pjs/content/media/ogg/nsOggCodecState.cpp

737 строки
23 KiB
C++

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim:set ts=2 sw=2 sts=2 et cindent: */
/* ***** BEGIN LICENSE BLOCK *****
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is Mozilla code.
*
* The Initial Developer of the Original Code is the Mozilla Corporation.
* Portions created by the Initial Developer are Copyright (C) 2010
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Chris Double <chris.double@double.co.nz>
* Chris Pearce <chris@pearce.org.nz>
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
* ***** END LICENSE BLOCK ***** */
#include "nsDebug.h"
#include "nsOggCodecState.h"
#include "nsOggDecoder.h"
#include <string.h>
#include "nsTraceRefcnt.h"
#include "VideoUtils.h"
#include "nsBuiltinDecoderReader.h"
#ifdef PR_LOGGING
extern PRLogModuleInfo* gBuiltinDecoderLog;
#define LOG(type, msg) PR_LOG(gBuiltinDecoderLog, type, msg)
#else
#define LOG(type, msg)
#endif
nsOggCodecState*
nsOggCodecState::Create(ogg_page* aPage)
{
nsAutoPtr<nsOggCodecState> codecState;
if (aPage->body_len > 6 && memcmp(aPage->body+1, "theora", 6) == 0) {
codecState = new nsTheoraState(aPage);
} else if (aPage->body_len > 6 && memcmp(aPage->body+1, "vorbis", 6) == 0) {
codecState = new nsVorbisState(aPage);
} else if (aPage->body_len > 8 && memcmp(aPage->body, "fishead\0", 8) == 0) {
codecState = new nsSkeletonState(aPage);
} else {
codecState = new nsOggCodecState(aPage);
}
return codecState->nsOggCodecState::Init() ? codecState.forget() : nsnull;
}
nsOggCodecState::nsOggCodecState(ogg_page* aBosPage) :
mPacketCount(0),
mSerial(ogg_page_serialno(aBosPage)),
mActive(PR_FALSE),
mDoneReadingHeaders(PR_FALSE)
{
MOZ_COUNT_CTOR(nsOggCodecState);
memset(&mState, 0, sizeof(ogg_stream_state));
}
nsOggCodecState::~nsOggCodecState() {
MOZ_COUNT_DTOR(nsOggCodecState);
int ret = ogg_stream_clear(&mState);
NS_ASSERTION(ret == 0, "ogg_stream_clear failed");
}
nsresult nsOggCodecState::Reset() {
if (ogg_stream_reset(&mState) != 0) {
return NS_ERROR_FAILURE;
}
mBuffer.Erase();
return NS_OK;
}
PRBool nsOggCodecState::Init() {
int ret = ogg_stream_init(&mState, mSerial);
return ret == 0;
}
void nsPageQueue::Append(ogg_page* aPage) {
ogg_page* p = new ogg_page();
p->header_len = aPage->header_len;
p->body_len = aPage->body_len;
p->header = new unsigned char[p->header_len + p->body_len];
p->body = p->header + p->header_len;
memcpy(p->header, aPage->header, p->header_len);
memcpy(p->body, aPage->body, p->body_len);
nsDeque::Push(p);
}
PRBool nsOggCodecState::PageInFromBuffer() {
if (mBuffer.IsEmpty())
return PR_FALSE;
ogg_page *p = mBuffer.PeekFront();
int ret = ogg_stream_pagein(&mState, p);
NS_ENSURE_TRUE(ret == 0, PR_FALSE);
mBuffer.PopFront();
delete p->header;
delete p;
return PR_TRUE;
}
nsTheoraState::nsTheoraState(ogg_page* aBosPage) :
nsOggCodecState(aBosPage),
mSetup(0),
mCtx(0),
mFrameDuration(0),
mPixelAspectRatio(0)
{
MOZ_COUNT_CTOR(nsTheoraState);
th_info_init(&mInfo);
th_comment_init(&mComment);
}
nsTheoraState::~nsTheoraState() {
MOZ_COUNT_DTOR(nsTheoraState);
th_setup_free(mSetup);
th_decode_free(mCtx);
th_comment_clear(&mComment);
th_info_clear(&mInfo);
}
PRBool nsTheoraState::Init() {
if (!mActive)
return PR_FALSE;
PRInt64 n = mInfo.fps_numerator;
PRInt64 d = mInfo.fps_denominator;
PRInt64 f;
if (!MulOverflow(1000, d, f)) {
return mActive = PR_FALSE;
}
f /= n;
if (f > PR_UINT32_MAX) {
return mActive = PR_FALSE;
}
mFrameDuration = static_cast<PRUint32>(f);
n = mInfo.aspect_numerator;
d = mInfo.aspect_denominator;
mPixelAspectRatio = (n == 0 || d == 0) ?
