зеркало из https://github.com/mozilla/pjs.git
596 строки
22 KiB
C++
596 строки
22 KiB
C++
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* vim:set ts=2 sw=2 sts=2 et cindent: */
|
|
/* ***** BEGIN LICENSE BLOCK *****
|
|
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
|
|
*
|
|
* The contents of this file are subject to the Mozilla Public License Version
|
|
* 1.1 (the "License"); you may not use this file except in compliance with
|
|
* the License. You may obtain a copy of the License at
|
|
* http://www.mozilla.org/MPL/
|
|
*
|
|
* Software distributed under the License is distributed on an "AS IS" basis,
|
|
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
|
|
* for the specific language governing rights and limitations under the
|
|
* License.
|
|
*
|
|
* The Original Code is Mozilla code.
|
|
*
|
|
* The Initial Developer of the Original Code is the Mozilla Corporation.
|
|
* Portions created by the Initial Developer are Copyright (C) 2009
|
|
* the Initial Developer. All Rights Reserved.
|
|
*
|
|
* Contributor(s):
|
|
* Benoit Jacob <bjacob@mozilla.com>
|
|
* Jeff Muizelaar <jmuizelaar@mozilla.com>
|
|
*
|
|
* Alternatively, the contents of this file may be used under the terms of
|
|
* either the GNU General Public License Version 2 or later (the "GPL"), or
|
|
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
|
|
* in which case the provisions of the GPL or the LGPL are applicable instead
|
|
* of those above. If you wish to allow use of your version of this file only
|
|
* under the terms of either the GPL or the LGPL, and not to allow others to
|
|
* use your version of this file under the terms of the MPL, indicate your
|
|
* decision by deleting the provisions above and replace them with the notice
|
|
* and other provisions required by the GPL or the LGPL. If you do not delete
|
|
* the provisions above, a recipient may use your version of this file under
|
|
* the terms of any one of the MPL, the GPL or the LGPL.
|
|
*
|
|
* ***** END LICENSE BLOCK ***** */
|
|
|
|
#ifndef mozilla_CheckedInt_h
|
|
#define mozilla_CheckedInt_h
|
|
|
|
#include "prtypes.h"
|
|
|
|
#include <climits>
|
|
|
|
namespace mozilla {
|
|
|
|
namespace CheckedInt_internal {
|
|
|
|
/* we don't want to use std::numeric_limits here because PRInt... types may not support it,
|
|
* depending on the platform, e.g. on certain platforms they use nonstandard built-in types
|
|
*/
|
|
|
|
/*** Step 1: manually record information for all the types that we want to support
|
|
***/
|
|
|
|
struct unsupported_type {};
|
|
|
|
template<typename T> struct integer_type_manually_recorded_info
|
|
{
|
|
enum { is_supported = 0 };
|
|
typedef unsupported_type twice_bigger_type;
|
|
typedef unsupported_type unsigned_type;
|
|
};
|
|
|
|
|
|
#define CHECKEDINT_REGISTER_SUPPORTED_TYPE(T,_twice_bigger_type,_unsigned_type) \
|
|
template<> struct integer_type_manually_recorded_info<T> \
|
|
{ \
|
|
enum { is_supported = 1 }; \
|
|
typedef _twice_bigger_type twice_bigger_type; \
|
|
typedef _unsigned_type unsigned_type; \
|
|
static void TYPE_NOT_SUPPORTED_BY_CheckedInt() {} \
|
|
};
|
|
|
|
// Type Twice Bigger Type Unsigned Type
|
|
CHECKEDINT_REGISTER_SUPPORTED_TYPE(PRInt8, PRInt16, PRUint8)
|
|
CHECKEDINT_REGISTER_SUPPORTED_TYPE(PRUint8, PRUint16, PRUint8)
|
|
CHECKEDINT_REGISTER_SUPPORTED_TYPE(PRInt16, PRInt32, PRUint16)
|
|
CHECKEDINT_REGISTER_SUPPORTED_TYPE(PRUint16, PRUint32, PRUint16)
|
|
CHECKEDINT_REGISTER_SUPPORTED_TYPE(PRInt32, PRInt64, PRUint32)
|
|
CHECKEDINT_REGISTER_SUPPORTED_TYPE(PRUint32, PRUint64, PRUint32)
|
|
CHECKEDINT_REGISTER_SUPPORTED_TYPE(PRInt64, unsupported_type, PRUint64)
|
|
CHECKEDINT_REGISTER_SUPPORTED_TYPE(PRUint64, unsupported_type, PRUint64)
