pjs/xpcom/ds/CheckedInt.h

596 строки
22 KiB
C++

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim:set ts=2 sw=2 sts=2 et cindent: */
/* ***** BEGIN LICENSE BLOCK *****
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is Mozilla code.
*
* The Initial Developer of the Original Code is the Mozilla Corporation.
* Portions created by the Initial Developer are Copyright (C) 2009
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Benoit Jacob <bjacob@mozilla.com>
* Jeff Muizelaar <jmuizelaar@mozilla.com>
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
* ***** END LICENSE BLOCK ***** */
#ifndef mozilla_CheckedInt_h
#define mozilla_CheckedInt_h
#include "prtypes.h"
#include <climits>
namespace mozilla {
namespace CheckedInt_internal {
/* we don't want to use std::numeric_limits here because PRInt... types may not support it,
* depending on the platform, e.g. on certain platforms they use nonstandard built-in types
*/
/*** Step 1: manually record information for all the types that we want to support
***/
struct unsupported_type {};
template<typename T> struct integer_type_manually_recorded_info
{
enum { is_supported = 0 };
typedef unsupported_type twice_bigger_type;
typedef unsupported_type unsigned_type;
};
#define CHECKEDINT_REGISTER_SUPPORTED_TYPE(T,_twice_bigger_type,_unsigned_type) \
template<> struct integer_type_manually_recorded_info<T> \
{ \
enum { is_supported = 1 }; \
typedef _twice_bigger_type twice_bigger_type; \
typedef _unsigned_type unsigned_type; \
static void TYPE_NOT_SUPPORTED_BY_CheckedInt() {} \
};
// Type Twice Bigger Type Unsigned Type
CHECKEDINT_REGISTER_SUPPORTED_TYPE(PRInt8, PRInt16, PRUint8)
CHECKEDINT_REGISTER_SUPPORTED_TYPE(PRUint8, PRUint16, PRUint8)
CHECKEDINT_REGISTER_SUPPORTED_TYPE(PRInt16, PRInt32, PRUint16)
CHECKEDINT_REGISTER_SUPPORTED_TYPE(PRUint16, PRUint32, PRUint16)
CHECKEDINT_REGISTER_SUPPORTED_TYPE(PRInt32, PRInt64, PRUint32)
CHECKEDINT_REGISTER_SUPPORTED_TYPE(PRUint32, PRUint64, PRUint32)
CHECKEDINT_REGISTER_SUPPORTED_TYPE(PRInt64, unsupported_type, PRUint64)
CHECKEDINT_REGISTER_SUPPORTED_TYPE(PRUint64, unsupported_type, PRUint64)
/*** Step 2: record some info about a given integer type,
*** including whether it is supported, whether a twice bigger integer type
*** is supported, what that twice bigger type is, and some stuff as found
*** in std::numeric_limits (which we don't use because PRInt.. types may
*** not support it, if they are defined directly from compiler built-in types).
*** We use function names min_value() and max_value() instead of min() and max()
*** because of stupid min/max macros in Windows headers.
***/
template<typename T> struct is_unsupported_type { enum { answer = 0 }; };
template<> struct is_unsupported_type<unsupported_type> { enum { answer = 1 }; };
template<typename T> struct integer_traits
{
typedef typename integer_type_manually_recorded_info<T>::twice_bigger_type twice_bigger_type;
typedef typename integer_type_manually_recorded_info<T>::unsigned_type unsigned_type;
enum {
is_supported = integer_type_manually_recorded_info<T>::is_supported,
twice_bigger_type_is_supported
= is_unsupported_type<
typename integer_type_manually_recorded_info<T>::twice_bigger_type
>::answer ? 0 : 1,
size = sizeof(T),
position_of_sign_bit = CHAR_BIT * size - 1,
is_signed = (T(-1) > T(0)) ? 0 : 1
};
static T min_value()
{
// bitwise ops may return a larger type, that's why we cast explicitly to T
// in C++, left bit shifts on signed values is undefined by the standard unless the shifted value is representable.