1.0f : static_cast<float>(n) / static_cast<float>(d);
// Ensure the frame and picture regions aren't larger than our prescribed
// maximum, or zero sized.
nsIntSize frame(mInfo.frame_width, mInfo.frame_height);
nsIntRect picture(mInfo.pic_x, mInfo.pic_y, mInfo.pic_width, mInfo.pic_height);
if (!nsVideoInfo::ValidateVideoRegion(frame, picture, frame)) {
return mActive = PR_FALSE;
}
mCtx = th_decode_alloc(&mInfo, mSetup);
if (mCtx == NULL) {
return mActive = PR_FALSE;
}
return PR_TRUE;
}
PRBool
nsTheoraState::DecodeHeader(ogg_packet* aPacket)
{
mPacketCount++;
int ret = th_decode_headerin(&mInfo,
&mComment,
&mSetup,
aPacket);
// We must determine when we've read the last header packet.
// th_decode_headerin() does not tell us when it's read the last header, so
// we must keep track of the headers externally.
//
// There are 3 header packets, the Identification, Comment, and Setup
// headers, which must be in that order. If they're out of order, the file
// is invalid. If we've successfully read a header, and it's the setup
// header, then we're done reading headers. The first byte of each packet
// determines it's type as follows:
// 0x80 -> Identification header
// 0x81 -> Comment header
// 0x82 -> Setup header
// See http://www.theora.org/doc/Theora.pdf Chapter 6, "Bitstream Headers",
// for more details of the Ogg/Theora containment scheme.
PRBool isSetupHeader = aPacket->bytes > 0 && aPacket->packet[0] == 0x82;
if (ret < 0 || mPacketCount > 3) {
// We've received an error, or the first three packets weren't valid
// header packets, assume bad input, and don't activate the bitstream.
mDoneReadingHeaders = PR_TRUE;
} else if (ret > 0 && isSetupHeader && mPacketCount == 3) {
// Successfully read the three header packets.
mDoneReadingHeaders = PR_TRUE;
mActive = PR_TRUE;
}
return mDoneReadingHeaders;
}
PRInt64
nsTheoraState::Time(PRInt64 granulepos) {
if (!mActive) {
return -1;
}
return nsTheoraState::Time(&mInfo, granulepos);
}
# define TH_VERSION_CHECK(_info,_maj,_min,_sub) \
((_info)->version_major>(_maj)||(_info)->version_major==(_maj)&& \
((_info)->version_minor>(_min)||(_info)->version_minor==(_min)&& \
(_info)->version_subminor>=(_sub)))
PRInt64 nsTheoraState::Time(th_info* aInfo, PRInt64 aGranulepos)
{
if (aGranulepos < 0 || aInfo->fps_numerator == 0) {
return -1;
}
PRInt64 t = 0;
// Implementation of th_granule_frame inlined here to operate
// on the th_info structure instead of the theora_state.
int shift = aInfo->keyframe_granule_shift;
ogg_int64_t iframe = aGranulepos >> shift;
ogg_int64_t pframe = aGranulepos - (iframe << shift);
PRInt64 frameno = iframe + pframe - TH_VERSION_CHECK(aInfo, 3, 2, 1);
if (!AddOverflow(frameno, 1, t))
return -1;
if (!MulOverflow(t, 1000, t))
return -1;
if (!MulOverflow(t, aInfo->fps_denominator, t))
return -1;
return t / aInfo->fps_numerator;
}
PRInt64 nsTheoraState::StartTime(PRInt64 granulepos) {
if (granulepos < 0 || !mActive || mInfo.fps_numerator == 0) {
return -1;
}
PRInt64 t = 0;
PRInt64 frameno = th_granule_frame(mCtx, granulepos);
if (!MulOverflow(frameno, 1000, t))
return -1;
if (!MulOverflow(t, mInfo.fps_denominator, t))
return -1;
return t / mInfo.fps_numerator;
}
PRInt64
nsTheoraState::MaxKeyframeOffset()
{
// Determine the maximum time in milliseconds by which a key frame could
// offset for the theora bitstream. Theora granulepos encode time as:
// ((key_frame_number << granule_shift) + frame_offset).
