зеркало из https://github.com/mozilla/pjs.git
458 строки
11 KiB
C
458 строки
11 KiB
C
/* Libart_LGPL - library of basic graphic primitives
|
|
* Copyright (C) 1998 Raph Levien
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Library General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Library General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Library General Public
|
|
* License along with this library; if not, write to the
|
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
* Boston, MA 02111-1307, USA.
|
|
*/
|
|
|
|
/* Render a sorted vector path into an RGB buffer. */
|
|
|
|
#include "config.h"
|
|
#include "art_rgb_svp.h"
|
|
|
|
#include "art_svp.h"
|
|
#include "art_svp_render_aa.h"
|
|
#include "art_rgb.h"
|
|
|
|
typedef struct _ArtRgbSVPData ArtRgbSVPData;
|
|
typedef struct _ArtRgbSVPAlphaData ArtRgbSVPAlphaData;
|
|
|
|
struct _ArtRgbSVPData {
|
|
art_u32 rgbtab[256];
|
|
art_u8 *buf;
|
|
int rowstride;
|
|
int x0, x1;
|
|
};
|
|
|
|
struct _ArtRgbSVPAlphaData {
|
|
int alphatab[256];
|
|
art_u8 r, g, b, alpha;
|
|
art_u8 *buf;
|
|
int rowstride;
|
|
int x0, x1;
|
|
};
|
|
|
|
static void
|
|
art_rgb_svp_callback (void *callback_data, int y,
|
|
int start, ArtSVPRenderAAStep *steps, int n_steps)
|
|
{
|
|
ArtRgbSVPData *data = (ArtRgbSVPData *)callback_data;
|
|
art_u8 *linebuf;
|
|
int run_x0, run_x1;
|
|
art_u32 running_sum = start;
|
|
art_u32 rgb;
|
|
int x0, x1;
|
|
int k;
|
|
|
|
linebuf = data->buf;
|
|
x0 = data->x0;
|
|
x1 = data->x1;
|
|
|
|
if (n_steps > 0)
|
|
{
|
|
run_x1 = steps[0].x;
|
|
if (run_x1 > x0)
|
|
{
|
|
rgb = data->rgbtab[(running_sum >> 16) & 0xff];
|
|
art_rgb_fill_run (linebuf,
|
|
rgb >> 16, (rgb >> 8) & 0xff, rgb & 0xff,
|
|
run_x1 - x0);
|
|
}
|
|
|
|
for (k = 0; k < n_steps - 1; k++)
|
|
{
|
|
running_sum += steps[k].delta;
|
|
run_x0 = run_x1;
|
|
run_x1 = steps[k + 1].x;
|
|
if (run_x1 > run_x0)
|
|
{
|
|
rgb = data->rgbtab[(running_sum >> 16) & 0xff];
|
|
art_rgb_fill_run (linebuf + (run_x0 - x0) * 3,
|
|
rgb >> 16, (rgb >> 8) & 0xff, rgb & 0xff,
|
|
run_x1 - run_x0);
|
|
}
|
|
}
|
|
running_sum += steps[k].delta;
|
|
if (x1 > run_x1)
|
|
{
|
|
rgb = data->rgbtab[(running_sum >> 16) & 0xff];
|
|
art_rgb_fill_run (linebuf + (run_x1 - x0) * 3,
|
|
rgb >> 16, (rgb >> 8) & 0xff, rgb & 0xff,
|
|
x1 - run_x1);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
rgb = data->rgbtab[(running_sum >> 16) & 0xff];
|
|
art_rgb_fill_run (linebuf,
|
|
rgb >> 16, (rgb >> 8) & 0xff, rgb & 0xff,
|
|
x1 - x0);
|
|
}
|
|
|
|
data->buf += data->rowstride;
|
|
}
|
|
|
|
/* Render the vector path into the RGB buffer. */
|
|
|
|
/**
|
|
* art_rgb_svp_aa: Render sorted vector path into RGB buffer.
|
|
* @svp: The source sorted vector path.
|
|
* @x0: Left coordinate of destination rectangle.
|
|
* @y0: Top coordinate of destination rectangle.
|
|
* @x1: Right coordinate of destination rectangle.
|
|
* @y1: Bottom coordinate of destination rectangle.
|
|
* @fg_color: Foreground color in 0xRRGGBB format.
|
|
* @bg_color: Background color in 0xRRGGBB format.
|
|
* @buf: Destination RGB buffer.
|
|
* @rowstride: Rowstride of @buf buffer.