|
|
|
|
|
|
/*** Step 2: record some info about a given integer type,
|
|
*** including whether it is supported, whether a twice bigger integer type
|
|
*** is supported, what that twice bigger type is, and some stuff as found
|
|
*** in std::numeric_limits (which we don't use because PRInt.. types may
|
|
*** not support it, if they are defined directly from compiler built-in types).
|
|
*** We use function names min_value() and max_value() instead of min() and max()
|
|
*** because of stupid min/max macros in Windows headers.
|
|
***/
|
|
|
|
template<typename T> struct is_unsupported_type { enum { answer = 0 }; };
|
|
template<> struct is_unsupported_type<unsupported_type> { enum { answer = 1 }; };
|
|
|
|
template<typename T> struct integer_traits
|
|
{
|
|
typedef typename integer_type_manually_recorded_info<T>::twice_bigger_type twice_bigger_type;
|
|
typedef typename integer_type_manually_recorded_info<T>::unsigned_type unsigned_type;
|
|
|
|
enum {
|
|
is_supported = integer_type_manually_recorded_info<T>::is_supported,
|
|
twice_bigger_type_is_supported
|
|
= is_unsupported_type<
|
|
typename integer_type_manually_recorded_info<T>::twice_bigger_type
|
|
>::answer ? 0 : 1,
|
|
size = sizeof(T),
|
|
position_of_sign_bit = CHAR_BIT * size - 1,
|
|
is_signed = (T(-1) > T(0)) ? 0 : 1
|
|
};
|
|
|
|
static T min_value()
|
|
{
|
|
// bitwise ops may return a larger type, that's why we cast explicitly to T
|
|
// in C++, left bit shifts on signed values is undefined by the standard unless the shifted value is representable.
|
|
// notice that signed-to-unsigned conversions are always well-defined in the standard,
|
|
// as the value congruent to 2^n as expected. By contrast, unsigned-to-signed is only well-defined if the value is
|
|
// representable.
|
|
return is_signed ? T(unsigned_type(1) << position_of_sign_bit) : T(0);
|
|
}
|
|
|
|
static T max_value()
|
|
{
|
|
return ~min_value();
|
|
}
|
|
};
|
|
|
|
/*** Step 3: Implement the actual validity checks --- ideas taken from IntegerLib, code different.
|
|
***/
|
|
|
|
// bitwise ops may return a larger type, so it's good to use these inline helpers guaranteeing that
|
|
// the result is really of type T
|
|
|
|
template<typename T> inline T has_sign_bit(T x)
|
|
{
|
|
// in C++, right bit shifts on negative values is undefined by the standard.
|
|
// notice that signed-to-unsigned conversions are always well-defined in the standard,
|
|
// as the value congruent modulo 2^n as expected. By contrast, unsigned-to-signed is only well-defined if the value is
|
|
// representable. Here the unsigned-to-signed conversion is OK because the value (the result of the shift) is 0 or 1.
