pjs/ef/Runtime/System/FieldOrMethod.cpp

1348 строки
35 KiB
C++

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Netscape
* Communications Corporation. Portions created by Netscape are
* Copyright (C) 1998 Netscape Communications Corporation. All Rights
* Reserved.
*/
// FieldOrMethod.cpp
//
// Sriram Kini
//
// Runtime representation of java fields or methods
// Most of the operations performed on fields or methods
// are located here.
#include "ErrorHandling.h"
#include "ClassCentral.h"
#include "BytecodeTranslator.h"
#include "PrimitiveOptimizer.h"
#include "FieldOrMethod.h"
#include "CUtils.h"
#include "StringUtils.h"
#include "NativeCodeCache.h"
#include "Backend.h"
#include "Debugger.h"
#include "plstr.h"
#include "prprf.h"
#include "FieldOrMethod_md.h"
#include "InterestingEvents.h"
#include "JavaVM.h"
UT_DEFINE_LOG_MODULE(FieldOrMethod);
/* Convert value valueFrom, whose typekind is tkFrom, to a value of type tkTo.
* Store the result in valueTo. It is assumed that valueTo is properly
* aligned. If a widening conversion is not possible, throw an illegalArgument
* exception.
*/
void Field::widen(void *valueFrom, void *valueTo,
TypeKind tkFrom, TypeKind tkTo)
{
switch (tkTo) {
case tkBoolean: /* Can't widen to these */
case tkChar:
case tkByte:
goto cantConvert;
case tkShort:
if (tkFrom == tkByte)
*(Int16 *) valueTo = (Int16) *(Int8 *) valueFrom;
else
goto cantConvert;
case tkInt:
switch (tkFrom) {
case tkByte:
*(Int32 *) valueTo = (Int32) *(Int8 *) valueFrom;
break;
case tkChar:
case tkShort:
*(Int32 *) valueTo= (Int32) *(Int16 *) valueFrom;
break;
default:
goto cantConvert;
}
break;
case tkLong:
switch (tkFrom) {
case tkByte:
*(Int64 *) valueTo = (Int64) *(Int8 *) valueFrom;
break;
case tkChar:
case tkShort:
*(Int64 *) valueTo = (Int64) *(Int16 *) valueFrom;
break;
case tkInt:
*(Int64 *) valueTo = (Int64) *(Int32 *) valueFrom;
break;
default:
goto cantConvert;
}
break;
case tkFloat:
switch (tkFrom) {
case tkByte:
*(Flt32 *) valueTo = (Flt32) *(Int8 *) valueFrom;
break;
case tkChar:
case tkShort:
*(Flt32 *) valueTo = (Flt32) *(Int16 *) valueFrom;
break;
case tkInt:
*(Flt32 *) valueTo = (Flt32) *(Int32 *) valueFrom;
break;
case tkLong:
*(Flt32 *) valueTo = (Flt32) *(Int64 *) valueFrom;
break;
default:
goto cantConvert;
}
break;
case tkDouble:
switch (tkFrom) {
case tkByte:
*(Flt64 *) valueTo = (Flt64) *(Int8 *) valueFrom;
break;
case tkChar:
case tkShort:
*(Flt64 *) valueTo = (Flt64) *(Int16 *) valueFrom;
break;
case tkInt:
*(Flt64 *) valueTo = (Flt64) *(Int32 *) valueFrom;
break;
case tkLong:
*(Flt64 *) valueTo = (Flt64) *(Int64 *) valueFrom;
break;
case tkFloat:
*(Flt64 *) valueTo = (Flt64) *(Flt32 *) valueFrom;
break;
default:
goto cantConvert;
}
break;
default:
runtimeError(RuntimeError::internal);
}
return;
cantConvert:
runtimeError(RuntimeError::illegalArgument);
}
/* Return the full name of the field or method from the short name and the
* class name. A full name is of the form "public static int java.lang.foo.bar";
* the correspoding package name is java.lang.foo, and the short name is bar.