// notice that signed-to-unsigned conversions are always well-defined in the standard,
// as the value congruent to 2^n as expected. By contrast, unsigned-to-signed is only well-defined if the value is
// representable.
return is_signed ? T(unsigned_type(1) << position_of_sign_bit) : T(0);
}
static T max_value()
{
return ~min_value();
}
};
/*** Step 3: Implement the actual validity checks --- ideas taken from IntegerLib, code different.
***/
// bitwise ops may return a larger type, so it's good to use these inline helpers guaranteeing that
// the result is really of type T
template<typename T> inline T has_sign_bit(T x)
{
// in C++, right bit shifts on negative values is undefined by the standard.
// notice that signed-to-unsigned conversions are always well-defined in the standard,
// as the value congruent modulo 2^n as expected. By contrast, unsigned-to-signed is only well-defined if the value is
// representable. Here the unsigned-to-signed conversion is OK because the value (the result of the shift) is 0 or 1.
typedef typename integer_traits<T>::unsigned_type unsigned_T;
return T(unsigned_T(x) >> integer_traits<T>::position_of_sign_bit);
}
template<typename T> inline T binary_complement(T x)
{
return ~x;
}
template<typename T, typename U,
bool is_T_signed = integer_traits<T>::is_signed,
bool is_U_signed = integer_traits<U>::is_signed>
struct is_in_range_impl {};
template<typename T, typename U>
struct is_in_range_impl<T, U, true, true>
{
static T run(U x)
{
return (x <= integer_traits<T>::max_value()) &&
(x >= integer_traits<T>::min_value());
}
};
template<typename T, typename U>
struct is_in_range_impl<T, U, false, false>
{
static T run(U x)
{
return x <= integer_traits<T>::max_value();
}
};
template<typename T, typename U>
struct is_in_range_impl<T, U, true, false>
{
static T run(U x)
{
if (sizeof(T) > sizeof(U))
return 1;
else
return x <= U(integer_traits<T>::max_value());
}
};
template<typename T, typename U>
struct is_in_range_impl<T, U, false, true>
{
static T run(U x)
{
if (sizeof(T) >= sizeof(U))
return x >= 0;
else
return (x >= 0) && (x <= U(integer_traits<T>::max_value()));
}
};
template<typename T, typename U> inline T is_in_range(U x)
{
return is_in_range_impl<T, U>::run(x);
}
template<typename T> inline T is_add_valid(T x, T y, T result)
{
return integer_traits<T>::is_signed ?
// addition is valid if the sign of x+y is equal to either that of x or that of y.
// Beware! These bitwise operations can return a larger integer type, if T was a
// small type like int8, so we explicitly cast to T.
has_sign_bit(binary_complement(T((result^x) & (result^y))))
:
binary_complement(x) >= y;
}
template<typename T> inline T is_sub_valid(T x, T y, T result)
{
return integer_traits<T>::is_signed ?
// substraction is valid if either x and y have same sign, or x-y and x have same sign
has_sign_bit(binary_complement(T((result^x) & (x^y))))
:
x >= y;
}
template<typename T,
bool is_signed = integer_traits<T>::is_signed,
bool twice_bigger_type_is_supported = integer_traits<T>::twice_bigger_type_is_supported>
struct is_mul_valid_impl {};
template<typename T, bool is_signed>
struct is_mul_valid_impl<T, is_signed, true>
{
static T run(T x, T y)
{
typedef typename integer_traits<T>::twice_bigger_type twice_bigger_type;
twice_bigger_type product = twice_bigger_type(x) * twice_bigger_type(y);
return is_in_range<T>(product);
}
};
template<typename T>
struct is_mul_valid_impl<T, true, false>
{
static T run(T x, T y)
{
const T max_value = integer_traits<T>::max_value();
const T min_value = integer_traits<T>::min_value();
if (x == 0 || y == 0) return true;
if (x > 0) {
if (y > 0)
return x <= max_value / y;
else
return y >= min_value / x;
} else {
if (y > 0)
return x >= min_value / y;
else
return y >= max_value / x;
}
}
};
template<typename T>
struct is_mul_valid_impl<T, false, false>
{
static T run(T x, T y)
{
const T max_value = integer_traits<T>::max_value();
if (x == 0 || y == 0) return true;
return x <= max_value / y;
}
};
template<typename T> inline T is_mul_valid(T x, T y, T /*result not used*/)
{
return is_mul_valid_impl<T>::run(x, y);
}
template<typename T> inline T is_div_valid(T x, T y)
{
return integer_traits<T>::is_signed ?