|
|
typedef typename integer_traits<T>::unsigned_type unsigned_T;
|
|
return T(unsigned_T(x) >> integer_traits<T>::position_of_sign_bit);
|
|
}
|
|
|
|
template<typename T> inline T binary_complement(T x)
|
|
{
|
|
return ~x;
|
|
}
|
|
|
|
template<typename T, typename U,
|
|
bool is_T_signed = integer_traits<T>::is_signed,
|
|
bool is_U_signed = integer_traits<U>::is_signed>
|
|
struct is_in_range_impl {};
|
|
|
|
template<typename T, typename U>
|
|
struct is_in_range_impl<T, U, true, true>
|
|
{
|
|
static T run(U x)
|
|
{
|
|
return (x <= integer_traits<T>::max_value()) &&
|
|
(x >= integer_traits<T>::min_value());
|
|
}
|
|
};
|
|
|
|
template<typename T, typename U>
|
|
struct is_in_range_impl<T, U, false, false>
|
|
{
|
|
static T run(U x)
|
|
{
|
|
return x <= integer_traits<T>::max_value();
|
|
}
|
|
};
|
|
|
|
template<typename T, typename U>
|
|
struct is_in_range_impl<T, U, true, false>
|
|
{
|
|
static T run(U x)
|
|
{
|
|
if (sizeof(T) > sizeof(U))
|
|
return 1;
|
|
else
|
|
return x <= U(integer_traits<T>::max_value());
|
|
}
|
|
};
|
|
|
|
template<typename T, typename U>
|
|
struct is_in_range_impl<T, U, false, true>
|
|
{
|
|
static T run(U x)
|
|
{
|
|
if (sizeof(T) >= sizeof(U))
|
|
return x >= 0;
|
|
else
|
|
return (x >= 0) && (x <= U(integer_traits<T>::max_value()));
|
|
}
|
|
};
|
|
|
|
template<typename T, typename U> inline T is_in_range(U x)
|
|
{
|
|
return is_in_range_impl<T, U>::run(x);
|
|
}
|
|
|
|
template<typename T> inline T is_add_valid(T x, T y, T result)
|
|
{
|
|
return integer_traits<T>::is_signed ?
|
|
// addition is valid if the sign of x+y is equal to either that of x or that of y.
|
|
// Beware! These bitwise operations can return a larger integer type, if T was a
|
|
// small type like int8, so we explicitly cast to T.
|
|
has_sign_bit(binary_complement(T((result^x) & (result^y))))
|
|
:
|
|
binary_complement(x) >= y;
|
|
}
|
|
|
|
template<typename T> inline T is_sub_valid(T x, T y, T result)
|
|
{
|
|
return integer_traits<T>::is_signed ?
|
|
// substraction is valid if either x and y have same sign, or x-y and x have same sign
|
|
has_sign_bit(binary_complement(T((result^x) & (x^y))))
|
|
:
|
|
x >= y;
|
|
}
|
|
|
|
template<typename T,
|
|
bool is_signed = integer_traits<T>::is_signed,
|
|
bool twice_bigger_type_is_supported = integer_traits<T>::twice_bigger_type_is_supported>
|
|
struct is_mul_valid_impl {};
|
|
|
|
template<typename T, bool is_signed>
|
|
struct is_mul_valid_impl<T, is_signed, true>
|
|
{
|
|
static T run(T x, T y)
|
|
{
|
|
typedef typename integer_traits<T>::twice_bigger_type twice_bigger_type;
|
|
twice_bigger_type product = twice_bigger_type(x) * twice_bigger_type(y);
|
|
return is_in_range<T>(product);
|
|
}
|
|
};
|
|
|
|
template<typename T>
|
|
struct is_mul_valid_impl<T, true, false>
|
|
{
|
|
static T run(T x, T y)
|
|
{
|
|
const T max_value = integer_traits<T>::max_value();
|
|
const T min_value = integer_traits<T>::min_value();
|
|
|
|
if (x == 0 || y == 0) return true;
|
|
|
|
if (x > 0) {
|
|
if (y > 0)
|
|
return x <= max_value / y;
|
|
else
|
|
return y >= min_value / x;
|
|
} else {
|
|
if (y > 0)
|
|
return x >= min_value / y;
|
|
else
|
|
return y >= max_value / x;
|
|
}
|
|
}
|
|
};
|
|
|
|
template<typename T>
|
|
struct is_mul_valid_impl<T, false, false>
|
|
{
|
|
static T run(T x, T y)
|
|
{
|
|
const T max_value = integer_traits<T>::max_value();
|
|
if (x == 0 || y == 0) return true;
|
|
return x <= max_value / y;
|
|
}
|
|
};
|
|
|
|
template<typename T> inline T is_mul_valid(T x, T y, T /*result not used*/)
|
|
{
|
|
return is_mul_valid_impl<T>::run(x, y);
|
|
}
|
|
|
|
template<typename T> inline T is_div_valid(T x, T y)
|
|
{
|
|
return integer_traits<T>::is_signed ?