*/
const char *Field::getFullName()
{
const char *accessString = ((modifiers & CR_FIELD_STATIC)) ? "static " : "";
const char *statusString;
const char *finalString = ((modifiers & CR_FIELD_FINAL)) ? "final " : "";
if ((modifiers & CR_FIELD_PUBLIC))
statusString = "public ";
else if ((modifiers & CR_FIELD_PROTECTED))
statusString = "protected ";
else
statusString = "";
char *typeString = new char[20];
Uint32 typeStrLen = 20;
*typeString = 0;
getTypeString(*typeOfField, typeString, typeStrLen);
char *_fullName;
/* The fullname is the name of the class appended by a dot, appended
* by the field name
*/
Uint32 outlen = PL_strlen(accessString) + PL_strlen(finalString)+
PL_strlen(typeString) + PL_strlen(statusString)+
PL_strlen(className) + PL_strlen(packageName) + PL_strlen(shortName) + 8;
_fullName = new char[outlen];
if (packageName && *packageName)
PR_snprintf(_fullName, outlen, "%s%s%s%s %s.%s.%s",
statusString, accessString, finalString, typeString,
packageName, className, shortName);
else
PR_snprintf(_fullName, outlen, "%s%s%s%s %s.%s",
statusString, accessString, finalString, typeString,
className, shortName);
fullName = central.getStringPool().intern(_fullName);
delete [] _fullName;
delete [] typeString;
return fullName;
}
/* Appends the string for the type to str, updating strLen */
void FieldOrMethod::getTypeString(const Type &type, char *&str, Uint32 &strLen)
{
switch (type.typeKind) {
case tkBoolean:
append(str, strLen, "boolean");
break;
case tkUByte:
append(str, strLen, "unsigned byte");
break;
case tkByte:
append(str, strLen, "byte");
break;
case tkChar:
append(str, strLen, "byte");
break;
case tkShort:
append(str, strLen, "short");
break;
case tkInt:
append(str, strLen, "int");
break;
case tkLong:
append(str, strLen, "long");
break;
case tkFloat:
append(str, strLen, "float");
break;
case tkDouble:
append(str, strLen, "double");
break;
case tkObject:
case tkInterface: {
const ClassOrInterface *clazz = static_cast<const ClassOrInterface *>(&type);
append(str, strLen, clazz->getName());
break;
}
case tkArray: {
const Array *array = static_cast<const Array *>(&type);
getTypeString(*const_cast<Type *> (&array->componentType), str, strLen);
append(str, strLen, "[]");
break;
}
default:
runtimeError(RuntimeError::unknown);
break;
}
}
/* Convert a JVM type descriptor into the long form defined by
* java.lang.reflect, e.g. [[C is emitted as "char[][]"
* Advances descriptor to point to the point beyond the argument just
* parsed. Appends description of parsed argument to out.
*/
static bool descriptorToString(char *out, Uint32 outLen, const char * &descriptor) {
char *typeString;
switch (*descriptor) {
case 'B':
typeString = "byte";
break;
case 'C':
typeString = "char";
break;
case 'D':
typeString = "double";
break;
case 'F':
typeString = "float";
break;
case 'I':
typeString = "int";
break;
case 'J':
typeString = "long";
break;
case 'S':
typeString = "short";
break;
case 'Z':
typeString = "boolean";
break;
case 'V':
typeString = "void";
break;
case '[':
descriptor++;
descriptorToString(out, outLen, descriptor);
append(out, outLen, "[]");
return true;
case 'L':
{
descriptor++;
char *semicolon = strchr(descriptor, ';');
if (!semicolon)
verifyError(VerifyError::badClassFormat);
char *tmpStr = new char[semicolon - descriptor + 1];
char *t = tmpStr;
while (*descriptor != ';') {
if (*descriptor == '/')
*t++ = '.';
else
*t++ = *descriptor;
descriptor++;
}
*t = 0;
descriptor++; // Advance past semi-colon
append(out, outLen, tmpStr);
delete [] tmpStr;
return true;
}
case ')':
return false;
default:
verifyError(VerifyError::badClassFormat);
return false; // NOTREACHED
}
append(out, outLen, typeString);
descriptor++;
return true;
}
/* Return the full name of the method from the short name and the
* class name. A full name is of the form
* "public static java.lang.foo.bar(int, long, java.lang.Object)".
* the corresponding package name is java.lang.foo, and the short name is bar.
*/
const char *Method::getFullName()
{
const char *accessString = ((modifiers & CR_METHOD_STATIC)) ? "static " : "";
const char *statusString;
if ((modifiers & CR_METHOD_PUBLIC))
statusString = "public ";
else if ((modifiers & CR_METHOD_PROTECTED))
statusString = "protected ";
else if ((modifiers & CR_METHOD_PRIVATE))
statusString = "private ";
else
statusString = "";
const char *abstractString = ((modifiers & CR_METHOD_ABSTRACT)) ?