// keep in mind that min/-1 is invalid because abs(min)>max
(y != 0) && (x != integer_traits<T>::min_value() || y != T(-1))
:
y != 0;
}
// this is just to shut up msvc warnings about negating unsigned ints.
template<typename T, bool is_signed = integer_traits<T>::is_signed>
struct opposite_if_signed_impl
{
static T run(T x) { return -x; }
};
template<typename T>
struct opposite_if_signed_impl<T, false>
{
static T run(T x) { return x; }
};
template<typename T>
inline T opposite_if_signed(T x) { return opposite_if_signed_impl<T>::run(x); }
} // end namespace CheckedInt_internal
/*** Step 4: Now define the CheckedInt class.
***/
/** \class CheckedInt
* \brief Integer wrapper class checking for integer overflow and other errors
* \param T the integer type to wrap. Can be any of PRInt8, PRUint8, PRInt16, PRUint16,
* PRInt32, PRUint32, PRInt64, PRUint64.
*
* This class implements guarded integer arithmetic. Do a computation, check that
* valid() returns true, you then have a guarantee that no problem, such as integer overflow,
* happened during this computation.
*
* The arithmetic operators in this class are guaranteed not to crash your app
* in case of a division by zero.
*
* For example, suppose that you want to implement a function that computes (x+y)/z,
* that doesn't crash if z==0, and that reports on error (divide by zero or integer overflow).
* You could code it as follows:
\code
PRBool compute_x_plus_y_over_z(PRInt32 x, PRInt32 y, PRInt32 z, PRInt32 *result)
{
CheckedInt<PRInt32> checked_result = (CheckedInt<PRInt32>(x) + y) / z;
*result = checked_result.value();
return checked_result.valid();
}
\endcode
*
* Implicit conversion from plain integers to checked integers is allowed. The plain integer
* is checked to be in range before being casted to the destination type. This means that the following
* lines all compile, and the resulting CheckedInts are correctly detected as valid or invalid:
* \code
CheckedInt<PRUint8> x(1); // 1 is of type int, is found to be in range for PRUint8, x is valid
CheckedInt<PRUint8> x(-1); // -1 is of type int, is found not to be in range for PRUint8, x is invalid
CheckedInt<PRInt8> x(-1); // -1 is of type int, is found to be in range for PRInt8, x is valid
CheckedInt<PRInt8> x(PRInt16(1000)); // 1000 is of type PRInt16, is found not to be in range for PRInt8, x is invalid
CheckedInt<PRInt32> x(PRUint32(3123456789)); // 3123456789 is of type PRUint32, is found not to be in range
// for PRInt32, x is invalid
* \endcode
* Implicit conversion from
* checked integers to plain integers is not allowed. As shown in the
* above example, to get the value of a checked integer as a normal integer, call value().
*
* Arithmetic operations between checked and plain integers is allowed; the result type
* is the type of the checked integer.
*
* Checked integers of different types cannot be used in the same arithmetic expression.
*
* There are convenience typedefs for all PR integer types, of the following form (these are just 2 examples):
\code
typedef CheckedInt<PRInt32> CheckedInt32;
typedef CheckedInt<PRUint16> CheckedUint16;
\endcode
*/
template<typename T>
class CheckedInt
{
protected:
T mValue;
T mIsValid; // stored as a T to limit the number of integer conversions when
// evaluating nested arithmetic expressions.
template<typename U>
CheckedInt(U value, T isValid) : mValue(value), mIsValid(isValid)
{
CheckedInt_internal::integer_type_manually_recorded_info<T>
::TYPE_NOT_SUPPORTED_BY_CheckedInt();
}
public:
/** Constructs a checked integer with given \a value. The checked integer is initialized as valid or invalid
* depending on whether the \a value is in range.
*
* This constructor is not explicit. Instead, the type of its argument is a separate template parameter,
* ensuring that no conversion is performed before this constructor is actually called.