|
|
* @alphagamma: #ArtAlphaGamma for gamma-correcting the rendering.
|
|
*
|
|
* Renders the shape specified with @svp into the @buf RGB buffer.
|
|
* @x1 - @x0 specifies the width, and @y1 - @y0 specifies the height,
|
|
* of the rectangle rendered. The new pixels are stored starting at
|
|
* the first byte of @buf. Thus, the @x0 and @y0 parameters specify
|
|
* an offset within @svp, and may be tweaked as a way of doing
|
|
* integer-pixel translations without fiddling with @svp itself.
|
|
*
|
|
* The @fg_color and @bg_color arguments specify the opaque colors to
|
|
* be used for rendering. For pixels of entirely 0 winding-number,
|
|
* @bg_color is used. For pixels of entirely 1 winding number,
|
|
* @fg_color is used. In between, the color is interpolated based on
|
|
* the fraction of the pixel with a winding number of 1. If
|
|
* @alphagamma is NULL, then linear interpolation (in pixel counts) is
|
|
* the default. Otherwise, the interpolation is as specified by
|
|
* @alphagamma.
|
|
**/
|
|
void
|
|
art_rgb_svp_aa (const ArtSVP *svp,
|
|
int x0, int y0, int x1, int y1,
|
|
art_u32 fg_color, art_u32 bg_color,
|
|
art_u8 *buf, int rowstride,
|
|
ArtAlphaGamma *alphagamma)
|
|
{
|
|
ArtRgbSVPData data;
|
|
|
|
int r_fg, g_fg, b_fg;
|
|
int r_bg, g_bg, b_bg;
|
|
int r, g, b;
|
|
int dr, dg, db;
|
|
int i;
|
|
|
|
if (alphagamma == NULL)
|
|
{
|
|
r_fg = fg_color >> 16;
|
|
g_fg = (fg_color >> 8) & 0xff;
|
|
b_fg = fg_color & 0xff;
|
|
|
|
r_bg = bg_color >> 16;
|
|
g_bg = (bg_color >> 8) & 0xff;
|
|
b_bg = bg_color & 0xff;
|
|
|
|
r = (r_bg << 16) + 0x8000;
|
|
g = (g_bg << 16) + 0x8000;
|
|
b = (b_bg << 16) + 0x8000;
|
|
dr = ((r_fg - r_bg) << 16) / 255;
|
|
dg = ((g_fg - g_bg) << 16) / 255;
|
|
db = ((b_fg - b_bg) << 16) / 255;
|
|
|
|
for (i = 0; i < 256; i++)
|
|
{
|
|
data.rgbtab[i] = (r & 0xff0000) | ((g & 0xff0000) >> 8) | (b >> 16);
|
|
r += dr;
|
|
g += dg;
|
|
b += db;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
int *table;
|
|
art_u8 *invtab;
|
|
|
|
table = alphagamma->table;
|
|
|
|
r_fg = table[fg_color >> 16];
|
|
g_fg = table[(fg_color >> 8) & 0xff];
|
|
b_fg = table[fg_color & 0xff];
|
|
|
|
r_bg = table[bg_color >> 16];
|
|
g_bg = table[(bg_color >> 8) & 0xff];
|
|
b_bg = table[bg_color & 0xff];
|
|
|
|
r = (r_bg << 16) + 0x8000;
|
|
g = (g_bg << 16) + 0x8000;
|
|
b = (b_bg << 16) + 0x8000;
|
|
dr = ((r_fg - r_bg) << 16) / 255;
|
|
dg = ((g_fg - g_bg) << 16) / 255;
|
|
db = ((b_fg - b_bg) << 16) / 255;
|
|
|
|
invtab = alphagamma->invtable;
|
|
for (i = 0; i < 256; i++)
|
|
{
|
|
data.rgbtab[i] = (invtab[r >> 16] << 16) |
|
|
(invtab[g >> 16] << 8) |
|
|
invtab[b >> 16];
|
|
r += dr;
|
|
g += dg;
|
|
b += db;
|
|
}
|
|
}
|
|
data.buf = buf;
|
|
data.rowstride = rowstride;
|
|
data.x0 = x0;
|
|
data.x1 = x1;
|
|
art_svp_render_aa (svp, x0, y0, x1, y1, art_rgb_svp_callback, &data);
|
|
}
|
|
|
|
static void
|
|
art_rgb_svp_alpha_callback (void *callback_data, int y,
|
|
int start, ArtSVPRenderAAStep *steps, int n_steps)
|
|
{
|
|
ArtRgbSVPAlphaData *data = (ArtRgbSVPAlphaData *)callback_data;
|
|
art_u8 *linebuf;
|
|
int run_x0, run_x1;
|
|
art_u32 running_sum = start;
|
|
int x0, x1;
|
|
int k;
|
|
art_u8 r, g, b;
|
|
int *alphatab;