"abstract " : "";
char *returnString = new char[50];
Uint32 returnStringLen = 50;
*returnString = 0;
char *argsString = new char[256];
Uint32 argsStringLen = 256;
*argsString = 0;
const char *s = signatureString;
if (*s++ != '(')
verifyError(VerifyError::badClassFormat);
// Check for method which takes no arguments
if (*s == ')')
append(argsString, argsStringLen, "()");
else {
append(argsString, argsStringLen, "(");
// Convert each method argument to string
while (descriptorToString(argsString, argsStringLen, s))
append(argsString, argsStringLen, ",");
if (*s != ')') {
delete [] argsString;
delete [] returnString;
verifyError(VerifyError::badClassFormat);
}
/* overwrite the last comma with closing paren and null */
argsString[PL_strlen(argsString) - 1] = ')';
}
/* Now parse the return argument, only if we're not a constructor*/
if (shortName != summary.getInitString()) {
s++;
if (!descriptorToString(returnString, returnStringLen, s)) {
delete [] argsString;
delete [] returnString;
verifyError(VerifyError::badClassFormat);
}
append(returnString, returnStringLen, " ");
}
char *_fullName;
/* Allocate enough space to hold strings for arguments */
Uint32 outLen = PL_strlen(accessString)+PL_strlen(statusString)+
PL_strlen(abstractString)+PL_strlen(returnString)+
PL_strlen(className)+PL_strlen(shortName)+PL_strlen(packageName)+PL_strlen(argsString)+5;
_fullName = new char[outLen];
if (shortName == summary.getInitString()) {
if (packageName && *packageName)
PR_snprintf(_fullName, outLen, "%s%s%s%s.%s%s",
accessString, statusString, returnString, packageName, className,
argsString);
else
PR_snprintf(_fullName, outLen, "%s%s%s%s%s",
accessString, statusString, returnString, className,
argsString);
} else {
if (packageName && *packageName)
PR_snprintf(_fullName, outLen, "%s%s%s%s%s.%s.%s%s",
accessString, statusString, abstractString, returnString,
packageName, className, shortName, argsString);
else
PR_snprintf(_fullName, outLen, "%s%s%s%s%s.%s%s",
accessString, statusString, abstractString, returnString,
className, shortName, argsString);
}
fullName = central.getStringPool().intern(_fullName);
delete [] returnString;
delete [] argsString;
delete [] _fullName;
return fullName;
}
/* Class Field */
/* Return the size occupied by objects whose type is represented by type */
static Uint32 getTypeSize(const Type &type)
{
if (isNonVoidPrimitiveKind(type.typeKind)) {
return isDoublewordKind(type.typeKind) ? 8 : 4; //getTypeKindSize(type.typeKind);
} else if (type.typeKind == tkObject || type.typeKind == tkInterface) {
return sizeof(ptr);
} else if (type.typeKind == tkArray) {
return sizeof(ptr); //Arrays and objects are implemented as references
} else
return 0;
}
/* Construct a field given it's packageName, className and shortName.
* (Also see FieldOrMethod::FieldOrMethod).
* summary is the information about the declaring class; central is
* the repository used to hold ClassFileSummary structures.
* info contains compile-time information about the field.
* offset is the offset of this field in the declaring class if
* the field is an instance (ie., non-static) field.
*/
Field::Field(const char *packageName, const char *className,
const char *shortName,
ClassFileSummary &summary,
ClassCentral &c,
Pool &pool,
Uint32 offset,
const FieldInfo &info) :
FieldOrMethod(Standard::get(cField),
packageName, className, shortName, info.getDescriptor()->getUtfString(),
summary, c, pool)
{
bool isStatic, isVolatile, isConstant;
const char *sig;
info.getInfo(sig, isVolatile, isConstant, isStatic);
const char *next;
typeOfField = &central.parseFieldDescriptor(sig, next);
modifiers = info.getAccessFlags();
if (isStatic) {
Uint32 size = getTypeKindSize(typeOfField->typeKind);
pos.address = staticAddress(new (p) char[size]);
memset(addressFunction(pos.address), 0, size);
} else
pos.offset = offset;
}
// Get the memory address of a static field
addr Field::getAddress() const
{
assert((modifiers & CR_FIELD_STATIC));
// If static initializers haven't been run, execute them now.
(const_cast<ClassOrInterface*>(static_cast<const ClassOrInterface *>(getDeclaringClass())))->runStaticInitializers();
return pos.address;
}
/* Return a JavaObject from the raw bytes located at address. For
* primitive types, wrap an object wrapper around it
*/
JavaObject &Field::convertObject(void *address)
{
if (isPrimitiveKind(typeOfField->typeKind))
return Class::makePrimitiveObject(typeOfField->typeKind, address);
else {
/* For object and array types, what's stored is a pointer to the
* JavaObject
*/
JavaObject *objp = *((JavaObject **)address);
return *objp;
}
}
/* Get the raw address of the object represented by this field */
void *Field::getRaw(JavaObject *obj)
{
void *address;
if ((modifiers & CR_FIELD_STATIC)) {
address = addressFunction(getAddress());
} else {
if (!obj)
runtimeError(RuntimeError::nullPointer);
// Make sure that the type of the object is the
// same as the declaring class of this field, or
// a sub-class
if (! (&obj->getType() == getDeclaringClass() ||
(getDeclaringClass()->isAssignableFrom(obj->getType())))
)
runtimeError(RuntimeError::illegalArgument);
address = (void *) (((char *) obj) + pos.offset);
}
return address;
}
/* Get the value of the field, wrapped in a JavaObject
* if neccessary
*/
JavaObject &Field::get(JavaObject *obj)
{
void *address = getRaw(obj);
return convertObject(address);
}
// Return true if this field represents a primitive type
inline bool Field::isPrimitive()
{
return (typeOfField->isPrimitive());
}
#define FIELD_GET_PRIMITIVE(typeTo, tkTo) \
PR_BEGIN_MACRO \
if (!isPrimitive()) \
runtimeError(RuntimeError::illegalArgument); \
\
typeTo value; \
void *address = getRaw(obj); \
\
if (typeOfField->typeKind == tkTo) \
return *(typeTo *) address; \
else { \
widen(address, &value, typeOfField->typeKind, tkTo);\
return (typeTo) value; \
} \
PR_END_MACRO
/* Get the value of this field within the object obj,
* converted to boolean.
