp+6.5);
cairo_move_to(c,xp+4.5,yp+5.5);
cairo_line_to(c,xp+6.5,yp+5.5);
cairo_stroke_preserve(c);
cairo_set_source_rgba(c,0.,1.,1.,1.);
}
else{
cairo_move_to(c,xp+5.5,yp+1.5);
cairo_line_to(c,xp+5.5,yp+3.5);
cairo_move_to(c,xp+4.5,yp+2.5);
cairo_line_to(c,xp+6.5,yp+2.5);
cairo_move_to(c,xp+2.5,yp+4.5);
cairo_line_to(c,xp+2.5,yp+6.5);
cairo_move_to(c,xp+1.5,yp+5.5);
cairo_line_to(c,xp+3.5,yp+5.5);
cairo_stroke_preserve(c);
cairo_set_source_rgba(c,0.,1.,1.,1.);
}
}break;
/*Double minus:*/
case -2:{
cairo_move_to(c,xp+2.5,yp+2.5);
cairo_line_to(c,xp+5.5,yp+2.5);
cairo_move_to(c,xp+2.5,yp+5.5);
cairo_line_to(c,xp+5.5,yp+5.5);
cairo_stroke_preserve(c);
cairo_set_source_rgba(c,1.,1.,1.,1.);
}break;
/*Plus:*/
case 1:{
if(bi&2==0)yp-=2;
if(bi&1==0)xp-=2;
cairo_move_to(c,xp+4.5,yp+2.5);
cairo_line_to(c,xp+4.5,yp+6.5);
cairo_move_to(c,xp+2.5,yp+4.5);
cairo_line_to(c,xp+6.5,yp+4.5);
cairo_stroke_preserve(c);
cairo_set_source_rgba(c,.1,1.,.3,1.);
break;
}
/*Fall through.*/
/*Minus:*/
case -1:{
cairo_move_to(c,xp+2.5,yp+4.5);
cairo_line_to(c,xp+6.5,yp+4.5);
cairo_stroke_preserve(c);
cairo_set_source_rgba(c,1.,.3,.1,1.);
}break;
default:continue;
}
cairo_set_line_width(c,1.);
cairo_stroke(c);
}
}
}
col2++;
if((col2>>1)>=_dec->state.nhmbs){
col2=0;
row2+=2;
}
}
/*Bit usage indicator[s]:*/
if(_dec->telemetry_bits){
int widths[6];
int fpsn;
int fpsd;
int mult;
int fullw;
int padw;
int i;
fpsn=_dec->state.info.fps_numerator;
fpsd=_dec->state.info.fps_denominator;
mult=(_dec->telemetry_bits>=0xFF?1:_dec->telemetry_bits);
fullw=250.f*h*fpsd*mult/fpsn;
padw=w-24;
/*Header and coded block bits.*/
if(_dec->telemetry_frame_bytes<0||
_dec->telemetry_frame_bytes==OC_LOTS_OF_BITS){
_dec->telemetry_frame_bytes=0;
}
if(_dec->telemetry_coding_bytes<0||
_dec->telemetry_coding_bytes>_dec->telemetry_frame_bytes){
_dec->telemetry_coding_bytes=0;
}
if(_dec->telemetry_mode_bytes<0||
_dec->telemetry_mode_bytes>_dec->telemetry_frame_bytes){
_dec->telemetry_mode_bytes=0;
}
if(_dec->telemetry_mv_bytes<0||
_dec->telemetry_mv_bytes>_dec->telemetry_frame_bytes){
_dec->telemetry_mv_bytes=0;
}
if(_dec->telemetry_qi_bytes<0||
_dec->telemetry_qi_bytes>_dec->telemetry_frame_bytes){
_dec->telemetry_qi_bytes=0;
}
if(_dec->telemetry_dc_bytes<0||
_dec->telemetry_dc_bytes>_dec->telemetry_frame_bytes){
_dec->telemetry_dc_bytes=0;
}
widths[0]=padw*(_dec->telemetry_frame_bytes-_dec->telemetry_coding_bytes)/fullw;
widths[1]=padw*(_dec->telemetry_coding_bytes-_dec->telemetry_mode_bytes)/fullw;
widths[2]=padw*(_dec->telemetry_mode_bytes-_dec->telemetry_mv_bytes)/fullw;
widths[3]=padw*(_dec->telemetry_mv_bytes-_dec->telemetry_qi_bytes)/fullw;