// Therefore the maximum possible time by which any frame could be offset
// from a keyframe is the duration of (1 << granule_shift) - 1) frames.
PRInt64 frameDuration;
PRInt64 keyframeDiff;
PRInt64 shift = mInfo.keyframe_granule_shift;
// Max number of frames keyframe could possibly be offset.
keyframeDiff = (1 << shift) - 1;
// Length of frame in ms.
PRInt64 d = 0; // d will be 0 if multiplication overflows.
MulOverflow(1000, mInfo.fps_denominator, d);
frameDuration = d / mInfo.fps_numerator;
// Total time in ms keyframe can be offset from any given frame.
return frameDuration * keyframeDiff;
}
nsresult nsVorbisState::Reset()
{
nsresult res = NS_OK;
if (mActive && vorbis_synthesis_restart(&mDsp) != 0) {
res = NS_ERROR_FAILURE;
}
if (NS_FAILED(nsOggCodecState::Reset())) {
return NS_ERROR_FAILURE;
}
return res;
}
nsVorbisState::nsVorbisState(ogg_page* aBosPage) :
nsOggCodecState(aBosPage)
{
MOZ_COUNT_CTOR(nsVorbisState);
vorbis_info_init(&mInfo);
vorbis_comment_init(&mComment);
memset(&mDsp, 0, sizeof(vorbis_dsp_state));
memset(&mBlock, 0, sizeof(vorbis_block));
}
nsVorbisState::~nsVorbisState() {
MOZ_COUNT_DTOR(nsVorbisState);
vorbis_block_clear(&mBlock);
vorbis_dsp_clear(&mDsp);
vorbis_info_clear(&mInfo);
vorbis_comment_clear(&mComment);
}
PRBool nsVorbisState::DecodeHeader(ogg_packet* aPacket) {
mPacketCount++;
int ret = vorbis_synthesis_headerin(&mInfo,
&mComment,
aPacket);
// We must determine when we've read the last header packet.
// vorbis_synthesis_headerin() does not tell us when it's read the last
// header, so we must keep track of the headers externally.
//
// There are 3 header packets, the Identification, Comment, and Setup
// headers, which must be in that order. If they're out of order, the file
// is invalid. If we've successfully read a header, and it's the setup
// header, then we're done reading headers. The first byte of each packet
// determines it's type as follows:
// 0x1 -> Identification header
// 0x3 -> Comment header
// 0x5 -> Setup header
// For more details of the Vorbis/Ogg containment scheme, see the Vorbis I
// Specification, Chapter 4, Codec Setup and Packet Decode:
// http://www.xiph.org/vorbis/doc/Vorbis_I_spec.html#x1-580004
PRBool isSetupHeader = aPacket->bytes > 0 && aPacket->packet[0] == 0x5;
if (ret < 0 || mPacketCount > 3) {
// We've received an error, or the first three packets weren't valid
// header packets, assume bad input, and don't activate the bitstream.
mDoneReadingHeaders = PR_TRUE;
} else if (ret == 0 && isSetupHeader && mPacketCount == 3) {
// Successfully read the three header packets, activate the bitstream.
mDoneReadingHeaders = PR_TRUE;
mActive = PR_TRUE;
}
return mDoneReadingHeaders;
}
PRBool nsVorbisState::Init()
{
if (!mActive)
return PR_FALSE;
int ret = vorbis_synthesis_init(&mDsp, &mInfo);
if (ret != 0) {
NS_WARNING("vorbis_synthesis_init() failed initializing vorbis bitstream");
return mActive = PR_FALSE;
}
ret = vorbis_block_init(&mDsp, &mBlock);
if (ret != 0) {
NS_WARNING("vorbis_block_init() failed initializing vorbis bitstream");
if (mActive) {
vorbis_dsp_clear(&mDsp);
}
return mActive = PR_FALSE;
}
return PR_TRUE;
}
PRInt64 nsVorbisState::Time(PRInt64 granulepos)
{
if (!mActive) {
return -1;
}
return nsVorbisState::Time(&mInfo, granulepos);
}
PRInt64 nsVorbisState::Time(vorbis_info* aInfo, PRInt64 aGranulepos)
{
if (aGranulepos == -1 || aInfo->rate == 0) {
return -1;
}
PRInt64 t = 0;
MulOverflow(1000, aGranulepos, t);
return t / aInfo->rate;
}
nsSkeletonState::nsSkeletonState(ogg_page* aBosPage)
: nsOggCodecState(aBosPage),
mVersion(0),
mLength(0)
{
MOZ_COUNT_CTOR(nsSkeletonState);
}
nsSkeletonState::~nsSkeletonState()
{
MOZ_COUNT_DTOR(nsSkeletonState);
}
// Support for Ogg Skeleton 4.0, as per specification at:
// http://wiki.xiph.org/Ogg_Skeleton_4
// Minimum length in bytes of a Skeleton 4.0 header packet.
