зеркало из https://github.com/mozilla/pjs.git
302 строки
10 KiB
C++
302 строки
10 KiB
C++
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* vim:set ts=2 sw=2 sts=2 et cindent: */
|
|
/* ***** BEGIN LICENSE BLOCK *****
|
|
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
|
|
*
|
|
* The contents of this file are subject to the Mozilla Public License Version
|
|
* 1.1 (the "License"); you may not use this file except in compliance with
|
|
* the License. You may obtain a copy of the License at
|
|
* http://www.mozilla.org/MPL/
|
|
*
|
|
* Software distributed under the License is distributed on an "AS IS" basis,
|
|
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
|
|
* for the specific language governing rights and limitations under the
|
|
* License.
|
|
*
|
|
* The Original Code is Mozilla code.
|
|
*
|
|
* The Initial Developer of the Original Code is the Mozilla Corporation.
|
|
* Portions created by the Initial Developer are Copyright (C) 2010
|
|
* the Initial Developer. All Rights Reserved.
|
|
*
|
|
* Contributor(s):
|
|
* Matthew Gregan <kinetik@flim.org>
|
|
*
|
|
* Alternatively, the contents of this file may be used under the terms of
|
|
* either the GNU General Public License Version 2 or later (the "GPL"), or
|
|
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
|
|
* in which case the provisions of the GPL or the LGPL are applicable instead
|
|
* of those above. If you wish to allow use of your version of this file only
|
|
* under the terms of either the GPL or the LGPL, and not to allow others to
|
|
* use your version of this file under the terms of the MPL, indicate your
|
|
* decision by deleting the provisions above and replace them with the notice
|
|
* and other provisions required by the GPL or the LGPL. If you do not delete
|
|
* the provisions above, a recipient may use your version of this file under
|
|
* the terms of any one of the MPL, the GPL or the LGPL.
|
|
*
|
|
* ***** END LICENSE BLOCK ***** */
|
|
|
|
#include "nsAlgorithm.h"
|
|
#include "nsWebMBufferedParser.h"
|
|
#include "nsTimeRanges.h"
|
|
#include "nsThreadUtils.h"
|
|
|
|
using mozilla::ReentrantMonitorAutoEnter;
|
|
|
|
static const double NS_PER_S = 1e9;
|
|
|
|
static PRUint32
|
|
VIntLength(unsigned char aFirstByte, PRUint32* aMask)
|
|
{
|
|
PRUint32 count = 1;
|
|
PRUint32 mask = 1 << 7;
|
|
while (count < 8) {
|
|
if ((aFirstByte & mask) != 0) {
|
|
break;
|
|
}
|
|
mask >>= 1;
|
|
count += 1;
|
|
}
|
|
if (aMask) {
|
|
*aMask = mask;
|
|
}
|
|
NS_ASSERTION(count >= 1 && count <= 8, "Insane VInt length.");
|
|
return count;
|
|
}
|
|
|
|
void nsWebMBufferedParser::Append(const unsigned char* aBuffer, PRUint32 aLength,
|
|
nsTArray<nsWebMTimeDataOffset>& aMapping,
|
|
ReentrantMonitor& aReentrantMonitor)
|
|
{
|
|
static const unsigned char CLUSTER_ID[] = { 0x1f, 0x43, 0xb6, 0x75 };
|
|
static const unsigned char TIMECODE_ID = 0xe7;
|
|
static const unsigned char BLOCKGROUP_ID = 0xa0;
|
|
static const unsigned char BLOCK_ID = 0xa1;
|
|
static const unsigned char SIMPLEBLOCK_ID = 0xa3;
|
|
|
|
const unsigned char* p = aBuffer;
|
|
|
|
// Parse each byte in aBuffer one-by-one, producing timecodes and updating
|
|
// aMapping as we go. Parser pauses at end of stream (which may be at any
|
|
// point within the parse) and resumes parsing the next time Append is
|
|
// called with new data.
|
|
while (p < aBuffer + aLength) {
|
|
switch (mState) {
|
|
case CLUSTER_SYNC:
|
|
if (*p++ == CLUSTER_ID[mClusterIDPos]) {
|
|
mClusterIDPos += 1;
|
|
} else {
|
|
mClusterIDPos = 0;
|
|
}
|
|
// Cluster ID found, it's likely this is a valid sync point. If this
|
|
// is a spurious match, the later parse steps will encounter an error
|
|
// and return to CLUSTER_SYNC.