widths[4]=padw*(_dec->telemetry_qi_bytes-_dec->telemetry_dc_bytes)/fullw;
widths[5]=padw*(_dec->telemetry_dc_bytes)/fullw;
for(i=0;i<6;i++)if(widths[i]>w)widths[i]=w;
cairo_set_source_rgba(c,.0,.0,.0,.6);
cairo_rectangle(c,10,h-33,widths[0]+1,5);
cairo_rectangle(c,10,h-29,widths[1]+1,5);
cairo_rectangle(c,10,h-25,widths[2]+1,5);
cairo_rectangle(c,10,h-21,widths[3]+1,5);
cairo_rectangle(c,10,h-17,widths[4]+1,5);
cairo_rectangle(c,10,h-13,widths[5]+1,5);
cairo_fill(c);
cairo_set_source_rgb(c,1,0,0);
cairo_rectangle(c,10.5,h-32.5,widths[0],4);
cairo_fill(c);
cairo_set_source_rgb(c,0,1,0);
cairo_rectangle(c,10.5,h-28.5,widths[1],4);
cairo_fill(c);
cairo_set_source_rgb(c,0,0,1);
cairo_rectangle(c,10.5,h-24.5,widths[2],4);
cairo_fill(c);
cairo_set_source_rgb(c,.6,.4,.0);
cairo_rectangle(c,10.5,h-20.5,widths[3],4);
cairo_fill(c);
cairo_set_source_rgb(c,.3,.3,.3);
cairo_rectangle(c,10.5,h-16.5,widths[4],4);
cairo_fill(c);
cairo_set_source_rgb(c,.5,.5,.8);
cairo_rectangle(c,10.5,h-12.5,widths[5],4);
cairo_fill(c);
}
/*Master qi indicator[s]:*/
if(_dec->telemetry_qi&0x1){
cairo_text_extents_t extents;
char buffer[10];
int p;
int y;
p=0;
y=h-7.5;
if(_dec->state.qis[0]>=10)buffer[p++]=48+_dec->state.qis[0]/10;
buffer[p++]=48+_dec->state.qis[0]%10;
if(_dec->state.nqis>=2){
buffer[p++]=' ';
if(_dec->state.qis[1]>=10)buffer[p++]=48+_dec->state.qis[1]/10;
buffer[p++]=48+_dec->state.qis[1]%10;
}
if(_dec->state.nqis==3){
buffer[p++]=' ';
if(_dec->state.qis[2]>=10)buffer[p++]=48+_dec->state.qis[2]/10;
buffer[p++]=48+_dec->state.qis[2]%10;
}
buffer[p++]='\0';
cairo_select_font_face(c,"sans",
CAIRO_FONT_SLANT_NORMAL,CAIRO_FONT_WEIGHT_BOLD);
cairo_set_font_size(c,18);
cairo_text_extents(c,buffer,&extents);
cairo_set_source_rgb(c,1,1,1);
cairo_move_to(c,w-extents.x_advance-10,y);
cairo_show_text(c,buffer);
cairo_set_source_rgb(c,0,0,0);
cairo_move_to(c,w-extents.x_advance-10,y);
cairo_text_path(c,buffer);
cairo_set_line_width(c,.8);
cairo_set_line_join(c,CAIRO_LINE_JOIN_ROUND);
cairo_stroke(c);
}
cairo_destroy(c);
}
/*Out of the Cairo plane into the telemetry YUV buffer.*/
_ycbcr[0].data=_dec->telemetry_frame_data;
_ycbcr[0].stride=_ycbcr[0].width;
_ycbcr[1].data=_ycbcr[0].data+h*_ycbcr[0].stride;
_ycbcr[1].stride=_ycbcr[1].width;
_ycbcr[2].data=_ycbcr[1].data+(h>>vdec)*_ycbcr[1].stride;
_ycbcr[2].stride=_ycbcr[2].width;
y_row=_ycbcr[0].data;
u_row=_ycbcr[1].data;
v_row=_ycbcr[2].data;
rgb_row=data;
/*This is one of the few places it's worth handling chroma on a
case-by-case basis.*/
switch(_dec->state.info.pixel_fmt){
case TH_PF_420:{