* As explained in the above documentation for class CheckedInt, this constructor checks that its argument is
* valid.
*/
template<typename U>
CheckedInt(U value)
: mValue(T(value)),
mIsValid(CheckedInt_internal::is_in_range<T>(value))
{
CheckedInt_internal::integer_type_manually_recorded_info<T>
::TYPE_NOT_SUPPORTED_BY_CheckedInt();
}
/** Constructs a valid checked integer with initial value 0 */
CheckedInt() : mValue(0), mIsValid(1)
{
CheckedInt_internal::integer_type_manually_recorded_info<T>
::TYPE_NOT_SUPPORTED_BY_CheckedInt();
}
/** \returns the actual value */
T value() const { return mValue; }
/** \returns PR_TRUE if the checked integer is valid, i.e. is not the result
* of an invalid operation or of an operation involving an invalid checked integer
*/
PRBool valid() const
{
return PRBool(mIsValid);
}
/** \returns the sum. Checks for overflow. */
template<typename U> friend CheckedInt<U> operator +(const CheckedInt<U>& lhs, const CheckedInt<U>& rhs);
/** Adds. Checks for overflow. \returns self reference */
template<typename U> CheckedInt& operator +=(U rhs);
/** \returns the difference. Checks for overflow. */
template<typename U> friend CheckedInt<U> operator -(const CheckedInt<U>& lhs, const CheckedInt<U> &rhs);
/** Substracts. Checks for overflow. \returns self reference */
template<typename U> CheckedInt& operator -=(U rhs);
/** \returns the product. Checks for overflow. */
template<typename U> friend CheckedInt<U> operator *(const CheckedInt<U>& lhs, const CheckedInt<U> &rhs);
/** Multiplies. Checks for overflow. \returns self reference */
template<typename U> CheckedInt& operator *=(U rhs);
/** \returns the quotient. Checks for overflow and for divide-by-zero. */
template<typename U> friend CheckedInt<U> operator /(const CheckedInt<U>& lhs, const CheckedInt<U> &rhs);
/** Divides. Checks for overflow and for divide-by-zero. \returns self reference */
template<typename U> CheckedInt& operator /=(U rhs);
/** \returns the opposite value. Checks for overflow. */
CheckedInt operator -() const
{
// circumvent msvc warning about - applied to unsigned int.
// if we're unsigned, the only valid case anyway is 0 in which case - is a no-op.
T result = CheckedInt_internal::opposite_if_signed(value());
/* give the compiler a good chance to perform RVO */
return CheckedInt(result,
mIsValid & CheckedInt_internal::is_sub_valid(T(0), value(), result));
}
/** \returns true if the left and right hand sides are valid and have the same value. */
PRBool operator ==(const CheckedInt& other) const
{
return PRBool(mIsValid & other.mIsValid & (value() == other.mValue));
}
/** prefix ++ */
CheckedInt& operator++()
{
*this = *this + 1;
return *this;
}
/** postfix ++ */
CheckedInt operator++(int)
{
CheckedInt tmp = *this;
*this = *this + 1;
return tmp;
}
/** prefix -- */
CheckedInt& operator--()
{
*this = *this - 1;
return *this;
}
/** postfix -- */
CheckedInt operator--(int)
{
CheckedInt tmp = *this;
*this = *this - 1;
return tmp;
}
private:
/** operator!= is disabled. Indeed, (a!=b) should be the same as !(a==b) but that
* would mean that if a or b is invalid, (a!=b) is always true, which is very tricky.
*/
template<typename U>
PRBool operator !=(U other) const { return !(*this == other); }
};
#define CHECKEDINT_BASIC_BINARY_OPERATOR(NAME, OP) \
template<typename T> \
inline CheckedInt<T> operator OP(const CheckedInt<T> &lhs, const CheckedInt<T> &rhs) \
{ \
T x = lhs.mValue; \
T y = rhs.mValue; \
T result = x OP y; \
T is_op_valid \
= CheckedInt_internal::is_##NAME##_valid(x, y, result); \
/* give the compiler a good chance to perform RVO */ \
return CheckedInt<T>(result, \
lhs.mIsValid & rhs.mIsValid & is_op_valid); \
}
CHECKEDINT_BASIC_BINARY_OPERATOR(add, +)
CHECKEDINT_BASIC_BINARY_OPERATOR(sub, -)
CHECKEDINT_BASIC_BINARY_OPERATOR(mul, *)
// division can't be implemented by CHECKEDINT_BASIC_BINARY_OPERATOR
// because if rhs == 0, we are not allowed to even try to compute the quotient.