|
|
if (mClusterIDPos == sizeof(CLUSTER_ID)) {
|
|
mClusterIDPos = 0;
|
|
mState = READ_VINT;
|
|
mNextState = TIMECODE_SYNC;
|
|
}
|
|
break;
|
|
case READ_VINT: {
|
|
unsigned char c = *p++;
|
|
PRUint32 mask;
|
|
mVIntLength = VIntLength(c, &mask);
|
|
mVIntLeft = mVIntLength - 1;
|
|
mVInt = c & ~mask;
|
|
mState = READ_VINT_REST;
|
|
break;
|
|
}
|
|
case READ_VINT_REST:
|
|
if (mVIntLeft) {
|
|
mVInt <<= 8;
|
|
mVInt |= *p++;
|
|
mVIntLeft -= 1;
|
|
} else {
|
|
mState = mNextState;
|
|
}
|
|
break;
|
|
case TIMECODE_SYNC:
|
|
if (*p++ != TIMECODE_ID) {
|
|
p -= 1;
|
|
mState = CLUSTER_SYNC;
|
|
break;
|
|
}
|
|
mClusterTimecode = 0;
|
|
mState = READ_VINT;
|
|
mNextState = READ_CLUSTER_TIMECODE;
|
|
break;
|
|
case READ_CLUSTER_TIMECODE:
|
|
if (mVInt) {
|
|
mClusterTimecode <<= 8;
|
|
mClusterTimecode |= *p++;
|
|
mVInt -= 1;
|
|
} else {
|
|
mState = ANY_BLOCK_SYNC;
|
|
}
|
|
break;
|
|
case ANY_BLOCK_SYNC: {
|
|
unsigned char c = *p++;
|
|
if (c == BLOCKGROUP_ID) {
|
|
mState = READ_VINT;
|
|
mNextState = ANY_BLOCK_SYNC;
|
|
} else if (c == SIMPLEBLOCK_ID || c == BLOCK_ID) {
|
|
mBlockOffset = mCurrentOffset + (p - aBuffer) - 1;
|
|
mState = READ_VINT;
|
|
mNextState = READ_BLOCK;
|
|
} else {
|
|
PRUint32 length = VIntLength(c, nsnull);
|
|
if (length == 4) {
|
|
p -= 1;
|
|
mState = CLUSTER_SYNC;
|
|
} else {
|
|
mState = READ_VINT;
|
|
mNextState = SKIP_ELEMENT;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case READ_BLOCK:
|
|
mBlockSize = mVInt;
|
|
mBlockTimecode = 0;
|
|
mBlockTimecodeLength = 2;
|
|
mState = READ_VINT;
|
|
mNextState = READ_BLOCK_TIMECODE;
|
|
break;
|
|
case READ_BLOCK_TIMECODE:
|
|
if (mBlockTimecodeLength) {
|
|
mBlockTimecode <<= 8;
|
|
mBlockTimecode |= *p++;
|
|
mBlockTimecodeLength -= 1;
|
|
} else {
|
|
// It's possible we've parsed this data before, so avoid inserting
|
|
// duplicate nsWebMTimeDataOffset entries.
|
|
{
|
|
ReentrantMonitorAutoEnter mon(aReentrantMonitor);
|
|
PRUint32 idx;
|
|
if (!aMapping.GreatestIndexLtEq(mBlockOffset, idx)) {
|
|
nsWebMTimeDataOffset entry(mBlockOffset, mClusterTimecode + mBlockTimecode);
|
|
aMapping.InsertElementAt(idx, entry);
|
|
}
|
|
}
|
|
|
|
// Skip rest of block header and the block's payload.
|
|
mBlockSize -= mVIntLength;
|
|
mBlockSize -= 2;
|
|
mSkipBytes = PRUint32(mBlockSize);
|
|
mState = SKIP_DATA;
|
|
mNextState = ANY_BLOCK_SYNC;
|
|
}
|
|
break;
|
|
case SKIP_DATA:
|
|
if (mSkipBytes) {
|
|
PRUint32 left = aLength - (p - aBuffer);
|
|
left = NS_MIN(left, mSkipBytes);
|
|
p += left;
|
|
mSkipBytes -= left;
|
|
} else {
|
|
mState = mNextState;
|
|
}
|
|
break;
|
|
case SKIP_ELEMENT:
|
|
mSkipBytes = PRUint32(mVInt);
|
|
mState = SKIP_DATA;
|
|
mNextState = ANY_BLOCK_SYNC;
|
|
break;
|
|
}
|
|
}
|
|
|
|
NS_ASSERTION(p == aBuffer + aLength, "Must have parsed to end of data.");
|
|
mCurrentOffset += aLength;
|
|
}
|
|
|
|
void nsWebMBufferedState::CalculateBufferedForRange(nsTimeRanges* aBuffered,
|
|
PRInt64 aStartOffset, PRInt64 aEndOffset,
|
|
PRUint64 aTimecodeScale,
|
|
PRInt64 aStartTimeOffsetNS)
|
|
{
|
|
ReentrantMonitorAutoEnter mon(mReentrantMonitor);
|
|
|
|
// Find the first nsWebMTimeDataOffset at or after aStartOffset.