#define SKELETON_4_0_MIN_HEADER_LEN 80
// Minimum length in bytes of a Skeleton 4.0 index packet.
#define SKELETON_4_0_MIN_INDEX_LEN 42
// Minimum possible size of a compressed index keypoint.
#define MIN_KEY_POINT_SIZE 2
// Byte offset of the major and minor version numbers in the
// Ogg Skeleton 4.0 header packet.
#define SKELETON_VERSION_MAJOR_OFFSET 8
#define SKELETON_VERSION_MINOR_OFFSET 10
// Byte-offsets of the length of file field in the Skeleton 4.0 header packet.
#define SKELETON_FILE_LENGTH_OFFSET 64
// Byte-offsets of the fields in the Skeleton index packet.
#define INDEX_SERIALNO_OFFSET 6
#define INDEX_NUM_KEYPOINTS_OFFSET 10
#define INDEX_TIME_DENOM_OFFSET 18
#define INDEX_FIRST_NUMER_OFFSET 26
#define INDEX_LAST_NUMER_OFFSET 34
#define INDEX_KEYPOINT_OFFSET 42
static PRBool IsSkeletonBOS(ogg_packet* aPacket)
{
return aPacket->bytes >= SKELETON_4_0_MIN_HEADER_LEN &&
memcmp(reinterpret_cast<char*>(aPacket->packet), "fishead", 8) == 0;
}
static PRBool IsSkeletonIndex(ogg_packet* aPacket)
{
return aPacket->bytes >= SKELETON_4_0_MIN_INDEX_LEN &&
memcmp(reinterpret_cast<char*>(aPacket->packet), "index", 5) == 0;
}
// Reads a little-endian encoded unsigned 32bit integer at p.
static PRUint32 LEUint32(const unsigned char* p)
{
return p[0] +
(p[1] << 8) +
(p[2] << 16) +
(p[3] << 24);
}
// Reads a little-endian encoded 64bit integer at p.
static PRInt64 LEInt64(const unsigned char* p)
{
PRUint32 lo = LEUint32(p);
PRUint32 hi = LEUint32(p + 4);
return static_cast<PRInt64>(lo) | (static_cast<PRInt64>(hi) << 32);
}
// Reads a little-endian encoded unsigned 16bit integer at p.
static PRUint16 LEUint16(const unsigned char* p)
{
return p[0] + (p[1] << 8);
}
// Reads a variable length encoded integer at p. Will not read
// past aLimit. Returns pointer to character after end of integer.
static const unsigned char* ReadVariableLengthInt(const unsigned char* p,
const unsigned char* aLimit,
PRInt64& n)
{
int shift = 0;
PRInt64 byte = 0;
n = 0;
while (p < aLimit &&
(byte & 0x80) != 0x80 &&
shift < 57)
{
byte = static_cast<PRInt64>(*p);
n |= ((byte & 0x7f) << shift);
shift += 7;
p++;
}
return p;
}
PRBool nsSkeletonState::DecodeIndex(ogg_packet* aPacket)
{
NS_ASSERTION(aPacket->bytes >= SKELETON_4_0_MIN_INDEX_LEN,
"Index must be at least minimum size");
if (!mActive) {
return PR_FALSE;
}
PRUint32 serialno = LEUint32(aPacket->packet + INDEX_SERIALNO_OFFSET);
PRInt64 numKeyPoints = LEInt64(aPacket->packet + INDEX_NUM_KEYPOINTS_OFFSET);
PRInt64 n = 0;
PRInt64 endTime = 0, startTime = 0;
const unsigned char* p = aPacket->packet;
PRInt64 timeDenom = LEInt64(aPacket->packet + INDEX_TIME_DENOM_OFFSET);
if (timeDenom == 0) {
LOG(PR_LOG_DEBUG, ("Ogg Skeleton Index packet for stream %u has 0 "
"timestamp denominator.", serialno));
return (mActive = PR_FALSE);
}
// Extract the start time.