for(y=0;y<h;y+=2){
unsigned char *y_row2;
unsigned char *rgb_row2;
y_row2=y_row+_ycbcr[0].stride;
rgb_row2=rgb_row+cstride;
for(x=0;x<w;x+=2){
int y;
int u;
int v;
y=(65481*rgb_row[4*x+2]+128553*rgb_row[4*x+1]
+24966*rgb_row[4*x+0]+4207500)/255000;
y_row[x]=OC_CLAMP255(y);
y=(65481*rgb_row[4*x+6]+128553*rgb_row[4*x+5]
+24966*rgb_row[4*x+4]+4207500)/255000;
y_row[x+1]=OC_CLAMP255(y);
y=(65481*rgb_row2[4*x+2]+128553*rgb_row2[4*x+1]
+24966*rgb_row2[4*x+0]+4207500)/255000;
y_row2[x]=OC_CLAMP255(y);
y=(65481*rgb_row2[4*x+6]+128553*rgb_row2[4*x+5]
+24966*rgb_row2[4*x+4]+4207500)/255000;
y_row2[x+1]=OC_CLAMP255(y);
u=(-8372*(rgb_row[4*x+2]+rgb_row[4*x+6]
+rgb_row2[4*x+2]+rgb_row2[4*x+6])
-16436*(rgb_row[4*x+1]+rgb_row[4*x+5]
+rgb_row2[4*x+1]+rgb_row2[4*x+5])
+24808*(rgb_row[4*x+0]+rgb_row[4*x+4]
+rgb_row2[4*x+0]+rgb_row2[4*x+4])+29032005)/225930;
v=(39256*(rgb_row[4*x+2]+rgb_row[4*x+6]
+rgb_row2[4*x+2]+rgb_row2[4*x+6])
-32872*(rgb_row[4*x+1]+rgb_row[4*x+5]
+rgb_row2[4*x+1]+rgb_row2[4*x+5])
-6384*(rgb_row[4*x+0]+rgb_row[4*x+4]
+rgb_row2[4*x+0]+rgb_row2[4*x+4])+45940035)/357510;
u_row[x>>1]=OC_CLAMP255(u);
v_row[x>>1]=OC_CLAMP255(v);
}
y_row+=_ycbcr[0].stride<<1;
u_row+=_ycbcr[1].stride;
v_row+=_ycbcr[2].stride;
rgb_row+=cstride<<1;
}
}break;
case TH_PF_422:{
for(y=0;y<h;y++){
for(x=0;x<w;x+=2){
int y;
int u;
int v;
y=(65481*rgb_row[4*x+2]+128553*rgb_row[4*x+1]
+24966*rgb_row[4*x+0]+4207500)/255000;
y_row[x]=OC_CLAMP255(y);
y=(65481*rgb_row[4*x+6]+128553*rgb_row[4*x+5]
+24966*rgb_row[4*x+4]+4207500)/255000;
y_row[x+1]=OC_CLAMP255(y);
u=(-16744*(rgb_row[4*x+2]+rgb_row[4*x+6])
-32872*(rgb_row[4*x+1]+rgb_row[4*x+5])
+49616*(rgb_row[4*x+0]+rgb_row[4*x+4])+29032005)/225930;
v=(78512*(rgb_row[4*x+2]+rgb_row[4*x+6])
-65744*(rgb_row[4*x+1]+rgb_row[4*x+5])
-12768*(rgb_row[4*x+0]+rgb_row[4*x+4])+45940035)/357510;
u_row[x>>1]=OC_CLAMP255(u);
v_row[x>>1]=OC_CLAMP255(v);
}
y_row+=_ycbcr[0].stride;
u_row+=_ycbcr[1].stride;
v_row+=_ycbcr[2].stride;
rgb_row+=cstride;
}
}break;
/*case TH_PF_444:*/
default:{
for(y=0;y<h;y++){
for(x=0;x<w;x++){
int y;
int u;
int v;
y=(65481*rgb_row[4*x+2]+128553*rgb_row[4*x+1]
+24966*rgb_row[4*x+0]+4207500)/255000;
u=(-33488*rgb_row[4*x+2]-65744*rgb_row[4*x+1]
+99232*rgb_row[4*x+0]+29032005)/225930;
v=(157024*rgb_row[4*x+2]-131488*rgb_row[4*x+1]
-25536*rgb_row[4*x+0]+45940035)/357510;
y_row[x]=OC_CLAMP255(y);
u_row[x]=OC_CLAMP255(u);
v_row[x]=OC_CLAMP255(v);
}
y_row+=_ycbcr[0].stride;
u_row+=_ycbcr[1].stride;
v_row+=_ycbcr[2].stride;
rgb_row+=cstride;
}
}break;
}
/*Finished.
Destroy the surface.*/
cairo_surface_destroy(cs);
}
#endif
return 0;
}