|
|
PRUint32 start;
|
|
mTimeMapping.GreatestIndexLtEq(aStartOffset, start);
|
|
if (start == mTimeMapping.Length()) {
|
|
return;
|
|
}
|
|
|
|
// Find the first nsWebMTimeDataOffset at or before aEndOffset.
|
|
PRUint32 end;
|
|
if (!mTimeMapping.GreatestIndexLtEq(aEndOffset, end) && end > 0) {
|
|
// No exact match, so adjust end to be the first entry before
|
|
// aEndOffset.
|
|
end -= 1;
|
|
}
|
|
|
|
// Range is empty.
|
|
if (end <= start) {
|
|
return;
|
|
}
|
|
|
|
NS_ASSERTION(mTimeMapping[start].mOffset >= aStartOffset &&
|
|
mTimeMapping[end].mOffset <= aEndOffset,
|
|
"Computed time range must lie within data range.");
|
|
if (start > 0) {
|
|
NS_ASSERTION(mTimeMapping[start - 1].mOffset <= aStartOffset,
|
|
"Must have found least nsWebMTimeDataOffset for start");
|
|
}
|
|
if (end < mTimeMapping.Length() - 1) {
|
|
NS_ASSERTION(mTimeMapping[end + 1].mOffset >= aEndOffset,
|
|
"Must have found greatest nsWebMTimeDataOffset for end");
|
|
}
|
|
|
|
// The timestamp of the first media sample, in ns. We must subtract this
|
|
// from the ranges' start and end timestamps, so that those timestamps are
|
|
// normalized in the range [0,duration].
|
|
|
|
double startTime = (mTimeMapping[start].mTimecode * aTimecodeScale - aStartTimeOffsetNS) / NS_PER_S;
|
|
double endTime = (mTimeMapping[end].mTimecode * aTimecodeScale - aStartTimeOffsetNS) / NS_PER_S;
|
|
aBuffered->Add(startTime, endTime);
|
|
}
|
|
|
|
void nsWebMBufferedState::NotifyDataArrived(const char* aBuffer, PRUint32 aLength, PRUint32 aOffset)
|
|
{
|
|
NS_ASSERTION(NS_IsMainThread(), "Should be on main thread.");
|
|
PRUint32 idx;
|
|
if (!mRangeParsers.GreatestIndexLtEq(aOffset, idx)) {
|
|
// If the incoming data overlaps an already parsed range, adjust the
|
|
// buffer so that we only reparse the new data. It's also possible to
|
|
// have an overlap where the end of the incoming data is within an
|
|
// already parsed range, but we don't bother handling that other than by
|
|
// avoiding storing duplicate timecodes when the parser runs.
|
|
if (idx != mRangeParsers.Length() && mRangeParsers[idx].mStartOffset <= aOffset) {
|
|
// Complete overlap, skip parsing.
|
|
if (aOffset + aLength <= mRangeParsers[idx].mCurrentOffset) {
|
|
return;
|
|
}
|
|
|
|
// Partial overlap, adjust the buffer to parse only the new data.
|
|
PRInt64 adjust = mRangeParsers[idx].mCurrentOffset - aOffset;
|
|
NS_ASSERTION(adjust >= 0, "Overlap detection bug.");
|
|
aBuffer += adjust;
|
|
aLength -= PRUint32(adjust);
|
|
} else {
|
|
mRangeParsers.InsertElementAt(idx, nsWebMBufferedParser(aOffset));
|
|
}
|
|
}
|
|
|
|
mRangeParsers[idx].Append(reinterpret_cast<const unsigned char*>(aBuffer),
|
|
aLength,
|
|
mTimeMapping,
|
|
mReentrantMonitor);
|
|
|
|
// Merge parsers with overlapping regions and clean up the remnants.
|
|
PRUint32 i = 0;
|
|
while (i + 1 < mRangeParsers.Length()) {
|
|
if (mRangeParsers[i].mCurrentOffset >= mRangeParsers[i + 1].mStartOffset) {
|
|
mRangeParsers[i + 1].mStartOffset = mRangeParsers[i].mStartOffset;
|
|
mRangeParsers.RemoveElementAt(i);
|
|
} else {
|
|
i += 1;
|
|
}
|
|
}
|
|
}
|