n = LEInt64(p + INDEX_FIRST_NUMER_OFFSET);
PRInt64 t;
if (!MulOverflow(n, 1000, t)) {
return (mActive = PR_FALSE);
} else {
startTime = t / timeDenom;
}
// Extract the end time.
n = LEInt64(p + INDEX_LAST_NUMER_OFFSET);
if (!MulOverflow(n, 1000, t)) {
return (mActive = PR_FALSE);
} else {
endTime = t / timeDenom;
}
// Check the numKeyPoints value read, ensure we're not going to run out of
// memory while trying to decode the index packet.
PRInt64 minPacketSize;
if (!MulOverflow(numKeyPoints, MIN_KEY_POINT_SIZE, minPacketSize) ||
!AddOverflow(INDEX_KEYPOINT_OFFSET, minPacketSize, minPacketSize))
{
return (mActive = PR_FALSE);
}
PRInt64 sizeofIndex = aPacket->bytes - INDEX_KEYPOINT_OFFSET;
PRInt64 maxNumKeyPoints = sizeofIndex / MIN_KEY_POINT_SIZE;
if (aPacket->bytes < minPacketSize ||
numKeyPoints > maxNumKeyPoints ||
numKeyPoints < 0)
{
// Packet size is less than the theoretical minimum size, or the packet is
// claiming to store more keypoints than it's capable of storing. This means
// that the numKeyPoints field is too large or small for the packet to
// possibly contain as many packets as it claims to, so the numKeyPoints
// field is possibly malicious. Don't try decoding this index, we may run
// out of memory.
LOG(PR_LOG_DEBUG, ("Possibly malicious number of key points reported "
"(%lld) in index packet for stream %u.",
numKeyPoints,
serialno));
return (mActive = PR_FALSE);
}
nsAutoPtr<nsKeyFrameIndex> keyPoints(new nsKeyFrameIndex(startTime, endTime));
p = aPacket->packet + INDEX_KEYPOINT_OFFSET;
const unsigned char* limit = aPacket->packet + aPacket->bytes;
PRInt64 numKeyPointsRead = 0;
PRInt64 offset = 0;
PRInt64 time = 0;
while (p < limit &&
numKeyPointsRead < numKeyPoints)
{
PRInt64 delta = 0;
p = ReadVariableLengthInt(p, limit, delta);
if (p == limit ||
!AddOverflow(offset, delta, offset) ||
offset > mLength ||
offset < 0)
{
return (mActive = PR_FALSE);
}
p = ReadVariableLengthInt(p, limit, delta);
if (!AddOverflow(time, delta, time) ||
time > endTime ||
time < startTime)
{
return (mActive = PR_FALSE);
}
PRInt64 timeMs = 0;
if (!MulOverflow(time, 1000, timeMs))
return mActive = PR_FALSE;
timeMs /= timeDenom;
keyPoints->Add(offset, timeMs);
numKeyPointsRead++;
}
PRInt32 keyPointsRead = keyPoints->Length();
if (keyPointsRead > 0) {
mIndex.Put(serialno, keyPoints.forget());
}
LOG(PR_LOG_DEBUG, ("Loaded %d keypoints for Skeleton on stream %u",
keyPointsRead, serialno));
return PR_TRUE;
}
nsresult nsSkeletonState::IndexedSeekTargetForTrack(PRUint32 aSerialno,
PRInt64 aTarget,
nsKeyPoint& aResult)
{
nsKeyFrameIndex* index = nsnull;
mIndex.Get(aSerialno, &index);
if (!index ||
index->Length() == 0 ||
aTarget < index->mStartTime ||
aTarget > index->mEndTime)
{
return NS_ERROR_FAILURE;
}
// Binary search to find the last key point with time less than target.