*/
Int8 Field::getBoolean(JavaObject *obj)
{
FIELD_GET_PRIMITIVE(Int8, tkBoolean);
}
Int8 Field::getByte(JavaObject *obj)
{
FIELD_GET_PRIMITIVE(Int8, tkByte);
}
Int16 Field::getChar(JavaObject *obj)
{
FIELD_GET_PRIMITIVE(Int16, tkChar);
}
Int16 Field::getShort(JavaObject *obj)
{
FIELD_GET_PRIMITIVE(Int16, tkShort);
}
Int32 Field::getInt(JavaObject *obj)
{
FIELD_GET_PRIMITIVE(Int32, tkInt);
}
Int64 Field::getLong(JavaObject *obj)
{
FIELD_GET_PRIMITIVE(Int64, tkLong);
}
Flt32 Field::getFloat(JavaObject *obj)
{
FIELD_GET_PRIMITIVE(Flt32, tkFloat);
}
Flt64 Field::getDouble(JavaObject *obj)
{
FIELD_GET_PRIMITIVE(Flt32, tkDouble);
}
void Field::setFromValue(ValueKind vk, Value value)
{
assert(getModifiers() & CR_FIELD_STATIC);
void *address = getRaw(0);
const char *sig = getSignatureString();
switch (vk) {
case vkInt:
if (*sig != 'I' && *sig != 'B' && *sig != 'C' && *sig != 'S' &&
*sig != 'Z')
verifyError(VerifyError::badClassFormat);
*(Int32 *) address = value.getValueContents((Int32 *) 0);
break;
case vkLong:
if (*sig != 'J')
verifyError(VerifyError::badClassFormat);
*(Int64 *) address = value.getValueContents((Int64 *) 0);
break;
case vkFloat:
if (*sig != 'F')
verifyError(VerifyError::badClassFormat);
*(Flt32 *) address = value.getValueContents((Flt32 *) 0);
break;
case vkDouble:
if (*sig != 'D')
verifyError(VerifyError::badClassFormat);
*(Flt64 *) address = value.getValueContents((Flt64 *) 0);
break;
case vkAddr:
if (PL_strcmp(sig, "Ljava/lang/String;"))
verifyError(VerifyError::badClassFormat);
*(JavaObject **) address = (JavaObject *) addressFunction(value.getValueContents((addr *) 0));
break;
default:
verifyError(VerifyError::badClassFormat);
}
}
void Field::set(JavaObject *obj, JavaObject &value)
{
void *address = getRaw(obj);
int size = getTypeKindSize(typeOfField->typeKind);
/* If this is a primitive type, then it is encased in a Java Object;
* otherwise, it is the object itself
*/
if (isPrimitiveKind(typeOfField->typeKind)) {
if (!Standard::isPrimitiveWrapperClass(*static_cast<const Class *>(&value.getType())))
runtimeError(RuntimeError::illegalArgument);
memcpy(address, (char *)&value+sizeof(JavaObject), size);
} else {
assert(size == sizeof(char *));
*((JavaObject **) address) = &value;
}
}
// Set the value of the field in various ways
// This code is dependent on our current layout, and
// must be reworked when our layout changes
#define FIELD_SET_PRIMITIVE(typeFrom, tkFrom) \
PR_BEGIN_MACRO \
if (!isPrimitive()) \
runtimeError(RuntimeError::illegalArgument); \
\
void *address = getRaw(obj); \
\
if (typeOfField->typeKind == tkFrom) \
*(typeFrom *) address = value; \
else \
widen(&value, address, tkFrom, typeOfField->typeKind); \
PR_END_MACRO
void Field::setBoolean(JavaObject *obj, Int8 value)
{
FIELD_SET_PRIMITIVE(Int8, tkBoolean);
}
void Field::setByte(JavaObject *obj, Int8 value)
{
FIELD_SET_PRIMITIVE(Int8, tkByte);
}
void Field::setChar(JavaObject *obj, Int16 value)
{
FIELD_SET_PRIMITIVE(Int16, tkChar);
}
void Field::setShort(JavaObject *obj, Int16 value)
{
FIELD_SET_PRIMITIVE(Int16, tkShort);
}
void Field::setInt(JavaObject *obj, Int32 value)
{
FIELD_SET_PRIMITIVE(Int32, tkInt);
}
void Field::setLong(JavaObject *obj, Int64 value)
{
FIELD_SET_PRIMITIVE(Int64, tkLong);
}
void Field::setFloat(JavaObject *obj, Flt32 value)
{
FIELD_SET_PRIMITIVE(Flt32, tkFloat);
}
void Field::setDouble(JavaObject *obj, Flt64 value)
{
FIELD_SET_PRIMITIVE(Flt64, tkDouble);
}
/* Class Method */
/* Parses the type descriptor of the method, resolving and
* loading classes as necessary. Creates the signature structure
* for the method.