|
|
int alpha;
|
|
|
|
linebuf = data->buf;
|
|
x0 = data->x0;
|
|
x1 = data->x1;
|
|
|
|
r = data->r;
|
|
g = data->g;
|
|
b = data->b;
|
|
alphatab = data->alphatab;
|
|
|
|
if (n_steps > 0)
|
|
{
|
|
run_x1 = steps[0].x;
|
|
if (run_x1 > x0)
|
|
{
|
|
alpha = (running_sum >> 16) & 0xff;
|
|
if (alpha)
|
|
art_rgb_run_alpha (linebuf,
|
|
r, g, b, alphatab[alpha],
|
|
run_x1 - x0);
|
|
}
|
|
|
|
for (k = 0; k < n_steps - 1; k++)
|
|
{
|
|
running_sum += steps[k].delta;
|
|
run_x0 = run_x1;
|
|
run_x1 = steps[k + 1].x;
|
|
if (run_x1 > run_x0)
|
|
{
|
|
alpha = (running_sum >> 16) & 0xff;
|
|
if (alpha)
|
|
art_rgb_run_alpha (linebuf + (run_x0 - x0) * 3,
|
|
r, g, b, alphatab[alpha],
|
|
run_x1 - run_x0);
|
|
}
|
|
}
|
|
running_sum += steps[k].delta;
|
|
if (x1 > run_x1)
|
|
{
|
|
alpha = (running_sum >> 16) & 0xff;
|
|
if (alpha)
|
|
art_rgb_run_alpha (linebuf + (run_x1 - x0) * 3,
|
|
r, g, b, alphatab[alpha],
|
|
x1 - run_x1);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
alpha = (running_sum >> 16) & 0xff;
|
|
if (alpha)
|
|
art_rgb_run_alpha (linebuf,
|
|
r, g, b, alphatab[alpha],
|
|
x1 - x0);
|
|
}
|
|
|
|
data->buf += data->rowstride;
|
|
}
|
|
|
|
static void
|
|
art_rgb_svp_alpha_opaque_callback (void *callback_data, int y,
|
|
int start,
|
|
ArtSVPRenderAAStep *steps, int n_steps)
|
|
{
|
|
ArtRgbSVPAlphaData *data = (ArtRgbSVPAlphaData *)callback_data;
|
|
art_u8 *linebuf;
|
|
int run_x0, run_x1;
|
|
art_u32 running_sum = start;
|
|
int x0, x1;
|
|
int k;
|
|
art_u8 r, g, b;
|
|
int *alphatab;
|
|
int alpha;
|
|
|
|
linebuf = data->buf;
|
|
x0 = data->x0;
|
|
x1 = data->x1;
|
|
|
|
r = data->r;
|
|
g = data->g;
|
|
b = data->b;
|
|
alphatab = data->alphatab;
|
|
|
|
if (n_steps > 0)
|
|
{
|
|
run_x1 = steps[0].x;
|
|
if (run_x1 > x0)
|
|
{
|
|
alpha = running_sum >> 16;
|
|
if (alpha)
|
|
{
|
|
if (alpha >= 255)
|
|
art_rgb_fill_run (linebuf,
|
|
r, g, b,
|
|
run_x1 - x0);
|
|
else
|
|
art_rgb_run_alpha (linebuf,
|
|
r, g, b, alphatab[alpha],
|
|
run_x1 - x0);
|
|
}
|
|
}
|
|
|
|
for (k = 0; k < n_steps - 1; k++)
|
|
{
|
|
running_sum += steps[k].delta;
|
|
run_x0 = run_x1;
|
|
run_x1 = steps[k + 1].x;
|
|
if (run_x1 > run_x0)
|
|
{
|
|
alpha = running_sum >> 16;
|
|
if (alpha)
|
|
{
|
|
if (alpha >= 255)
|
|
art_rgb_fill_run (linebuf + (run_x0 - x0) * 3,
|
|
r, g, b,
|
|
run_x1 - run_x0);
|
|
else
|
|
art_rgb_run_alpha (linebuf + (run_x0 - x0) * 3,
|
|
r, g, b, alphatab[alpha],
|
|
run_x1 - run_x0);
|
|
}
|
|
}
|
|
}
|
|
running_sum += steps[k].delta;
|
|
if (x1 > run_x1)
|
|
{
|
|
alpha = running_sum >> 16;
|
|
if (alpha)
|
|
{
|
|
if (alpha >= 255)
|
|
art_rgb_fill_run (linebuf + (run_x1 - x0) * 3,
|
|
r, g, b,
|
|
x1 - run_x1);
|
|
else
|
|
art_rgb_run_alpha (linebuf + (run_x1 - x0) * 3,
|
|
r, g, b, alphatab[alpha],
|
|
x1 - run_x1);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
alpha = running_sum >> 16;
|
|
if (alpha)
|
|
{
|
|
if (alpha >= 255)
|
|
art_rgb_fill_run (linebuf,
|
|
r, g, b,
|
|
x1 - x0);
|
|
else
|
|
art_rgb_run_alpha (linebuf,
|
|
r, g, b, alphatab[alpha],
|
|
x1 - x0);
|
|
}
|
|
}
|
|
|
|
data->buf += data->rowstride;
|
|
}
|
|
|
|
/**
|
|
* art_rgb_svp_alpha: Alpha-composite sorted vector path over RGB buffer.