int start = 0;
int end = index->Length() - 1;
while (end > start) {
int mid = start + ((end - start + 1) >> 1);
if (index->Get(mid).mTime == aTarget) {
start = mid;
break;
} else if (index->Get(mid).mTime < aTarget) {
start = mid;
} else {
end = mid - 1;
}
}
aResult = index->Get(start);
NS_ASSERTION(aResult.mTime <= aTarget, "Result should have time <= target");
return NS_OK;
}
nsresult nsSkeletonState::IndexedSeekTarget(PRInt64 aTarget,
nsTArray<PRUint32>& aTracks,
nsSeekTarget& aResult)
{
if (!mActive || mVersion < SKELETON_VERSION(4,0)) {
return NS_ERROR_FAILURE;
}
// Loop over all requested tracks' indexes, and get the keypoint for that
// seek target. Record the keypoint with the lowest offset, this will be
// our seek result. User must seek to the one with lowest offset to ensure we
// pass "keyframes" on all tracks when we decode forwards to the seek target.
nsSeekTarget r;
for (PRUint32 i=0; i<aTracks.Length(); i++) {
nsKeyPoint k;
if (NS_SUCCEEDED(IndexedSeekTargetForTrack(aTracks[i], aTarget, k)) &&
k.mOffset < r.mKeyPoint.mOffset)
{
r.mKeyPoint = k;
r.mSerial = aTracks[i];
}
}
if (r.IsNull()) {
return NS_ERROR_FAILURE;
}
LOG(PR_LOG_DEBUG, ("Indexed seek target for time %lld is offset %lld",
aTarget, r.mKeyPoint.mOffset));
aResult = r;
return NS_OK;
}
nsresult nsSkeletonState::GetDuration(const nsTArray<PRUint32>& aTracks,
PRInt64& aDuration)
{
if (!mActive ||
mVersion < SKELETON_VERSION(4,0) ||
!HasIndex() ||
aTracks.Length() == 0)
{
return NS_ERROR_FAILURE;
}
PRInt64 endTime = PR_INT64_MIN;
PRInt64 startTime = PR_INT64_MAX;
for (PRUint32 i=0; i<aTracks.Length(); i++) {
nsKeyFrameIndex* index = nsnull;
mIndex.Get(aTracks[i], &index);
if (!index) {
// Can't get the timestamps for one of the required tracks, fail.
return NS_ERROR_FAILURE;
}
if (index->mEndTime > endTime) {
endTime = index->mEndTime;
}
if (index->mStartTime < startTime) {
startTime = index->mStartTime;
}
}
NS_ASSERTION(endTime > startTime, "Duration must be positive");
return AddOverflow(endTime, -startTime, aDuration) ? NS_OK : NS_ERROR_FAILURE;
}
PRBool nsSkeletonState::DecodeHeader(ogg_packet* aPacket)
{
if (IsSkeletonBOS(aPacket)) {
PRUint16 verMajor = LEUint16(aPacket->packet + SKELETON_VERSION_MAJOR_OFFSET);
PRUint16 verMinor = LEUint16(aPacket->packet + SKELETON_VERSION_MINOR_OFFSET);
mVersion = SKELETON_VERSION(verMajor, verMinor);
if (mVersion < SKELETON_VERSION(4,0) ||
mVersion >= SKELETON_VERSION(5,0) ||
aPacket->bytes < SKELETON_4_0_MIN_HEADER_LEN)
{
// We can only care to parse Skeleton version 4.0+.
mActive = PR_FALSE;
return mDoneReadingHeaders = PR_TRUE;
}
// Extract the segment length.
mLength = LEInt64(aPacket->packet + SKELETON_FILE_LENGTH_OFFSET);
LOG(PR_LOG_DEBUG, ("Skeleton segment length: %lld", mLength));
// Initialize the serianlno-to-index map.
PRBool init = mIndex.Init();
if (!init) {
NS_WARNING("Failed to initialize Ogg skeleton serialno-to-index map");
mActive = PR_FALSE;
return mDoneReadingHeaders = PR_TRUE;
}
mActive = PR_TRUE;
} else if (IsSkeletonIndex(aPacket) && mVersion >= SKELETON_VERSION(4,0)) {
if (!DecodeIndex(aPacket)) {
// Failed to parse index, or invalid/hostile index. DecodeIndex() will
// have deactivated the track.
return mDoneReadingHeaders = PR_TRUE;
}
} else if (aPacket->e_o_s) {
mDoneReadingHeaders = PR_TRUE;
}
return mDoneReadingHeaders;
}