*/
void Method::parseMethodDescriptor(const char *s)
{
char *paramstr;
const char *t;
const Type **params, *ret;
int paramSize = 0;
int numParams = 0;
bool isStatic;
if (!(isStatic = (getModifiers() & CR_METHOD_STATIC) != 0)) {
/* Pass in ourselves as the first argument */
numParams = 1;
params = new (p) const Type *[(paramSize = 5)];
params[0] = getDeclaringClass();
}
if (*s++ != '(')
verifyError(VerifyError::badClassFormat);
/* Get everything between this and ')' */
if (!(t = PL_strchr(s, ')')))
verifyError(VerifyError::badClassFormat);
int len = t-s+1;
if (len != 1) {
TemporaryStringCopy copy(s, len-1);
paramstr = copy;
const char *next = paramstr;
while (*next) {
if (numParams+1 > paramSize) {
paramSize += 5;
const Type **oldParams = params;
params = new (p) const Type *[paramSize];
for (int i = 0; i < numParams; i++)
params[i] = oldParams[i];
/* We don't do this since we're using a pool to allocate, but
* this is a potential source of runaway memory usage
*/
/* delete [] oldParams;*/
}
params[numParams] = &central.parseFieldDescriptor(next, next);
numParams++;
}
}
s += len;
/* Parse the return descriptor */
if (*s == 'V') {
if (*(s+1))
verifyError(VerifyError::badClassFormat);
ret = &PrimitiveType::obtain(tkVoid);
} else {
const char *next;
ret = &central.parseFieldDescriptor(s, next);
if (*next)
verifyError(VerifyError::badClassFormat);
}
signature.nArguments = numParams;
signature.argumentTypes = params;
signature.resultType = ret;
signature.isStatic = isStatic;
}
/* Create a Method object for a method with given packageName, className
* and shortName. (Also see FieldOrMethod::FieldOrMethod).
* summary is the information about the declaring class; central is
* the repository used to hold ClassFileSummary structures.
* info contains compile-time information about the method.
* vtableType is the type of the object to be passed on to the
* JavaObject constructor.
*/
Method::Method(const char *packageName, const char *className,
const char *shortName,
ClassFileSummary &summary, ClassCentral &c, Pool &pool,
const MethodInfo &info, const Type *vtableType) :
FieldOrMethod((vtableType) ? *vtableType : *static_cast<const Type *>(&Standard::get(cMethod)),
packageName, className, shortName, info.getDescriptor()->getUtfString(),
summary, c, pool),
minfo(info), argsSize(-1), dynamicallyDispatched(false), vIndex(-1),
signatureResolved(false)
{
modifiers = info.getAccessFlags();
bool isAbstract, isStatic, isFinal, isSynchronized, isNative;
const char *sig;
minfo.getInfo(sig, isAbstract, isStatic, isFinal, isSynchronized, isNative);
signatureString = sig;
DEBUG_LOG_ONLY(htmlName = NULL);
}
#ifdef DEBUG_LOG
void Method::printMethodAsBytecodes(LogModuleObject &f)
{
const Signature &signature = getSignature();
AttributeCode *code = static_cast<AttributeCode *>(minfo.getAttribute("Code"));
assert(code);
UT_OBJECTLOG(f, PR_LOG_ALWAYS, ("Signature: "));
UT_OBJECTLOG(f, PR_LOG_ALWAYS, ("%d locals, %d stack words, %d code bytes\n", code->getMaxLocals(),
code->getMaxStack(), code->getCodeLength()));
if (modifiers & CR_METHOD_ABSTRACT)
UT_OBJECTLOG(f, PR_LOG_ALWAYS, ("abstract "));
if (modifiers & CR_METHOD_STATIC)
UT_OBJECTLOG(f, PR_LOG_ALWAYS, ("static "));
if (modifiers & CR_METHOD_FINAL)
UT_OBJECTLOG(f, PR_LOG_ALWAYS, ("final "));
if (modifiers & CR_METHOD_SYNCHRONIZED)
UT_OBJECTLOG(f, PR_LOG_ALWAYS, ("synchronized "));
if (modifiers & CR_METHOD_NATIVE)
UT_OBJECTLOG(f, PR_LOG_ALWAYS, ("native "));
signature.resultType->printRef(UT_LOG_MODULE(FieldOrMethod));
UT_OBJECTLOG(f, PR_LOG_ALWAYS, (" %s(", shortName));
if (signature.nArguments) {
uint i = 0;
while (true) {
signature.argumentTypes[i]->printRef(f);