|
|
// keep in mind that min/-1 is invalid because abs(min)>max
|
|
(y != 0) && (x != integer_traits<T>::min_value() || y != T(-1))
|
|
:
|
|
y != 0;
|
|
}
|
|
|
|
// this is just to shut up msvc warnings about negating unsigned ints.
|
|
template<typename T, bool is_signed = integer_traits<T>::is_signed>
|
|
struct opposite_if_signed_impl
|
|
{
|
|
static T run(T x) { return -x; }
|
|
};
|
|
template<typename T>
|
|
struct opposite_if_signed_impl<T, false>
|
|
{
|
|
static T run(T x) { return x; }
|
|
};
|
|
template<typename T>
|
|
inline T opposite_if_signed(T x) { return opposite_if_signed_impl<T>::run(x); }
|
|
|
|
|
|
|
|
} // end namespace CheckedInt_internal
|
|
|
|
|
|
/*** Step 4: Now define the CheckedInt class.
|
|
***/
|
|
|
|
/** \class CheckedInt
|
|
* \brief Integer wrapper class checking for integer overflow and other errors
|
|
* \param T the integer type to wrap. Can be any of PRInt8, PRUint8, PRInt16, PRUint16,
|
|
* PRInt32, PRUint32, PRInt64, PRUint64.
|
|
*
|
|
* This class implements guarded integer arithmetic. Do a computation, check that
|
|
* valid() returns true, you then have a guarantee that no problem, such as integer overflow,
|
|
* happened during this computation.
|
|
*
|
|
* The arithmetic operators in this class are guaranteed not to crash your app
|
|
* in case of a division by zero.
|
|
*
|
|
* For example, suppose that you want to implement a function that computes (x+y)/z,
|
|
* that doesn't crash if z==0, and that reports on error (divide by zero or integer overflow).
|
|
* You could code it as follows:
|
|
\code
|
|
PRBool compute_x_plus_y_over_z(PRInt32 x, PRInt32 y, PRInt32 z, PRInt32 *result)
|
|
{
|
|
CheckedInt<PRInt32> checked_result = (CheckedInt<PRInt32>(x) + y) / z;
|
|
*result = checked_result.value();
|
|
return checked_result.valid();
|
|
}
|
|
\endcode
|
|
*
|
|
* Implicit conversion from plain integers to checked integers is allowed. The plain integer
|
|
* is checked to be in range before being casted to the destination type. This means that the following
|
|
* lines all compile, and the resulting CheckedInts are correctly detected as valid or invalid:
|
|
* \code
|
|
CheckedInt<PRUint8> x(1); // 1 is of type int, is found to be in range for PRUint8, x is valid
|
|
CheckedInt<PRUint8> x(-1); // -1 is of type int, is found not to be in range for PRUint8, x is invalid
|
|
CheckedInt<PRInt8> x(-1); // -1 is of type int, is found to be in range for PRInt8, x is valid
|
|
CheckedInt<PRInt8> x(PRInt16(1000)); // 1000 is of type PRInt16, is found not to be in range for PRInt8, x is invalid
|
|
CheckedInt<PRInt32> x(PRUint32(3123456789)); // 3123456789 is of type PRUint32, is found not to be in range
|
|
// for PRInt32, x is invalid
|
|
* \endcode
|
|
* Implicit conversion from
|
|
* checked integers to plain integers is not allowed. As shown in the
|
|
* above example, to get the value of a checked integer as a normal integer, call value().