template<typename T>
inline CheckedInt<T> operator /(const CheckedInt<T> &lhs, const CheckedInt<T> &rhs)
{
T x = lhs.mValue;
T y = rhs.mValue;
T is_op_valid = CheckedInt_internal::is_div_valid(x, y);
T result = is_op_valid ? (x / y) : 0;
/* give the compiler a good chance to perform RVO */
return CheckedInt<T>(result,
lhs.mIsValid & rhs.mIsValid & is_op_valid);
}
// implement cast_to_CheckedInt<T>(x), making sure that
// - it allows x to be either a CheckedInt<T> or any integer type that can be casted to T
// - if x is already a CheckedInt<T>, we just return a reference to it, instead of copying it (optimization)
template<typename T, typename U>
struct cast_to_CheckedInt_impl
{
typedef CheckedInt<T> return_type;
static CheckedInt<T> run(U u) { return u; }
};
template<typename T>
struct cast_to_CheckedInt_impl<T, CheckedInt<T> >
{
typedef const CheckedInt<T>& return_type;
static const CheckedInt<T>& run(const CheckedInt<T>& u) { return u; }
};
template<typename T, typename U>
inline typename cast_to_CheckedInt_impl<T, U>::return_type
cast_to_CheckedInt(U u)
{
return cast_to_CheckedInt_impl<T, U>::run(u);
}
#define CHECKEDINT_CONVENIENCE_BINARY_OPERATORS(OP, COMPOUND_OP) \
template<typename T> \
template<typename U> \
CheckedInt<T>& CheckedInt<T>::operator COMPOUND_OP(U rhs) \
{ \
*this = *this OP cast_to_CheckedInt<T>(rhs); \
return *this; \
} \
template<typename T, typename U> \
inline CheckedInt<T> operator OP(const CheckedInt<T> &lhs, U rhs) \
{ \
return lhs OP cast_to_CheckedInt<T>(rhs); \
} \
template<typename T, typename U> \
inline CheckedInt<T> operator OP(U lhs, const CheckedInt<T> &rhs) \
{ \
return cast_to_CheckedInt<T>(lhs) OP rhs; \
}
CHECKEDINT_CONVENIENCE_BINARY_OPERATORS(+, +=)
CHECKEDINT_CONVENIENCE_BINARY_OPERATORS(*, *=)
CHECKEDINT_CONVENIENCE_BINARY_OPERATORS(-, -=)
CHECKEDINT_CONVENIENCE_BINARY_OPERATORS(/, /=)
template<typename T, typename U>
inline PRBool operator ==(const CheckedInt<T> &lhs, U rhs)
{
return lhs == cast_to_CheckedInt<T>(rhs);
}
template<typename T, typename U>
inline PRBool operator ==(U lhs, const CheckedInt<T> &rhs)
{
return cast_to_CheckedInt<T>(lhs) == rhs;
}
// convenience typedefs.
// the use of a macro here helps make sure that we don't let a typo slip into some of these.
#define CHECKEDINT_MAKE_TYPEDEF(Type) \
typedef CheckedInt<PR##Type> Checked##Type;
CHECKEDINT_MAKE_TYPEDEF(Int8)
CHECKEDINT_MAKE_TYPEDEF(Uint8)
CHECKEDINT_MAKE_TYPEDEF(Int16)
CHECKEDINT_MAKE_TYPEDEF(Uint16)
CHECKEDINT_MAKE_TYPEDEF(Int32)
CHECKEDINT_MAKE_TYPEDEF(Uint32)
CHECKEDINT_MAKE_TYPEDEF(Int64)
CHECKEDINT_MAKE_TYPEDEF(Uint64)
} // end namespace mozilla
#endif /* mozilla_CheckedInt_h */