i++;
if (i == signature.nArguments)
break;
UT_OBJECTLOG(f, PR_LOG_ALWAYS, (", "));
}
}
UT_OBJECTLOG(f, PR_LOG_ALWAYS, (")\n"));
const bytecode *bytecodesBegin = (const bytecode *)code->getCode();
disassembleBytecodes(f, bytecodesBegin, bytecodesBegin + code->getCodeLength(), bytecodesBegin, summary.getConstantPool(), 0);
disassembleExceptions(f, code->getNumExceptions(), code->getExceptions(), summary.getConstantPool(), 0);
}
#endif // DEBUG_LOG
// A little macro that just compares our stage to test stage and
// causes the function to return if we are past our desired stage
#define COMPILE_UP_TO_STAGE(inOurStage, inTestStage) \
PR_BEGIN_MACRO \
if (inOurStage < inTestStage) \
return (0); \
PR_END_MACRO
void* Method::compile()
{
Class *clazz = (Class *) getDeclaringClass();
bool inhibitBackpatching = VM::theVM.getInhibitBackpatching();
CompileStage stage = VM::theVM.getCompileStage();
UT_LOG(FieldOrMethod, PR_LOG_ALWAYS, ("\n\n\n\n*** Compiling method %s::%s\n", clazz->name, getName()));
// preprocess bytecodes
gCompileBroadcaster->broadcastEvent(gCompileBroadcaster, kBroacastCompile, this);
if (modifiers & CR_METHOD_ABSTRACT) // not allowed to compile abstract methods
verifyError(VerifyError::abstractMethod);
AttributeCode *code = static_cast<AttributeCode *>(minfo.getAttribute("Code"));
if (!code) {
UT_LOG(FieldOrMethod, PR_LOG_DEBUG, ("No code attribute\n"));
runtimeError(RuntimeError::illegalAccess);
}
COMPILE_UP_TO_STAGE(stage, csPreprocess);
Uint32 maxLocals = code->getMaxLocals();
Uint32 maxStack = code->getMaxStack();
const bytecode *bytecodesBegin = (const bytecode *)code->getCode();
Uint32 codeLength = code->getCodeLength();
const Signature &signature = getSignature();
const Type **argumentTypes = signature.argumentTypes;
const Type *resultType = signature.resultType;
int nArguments = signature.nArguments;
DEBUG_LOG_printMethodAsBytecodes(UT_LOG_MODULE(FieldOrMethod));
// create bytecode graph
UT_LOG(FieldOrMethod, PR_LOG_ALWAYS, ("creating bytecode graph...\n"));
Pool primitivePool;
ControlGraph *cg;
{
Pool bytecodeGraphPool;
ValueKind *argumentKinds = new(bytecodeGraphPool) ValueKind[nArguments];
for (int i = 0; i != nArguments; i++)
argumentKinds[i] = typeKindToValueKind(argumentTypes[i]->typeKind);
bool isStatic = (getModifiers() & CR_METHOD_STATIC) != 0;
bool isSynchronized = (getModifiers() & CR_METHOD_SYNCHRONIZED) != 0;
BytecodeGraph bg(summary, bytecodeGraphPool, !isStatic, isSynchronized, nArguments, argumentKinds,
typeKindToValueKind(resultType->typeKind), maxLocals, maxStack, bytecodesBegin, codeLength,
code->getNumExceptions(), code->getExceptions(),
*this);
{
Pool tempPool1;
UT_LOG(FieldOrMethod, PR_LOG_ALWAYS, ("dividing into blocks...\n\n"));
bg.divideIntoBlocks(tempPool1);
DEBUG_LOG_ONLY(bg.print(UT_LOG_MODULE(FieldOrMethod), summary.getConstantPool()));
COMPILE_UP_TO_STAGE(stage, csGenPrimitives);
// tempPool1 is destroyed here.
}
{
// create primitive graph
Pool tempPool2;
cg = BytecodeTranslator::genPrimitiveGraph(bg, primitivePool, tempPool2);
// tempPool2 is destroyed here.
}
// bytecodeGraphPool is destroyed here.
}
if (stage < csOptimize) {
DEBUG_LOG_ONLY(cg->print(UT_LOG_MODULE(FieldOrMethod)));
return 0;
}
// optimize
UT_LOG(FieldOrMethod, PR_LOG_ALWAYS, ("optimizing primitive graph...\n"));
simpleTrimDeadPrimitives(*cg);
DEBUG_LOG_ONLY(cg->print(UT_LOG_MODULE(FieldOrMethod)));
COMPILE_UP_TO_STAGE(stage, csGenInstructions);
// generate code
void *compiledCode = translateControlGraphToNative(*cg, *this);
UT_LOG(FieldOrMethod, PR_LOG_ALWAYS, ("*** Done Compiling Method %s::%s\n",
clazz->name, shortName));
// anyone know what this is?