|
|
*
|
|
* Arithmetic operations between checked and plain integers is allowed; the result type
|
|
* is the type of the checked integer.
|
|
*
|
|
* Checked integers of different types cannot be used in the same arithmetic expression.
|
|
*
|
|
* There are convenience typedefs for all PR integer types, of the following form (these are just 2 examples):
|
|
\code
|
|
typedef CheckedInt<PRInt32> CheckedInt32;
|
|
typedef CheckedInt<PRUint16> CheckedUint16;
|
|
\endcode
|
|
*/
|
|
template<typename T>
|
|
class CheckedInt
|
|
{
|
|
protected:
|
|
T mValue;
|
|
T mIsValid; // stored as a T to limit the number of integer conversions when
|
|
// evaluating nested arithmetic expressions.
|
|
|
|
template<typename U>
|
|
CheckedInt(U value, T isValid) : mValue(value), mIsValid(isValid)
|
|
{
|
|
CheckedInt_internal::integer_type_manually_recorded_info<T>
|
|
::TYPE_NOT_SUPPORTED_BY_CheckedInt();
|
|
}
|
|
|
|
public:
|
|
/** Constructs a checked integer with given \a value. The checked integer is initialized as valid or invalid
|
|
* depending on whether the \a value is in range.
|
|
*
|
|
* This constructor is not explicit. Instead, the type of its argument is a separate template parameter,
|
|
* ensuring that no conversion is performed before this constructor is actually called.
|
|
* As explained in the above documentation for class CheckedInt, this constructor checks that its argument is
|
|
* valid.
|
|
*/
|
|
template<typename U>
|
|
CheckedInt(U value)
|
|
: mValue(T(value)),
|
|
mIsValid(CheckedInt_internal::is_in_range<T>(value))
|
|
{
|
|
CheckedInt_internal::integer_type_manually_recorded_info<T>
|
|
::TYPE_NOT_SUPPORTED_BY_CheckedInt();
|
|
}
|
|
|
|
/** Constructs a valid checked integer with initial value 0 */
|
|
CheckedInt() : mValue(0), mIsValid(1)
|
|
{
|
|
CheckedInt_internal::integer_type_manually_recorded_info<T>
|
|
::TYPE_NOT_SUPPORTED_BY_CheckedInt();
|
|
}
|
|
|
|
/** \returns the actual value */
|
|
T value() const { return mValue; }
|
|
|
|
/** \returns PR_TRUE if the checked integer is valid, i.e. is not the result
|
|
* of an invalid operation or of an operation involving an invalid checked integer
|
|
*/
|
|
PRBool valid() const
|
|
{
|
|
return PRBool(mIsValid);
|
|
}
|
|
|
|
/** \returns the sum. Checks for overflow. */
|
|
template<typename U> friend CheckedInt<U> operator +(const CheckedInt<U>& lhs, const CheckedInt<U>& rhs);
|
|
/** Adds. Checks for overflow. \returns self reference */
|
|
template<typename U> CheckedInt& operator +=(U rhs);
|
|
/** \returns the difference. Checks for overflow. */
|
|
template<typename U> friend CheckedInt<U> operator -(const CheckedInt<U>& lhs, const CheckedInt<U> &rhs);
|
|
/** Substracts. Checks for overflow. \returns self reference */
|
|
template<typename U> CheckedInt& operator -=(U rhs);
|
|
/** \returns the product. Checks for overflow. */
|
|
template<typename U> friend CheckedInt<U> operator *(const CheckedInt<U>& lhs, const CheckedInt<U> &rhs);
|
|
/** Multiplies. Checks for overflow. \returns self reference */
|
|
template<typename U> CheckedInt& operator *=(U rhs);
|
|
/** \returns the quotient. Checks for overflow and for divide-by-zero. */
|
|
template<typename U> friend CheckedInt<U> operator /(const CheckedInt<U>& lhs, const CheckedInt<U> &rhs);
|
|
/** Divides. Checks for overflow and for divide-by-zero. \returns self reference */
|
|
template<typename U> CheckedInt& operator /=(U rhs);
|
|
|
|
/** \returns the opposite value. Checks for overflow. */
|
|
CheckedInt operator -() const
|
|
{
|
|
// circumvent msvc warning about - applied to unsigned int.