|
|
* @svp: The source sorted vector path.
|
|
* @x0: Left coordinate of destination rectangle.
|
|
* @y0: Top coordinate of destination rectangle.
|
|
* @x1: Right coordinate of destination rectangle.
|
|
* @y1: Bottom coordinate of destination rectangle.
|
|
* @rgba: Color in 0xRRGGBBAA format.
|
|
* @buf: Destination RGB buffer.
|
|
* @rowstride: Rowstride of @buf buffer.
|
|
* @alphagamma: #ArtAlphaGamma for gamma-correcting the compositing.
|
|
*
|
|
* Renders the shape specified with @svp over the @buf RGB buffer.
|
|
* @x1 - @x0 specifies the width, and @y1 - @y0 specifies the height,
|
|
* of the rectangle rendered. The new pixels are stored starting at
|
|
* the first byte of @buf. Thus, the @x0 and @y0 parameters specify
|
|
* an offset within @svp, and may be tweaked as a way of doing
|
|
* integer-pixel translations without fiddling with @svp itself.
|
|
*
|
|
* The @rgba argument specifies the color for the rendering. Pixels of
|
|
* entirely 0 winding number are left untouched. Pixels of entirely
|
|
* 1 winding number have the color @rgba composited over them (ie,
|
|
* are replaced by the red, green, blue components of @rgba if the alpha
|
|
* component is 0xff). Pixels of intermediate coverage are interpolated
|
|
* according to the rule in @alphagamma, or default to linear if
|
|
* @alphagamma is NULL.
|
|
**/
|
|
void
|
|
art_rgb_svp_alpha (const ArtSVP *svp,
|
|
int x0, int y0, int x1, int y1,
|
|
art_u32 rgba,
|
|
art_u8 *buf, int rowstride,
|
|
ArtAlphaGamma *alphagamma)
|
|
{
|
|
ArtRgbSVPAlphaData data;
|
|
int r, g, b, alpha;
|
|
int i;
|
|
int a, da;
|
|
|
|
r = rgba >> 24;
|
|
g = (rgba >> 16) & 0xff;
|
|
b = (rgba >> 8) & 0xff;
|
|
alpha = rgba & 0xff;
|
|
|
|
data.r = r;
|
|
data.g = g;
|
|
data.b = b;
|
|
data.alpha = alpha;
|
|
|
|
a = 0x8000;
|
|
da = (alpha * 66051 + 0x80) >> 8; /* 66051 equals 2 ^ 32 / (255 * 255) */
|
|
|
|
for (i = 0; i < 256; i++)
|
|
{
|
|
data.alphatab[i] = a >> 16;
|
|
a += da;
|
|
}
|
|
|
|
data.buf = buf;
|
|
data.rowstride = rowstride;
|
|
data.x0 = x0;
|
|
data.x1 = x1;
|
|
if (alpha == 255)
|
|
art_svp_render_aa (svp, x0, y0, x1, y1, art_rgb_svp_alpha_opaque_callback,
|
|
&data);
|
|
else
|
|
art_svp_render_aa (svp, x0, y0, x1, y1, art_rgb_svp_alpha_callback, &data);
|
|
}
|
|
|