#ifdef DEBUG_LOG
if (VM::debugger.getEnabled())
printDebugInfo();
#endif
if (!inhibitBackpatching)
updateVTable();
gCompileBroadcaster->broadcastEvent(gCompileBroadcaster, kBroacastCompile, this);
return compiledCode;
}
// Disassemble the bytecode to the specified logmodule
#ifdef DEBUG_LOG
void Method::dumpBytecodeDisassembly(LogModuleObject &f)
{
AttributeCode *code = static_cast<AttributeCode *>(minfo.getAttribute("Code"));
const bytecode *bytecodesBegin = (const bytecode *)code->getCode();
Uint32 codeLength = code->getCodeLength();
const ConstantPool *constantPool = summary.getConstantPool();
disassembleBytecodes(f, bytecodesBegin, bytecodesBegin + codeLength, bytecodesBegin, constantPool, 0);
}
#endif
// Examine the type of the argument arg against the actual type type.
// If arg is a primitive wrapper class, extract the primitive value
// from the wrapper class. Otherwise, pass the arg on unchanged.
Uint32 Method::getWordArg(const Type &actualType, JavaObject &arg)
{
// Check arguments for correctness
if (isPrimitiveKind(actualType.typeKind)) {
if (Standard::isPrimitiveWrapperClass(*static_cast<const Class *>(&arg.getType())))
return Class::getPrimitiveValue(arg);
else {
runtimeError(RuntimeError::illegalArgument);
return 0;
}
} else {
// Ensure that arg is assignable to our argument
return (Uint32) &arg;
}
}
void Method::getDoubleWordArg(const Type &, JavaObject &arg, Uint32 &hi, Uint32 &lo)
{
struct {
Uint32 lo;
Uint32 hi;
} u;
memcpy(&u, ((char *) &arg+sizeof(JavaObject)), 8);
hi = u.hi;
lo = u.lo;
}
JavaObject *Method::invoke(JavaObject * PC_ONLY(obj), JavaObject * PC_ONLY(args)[], Int32 PC_ONLY(nArgs))
{
#ifdef GENERATE_FOR_X86
Int32 i;
Int32 start = 0;
Uint32 *argsToBePassed = 0;
// Make sure we're passing the right kind of object
if (!(getModifiers() & CR_METHOD_STATIC))
if (!obj || !getDeclaringClass()->isAssignableFrom(*obj->type))
runtimeError(RuntimeError::illegalArgument);
// Make sure we're passing the right number of arguments
Int32 nArgsToCompare = ((getModifiers() & CR_METHOD_STATIC)) ?
getSignature().nArguments : getSignature().nArguments-1;
if (nArgs != nArgsToCompare)
runtimeError(RuntimeError::illegalArgument);
// If we're an instance method, pass ourselves in as the first argument
if ((getModifiers() & CR_METHOD_STATIC) == 0) {
start = 1;
argsToBePassed = new Uint32[++nArgs*2];
argsToBePassed[0] = (Uint32) obj;
} else
argsToBePassed = new Uint32[nArgs*2];
Int32 nWords = 0; // Number of words to push on the stack
for (nWords = start, i = start; i < nArgs; i++) {
// FIX Currently assumes none of the args are double-word
if (!Standard::isDoubleWordPrimitiveWrapperClass(*static_cast<const Class *>(signature.argumentTypes[i])))
argsToBePassed[nWords++] = (args[i-start]) ? getWordArg(*signature.argumentTypes[i], *args[i-start]): 0;
else {
if (args[i-start])
getDoubleWordArg(*signature.argumentTypes[i], *args[i - start],
argsToBePassed[nWords], argsToBePassed[nWords+1]);
else
argsToBePassed[nWords] = argsToBePassed[nWords+1] = 0;
nWords += 2;
}
}
#if 0
//Uint32 returnValue;
for (Int32 n = nWords - 1; n >= 0; n--) {
void *arg = (void *) argsToBePassed[n];
prepareArg(n, arg);
}
callFunc(code);
getReturnValue(returnValue);
#else
ReturnValue returnValue = invokeRaw(obj, argsToBePassed, nWords);
#endif
if (argsToBePassed)
delete [] argsToBePassed;
// Wrap up the return value inside an object if neccessary
if (signature.resultType->typeKind != tkVoid) {
if (isPrimitiveKind(signature.resultType->typeKind)) {
if (!isDoublewordKind(signature.resultType->typeKind))
return &Class::makePrimitiveObject(signature.resultType->typeKind,
(void *) &returnValue.wordValue);
else
return &Class::makePrimitiveObject(signature.resultType->typeKind,
(void *) &returnValue.doubleWordValue);
} else
return (JavaObject *) returnValue.wordValue;
} else
return 0;
#else
trespass("Method::invoke() not implemented for this platform\n");
return 0;
#endif
}
ReturnValue Method::invokeRaw(JavaObject* /*obj*/, Uint32 argsToBePassed[], Int32 nWords)
{
Uint32 wordRet;
ReturnValue returnValue;
void *code = addressFunction(getCode());
for (Int32 n = nWords - 1; n >= 0; n--) {
void *arg = (void *) argsToBePassed[n];
prepareArg(n, arg);
}
callFunc(code);
getReturnValue(wordRet);
// XXX Double-word return values are currently broken
assert(!isDoublewordKind(getSignature().resultType->typeKind));
returnValue.wordValue = wordRet;
return returnValue;
}
#undef PC_ONLY
Int32 Method::getArgsSize()
{
if (argsSize >= 0)
return argsSize;
Int32 size = 0;
// Make sure the signature has been created
getSignature();
for (uint i = 0; i < signature.nArguments; i++) {
const Type *t = signature.argumentTypes[i];
assert(t);
size += getTypeSize(*t);
}
return (argsSize = size);
}
#ifdef DEBUG_LOG
//
// Print a reference to this method for debugging purposes.