|
|
// if we're unsigned, the only valid case anyway is 0 in which case - is a no-op.
|
|
T result = CheckedInt_internal::opposite_if_signed(value());
|
|
/* give the compiler a good chance to perform RVO */
|
|
return CheckedInt(result,
|
|
mIsValid & CheckedInt_internal::is_sub_valid(T(0), value(), result));
|
|
}
|
|
|
|
/** \returns true if the left and right hand sides are valid and have the same value. */
|
|
PRBool operator ==(const CheckedInt& other) const
|
|
{
|
|
return PRBool(mIsValid & other.mIsValid & (value() == other.mValue));
|
|
}
|
|
|
|
/** prefix ++ */
|
|
CheckedInt& operator++()
|
|
{
|
|
*this = *this + 1;
|
|
return *this;
|
|
}
|
|
|
|
/** postfix ++ */
|
|
CheckedInt operator++(int)
|
|
{
|
|
CheckedInt tmp = *this;
|
|
*this = *this + 1;
|
|
return tmp;
|
|
}
|
|
|
|
/** prefix -- */
|
|
CheckedInt& operator--()
|
|
{
|
|
*this = *this - 1;
|
|
return *this;
|
|
}
|
|
|
|
/** postfix -- */
|
|
CheckedInt operator--(int)
|
|
{
|
|
CheckedInt tmp = *this;
|
|
*this = *this - 1;
|
|
return tmp;
|
|
}
|
|
|
|
private:
|
|
/** operator!= is disabled. Indeed, (a!=b) should be the same as !(a==b) but that
|
|
* would mean that if a or b is invalid, (a!=b) is always true, which is very tricky.
|
|
*/
|
|
template<typename U>
|
|
PRBool operator !=(U other) const { return !(*this == other); }
|
|
};
|
|
|
|
#define CHECKEDINT_BASIC_BINARY_OPERATOR(NAME, OP) \
|
|
template<typename T> \
|
|
inline CheckedInt<T> operator OP(const CheckedInt<T> &lhs, const CheckedInt<T> &rhs) \
|
|
{ \
|
|
T x = lhs.mValue; \
|
|
T y = rhs.mValue; \
|
|
T result = x OP y; \
|
|
T is_op_valid \
|
|
= CheckedInt_internal::is_##NAME##_valid(x, y, result); \
|
|
/* give the compiler a good chance to perform RVO */ \
|
|
return CheckedInt<T>(result, \
|
|
lhs.mIsValid & rhs.mIsValid & is_op_valid); \
|
|
}
|
|
|
|
CHECKEDINT_BASIC_BINARY_OPERATOR(add, +)
|
|
CHECKEDINT_BASIC_BINARY_OPERATOR(sub, -)
|
|
CHECKEDINT_BASIC_BINARY_OPERATOR(mul, *)
|
|
|
|
// division can't be implemented by CHECKEDINT_BASIC_BINARY_OPERATOR
|
|
// because if rhs == 0, we are not allowed to even try to compute the quotient.