// Return the number of characters printed.
//
int Method::printRef(LogModuleObject &f) const
{
int o = getDeclaringClass()->printRef(f);
return o + UT_OBJECTLOG(f, PR_LOG_ALWAYS, (".%s", shortName));
}
#endif
/* Return a pointer to the compiled code of the method. This might be a
* stub that actually compiles the method when called. This stub may or
* may not "backpatch" the call site to point to the newly compiled method
* depending on whether or not the method is normally statically dispatched.
* This backpatching is not done when inhibitBackpatch is true. (This
* argument is used for implementations of interface methods which are
* always dispatched using a vtable and which, therefore, shouldn't
* backpatch their caller.)
*/
addr Method::getCode(bool inhibitBackpatch)
{
MethodDescriptor descriptor(*this);
return NativeCodeCache::getCache().lookupByDescriptor(descriptor,
inhibitBackpatch);
}
// Checks to see that the given className, methodName and signature
// represent this method.
bool Method::isSelf(const char *fullyQualifiedClassName, const char *simpleMethodName,
const char *javaSig)
{
Class *clazz = (Class *) getDeclaringClass();
return (((fullyQualifiedClassName == clazz->getName()) || (*fullyQualifiedClassName == '*')) &&
((simpleMethodName == shortName) || (*simpleMethodName == '*')) &&
((javaSig == signatureString) || (*javaSig == '*')));
}
#ifdef DEBUG_LOG
// Dumps the local variable table with the debug information
void
Method::printDebugInfo()
{
AttributeCode *code = (AttributeCode *)
getMethodInfo().getAttribute("Code");
AttributeLocalVariableTable *localVariableTable =
(AttributeLocalVariableTable *)
code->getAttribute("LocalVariableTable");
if (!localVariableTable) {
UT_LOG(Debugger, PR_LOG_ALWAYS, ("No debug info\n"));
return;
}
// Walk the local variable table
Uint32 n = localVariableTable->getNumEntries();
for(Uint32 i=0; i < n; i++) {
LocalVariableEntry& entry = localVariableTable->getEntryByNumber(i);
entry.dump();
DoublyLinkedList<IntervalMapping>& mappings = entry.mappings;
for (DoublyLinkedList<IntervalMapping>::iterator j = mappings.begin();
!mappings.done(j);
j = mappings.advance(j)) {
IntervalMapping& mapping = mappings.get(j);
mapping.dump();
}
}
}
#endif
/* Class Constructor */
JavaObject &Constructor::newInstance(JavaObject *params[], Int32 numParams)
{
ClassOrInterface *declaringClass = getDeclaringClass();
if (declaringClass->isArray())
runtimeError(RuntimeError::illegalArgument);
JavaObject &newObject = (static_cast<Class *>(declaringClass))->newInstance();
invoke(&newObject, params, numParams);
return newObject;
}
#ifdef DEBUG_LOG
void Method::resolveHTMLName()
{
if (htmlName)
return;
// gererate a hash value from the fully qualified name
const char* p = toString();
Uint32 hash = 0;
while(*p)
hash = (hash << 1) + *p++;
char hashText[11];
sprintf(hashText, "[%08x]", hash);
// name length
const char* name = getName();
Uint32 len = strlen(name);
if(len > 16)
len = 16;
htmlName = new char[len + 10 + 5 + 1];
// copy name and clean out undesirable chars
htmlName[len] = 0;
strncpy(htmlName, name, len);
char* q = htmlName;
while(*q) {
switch(*q) {
case ':': case '<': case '>': case '/': case ' ':
*q = '_';
}
q++;
}
// append hash vale and .html
strcat(htmlName, hashText);
strcat(htmlName, ".html");
Uint32 newLen = strlen(htmlName);
assert(newLen < 32);
}
#endif // DEBUG_LOG