|
|
template<typename T>
|
|
inline CheckedInt<T> operator /(const CheckedInt<T> &lhs, const CheckedInt<T> &rhs)
|
|
{
|
|
T x = lhs.mValue;
|
|
T y = rhs.mValue;
|
|
T is_op_valid = CheckedInt_internal::is_div_valid(x, y);
|
|
T result = is_op_valid ? (x / y) : 0;
|
|
/* give the compiler a good chance to perform RVO */
|
|
return CheckedInt<T>(result,
|
|
lhs.mIsValid & rhs.mIsValid & is_op_valid);
|
|
}
|
|
|
|
// implement cast_to_CheckedInt<T>(x), making sure that
|
|
// - it allows x to be either a CheckedInt<T> or any integer type that can be casted to T
|
|
// - if x is already a CheckedInt<T>, we just return a reference to it, instead of copying it (optimization)
|
|
|
|
template<typename T, typename U>
|
|
struct cast_to_CheckedInt_impl
|
|
{
|
|
typedef CheckedInt<T> return_type;
|
|
static CheckedInt<T> run(U u) { return u; }
|
|
};
|
|
|
|
template<typename T>
|
|
struct cast_to_CheckedInt_impl<T, CheckedInt<T> >
|
|
{
|
|
typedef const CheckedInt<T>& return_type;
|
|
static const CheckedInt<T>& run(const CheckedInt<T>& u) { return u; }
|
|
};
|
|
|
|
template<typename T, typename U>
|
|
inline typename cast_to_CheckedInt_impl<T, U>::return_type
|
|
cast_to_CheckedInt(U u)
|
|
{
|
|
return cast_to_CheckedInt_impl<T, U>::run(u);
|
|
}
|
|
|
|
#define CHECKEDINT_CONVENIENCE_BINARY_OPERATORS(OP, COMPOUND_OP) \
|
|
template<typename T> \
|
|
template<typename U> \
|
|
CheckedInt<T>& CheckedInt<T>::operator COMPOUND_OP(U rhs) \
|
|
{ \
|
|
*this = *this OP cast_to_CheckedInt<T>(rhs); \
|
|
return *this; \
|
|
} \
|
|
template<typename T, typename U> \
|
|
inline CheckedInt<T> operator OP(const CheckedInt<T> &lhs, U rhs) \
|
|
{ \
|
|
return lhs OP cast_to_CheckedInt<T>(rhs); \
|
|
} \
|
|
template<typename T, typename U> \
|
|
inline CheckedInt<T> operator OP(U lhs, const CheckedInt<T> &rhs) \
|
|
{ \
|
|
return cast_to_CheckedInt<T>(lhs) OP rhs; \
|
|
}
|
|
|
|
CHECKEDINT_CONVENIENCE_BINARY_OPERATORS(+, +=)
|
|
CHECKEDINT_CONVENIENCE_BINARY_OPERATORS(*, *=)
|
|
CHECKEDINT_CONVENIENCE_BINARY_OPERATORS(-, -=)
|
|
CHECKEDINT_CONVENIENCE_BINARY_OPERATORS(/, /=)
|
|
|
|
template<typename T, typename U>
|
|
inline PRBool operator ==(const CheckedInt<T> &lhs, U rhs)
|
|
{
|
|
return lhs == cast_to_CheckedInt<T>(rhs);
|
|
}
|
|
|
|
template<typename T, typename U>
|
|
inline PRBool operator ==(U lhs, const CheckedInt<T> &rhs)
|
|
{
|
|
return cast_to_CheckedInt<T>(lhs) == rhs;
|
|
}
|
|
|
|
// convenience typedefs.
|
|
// the use of a macro here helps make sure that we don't let a typo slip into some of these.
|
|
#define CHECKEDINT_MAKE_TYPEDEF(Type) \
|
|
typedef CheckedInt<PR##Type> Checked##Type;
|
|
|
|
CHECKEDINT_MAKE_TYPEDEF(Int8)
|
|
CHECKEDINT_MAKE_TYPEDEF(Uint8)
|
|
CHECKEDINT_MAKE_TYPEDEF(Int16)
|
|
CHECKEDINT_MAKE_TYPEDEF(Uint16)
|
|
CHECKEDINT_MAKE_TYPEDEF(Int32)
|
|
CHECKEDINT_MAKE_TYPEDEF(Uint32)
|
|
CHECKEDINT_MAKE_TYPEDEF(Int64)
|
|
CHECKEDINT_MAKE_TYPEDEF(Uint64)
|
|
|
|
} // end namespace mozilla
|
|
|
|
#endif /* mozilla_CheckedInt_h */
|