зеркало из https://github.com/mozilla/pjs.git
1068 строки
21 KiB
XML
1068 строки
21 KiB
XML
<?xml version="1.0"?>
|
|
<!-- ***** BEGIN LICENSE BLOCK *****
|
|
- Version: MPL 1.1/GPL 2.0/LGPL 2.1
|
|
-
|
|
- The contents of this file are subject to the Mozilla Public License Version
|
|
- 1.1 (the "License"); you may not use this file except in compliance with
|
|
- the License. You may obtain a copy of the License at
|
|
- http://www.mozilla.org/MPL/
|
|
-
|
|
- Software distributed under the License is distributed on an "AS IS" basis,
|
|
- WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
|
|
- for the specific language governing rights and limitations under the
|
|
- License.
|
|
-
|
|
- The Original Code is Mozilla MathML Project.
|
|
-
|
|
- The Initial Developer of the Original Code is
|
|
- The University of Queensland.
|
|
- Portions created by the Initial Developer are Copyright (C) 1999
|
|
- the Initial Developer. All Rights Reserved.
|
|
-
|
|
- Contributor(s):
|
|
- Roger B. Sidje <rbs@maths.uq.edu.au>
|
|
-
|
|
- Alternatively, the contents of this file may be used under the terms of
|
|
- either the GNU General Public License Version 2 or later (the "GPL"), or
|
|
- the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
|
|
- in which case the provisions of the GPL or the LGPL are applicable instead
|
|
- of those above. If you wish to allow use of your version of this file only
|
|
- under the terms of either the GPL or the LGPL, and not to allow others to
|
|
- use your version of this file under the terms of the MPL, indicate your
|
|
- decision by deleting the provisions above and replace them with the notice
|
|
- and other provisions required by the LGPL or the GPL. If you do not delete
|
|
- the provisions above, a recipient may use your version of this file under
|
|
- the terms of any one of the MPL, the GPL or the LGPL.
|
|
-
|
|
- ***** END LICENSE BLOCK ***** -->
|
|
<!DOCTYPE html PUBLIC
|
|
"-//W3C//DTD XHTML 1.1 plus MathML 2.0//EN"
|
|
"http://www.w3.org/TR/MathML2/dtd/xhtml-math11-f.dtd"
|
|
[
|
|
<!ENTITY mathml "http://www.w3.org/1998/Math/MathML">
|
|
]>
|
|
<html xmlns="http://www.w3.org/1999/xhtml">
|
|
|
|
<head>
|
|
<title>Various examples of MathML</title>
|
|
<style>
|
|
maction {
|
|
background-color: yellow;
|
|
}
|
|
maction:hover {
|
|
outline: 1px dotted black;
|
|
/* border: 1px solid black; */
|
|
}
|
|
maction[actiontype="restyle#background"] {
|
|
background-color: #3C6;
|
|
border: 1px dotted red;
|
|
}
|
|
maction[actiontype="restyle#zoom"] {
|
|
font-size: 40pt;
|
|
}
|
|
</style>
|
|
</head>
|
|
<body>
|
|
|
|
Click to toggle between expressions, and watch the satus line onmouseover/onmouseout:
|
|
<br />
|
|
|
|
<math mode="display" xmlns="&mathml;">
|
|
<maction actiontype="toggle">
|
|
<maction actiontype="statusline#First Expression">
|
|
<mi>statusline#First Expression</mi>
|
|
</maction>
|
|
|
|
<maction actiontype="statusline#Second Expression">
|
|
<mi>statusline#Second Expression</mi>
|
|
</maction>
|
|
|
|
|
|
<maction actiontype="statusline#And so on..">
|
|
<maction actiontype="restyle#background">
|
|
<mi>statusline#And so on...</mi>
|
|
</maction>
|
|
</maction>
|
|
</maction>
|
|
</math>
|
|
|
|
<br />
|
|
Click the expression below to zoom-in/zoom-out using RESTYLE:
|
|
<br />
|
|
|
|
<math mode="display" xmlns="&mathml;">
|
|
<maction actiontype="restyle#zoom">
|
|
<mrow>
|
|
<mi>π</mi>
|
|
<mo>=</mo>
|
|
<mn>2</mn><mi>i</mi>
|
|
<mo>⁢</mo>
|
|
<mo>Log</mo>
|
|
<mfrac>
|
|
<mrow><mn>1</mn><mo>-</mo><mi>i</mi></mrow>
|
|
<mrow><mn>1</mn><mo>+</mo><mi>i</mi></mrow>
|
|
</mfrac>
|
|
</mrow>
|
|
</maction>
|
|
</math>
|
|
|
|
<br />
|
|
Click the expression below to see several definitions of pi:
|
|
<br />
|
|
|
|
<math mode="display" xmlns="&mathml;">
|
|
<mrow>
|
|
<maction actiontype="toggle">
|
|
|
|
<mrow>
|
|
<mi>π</mi>
|
|
<mo>=</mo>
|
|
<mn>3.14159265358</mn><mo fontweight="bold">...</mo>
|
|
</mrow>
|
|
|
|
<mrow>
|
|
<mi>π</mi>
|
|
<mo>=</mo>
|
|
<mn>2</mn><mi>i</mi>
|
|
<mo>⁢</mo>
|
|
<mo>Log</mo>
|
|
<mfrac>
|
|
<mrow><mn>1</mn><mo>-</mo><mi>i</mi></mrow>
|
|
<mrow><mn>1</mn><mo>+</mo><mi>i</mi></mrow>
|
|
</mfrac>
|
|
</mrow>
|
|
|
|
<mrow>
|
|
<mi>π</mi>
|
|
<mo>=</mo>
|
|
<mn>2</mn>
|
|
<mphantom><mo>.</mo></mphantom>
|
|
<mfrac>
|
|
<mn>2</mn>
|
|
<msqrt>
|
|
<mn>2</mn>
|
|
</msqrt>
|
|
</mfrac>
|
|
<mphantom><mo>.</mo></mphantom>
|
|
<mfrac>
|
|
<mn>2</mn>
|
|
<msqrt>
|
|
<mn>2</mn>
|
|
<mo>+</mo>
|
|
<msqrt>
|
|
<mn>2</mn>
|
|
</msqrt>
|
|
</msqrt>
|
|
</mfrac>
|
|
<mphantom><mo>.</mo></mphantom>
|
|
<mfrac>
|
|
<mn>2</mn>
|
|
<msqrt>
|
|
<mn>2</mn>
|
|
<mo>+</mo>
|
|
<msqrt>
|
|
<mn>2</mn>
|
|
<mo>+</mo>
|
|
<msqrt>
|
|
<mn>2</mn>
|
|
</msqrt>
|
|
</msqrt>
|
|
</msqrt>
|
|
</mfrac>
|
|
<mo fontweight="bold">...</mo>
|
|
</mrow>
|
|
|
|
<mrow>
|
|
<mfrac>
|
|
<mi>π</mi>
|
|
<mn>4</mn>
|
|
</mfrac>
|
|
<mo>=</mo>
|
|
<mfrac>
|
|
<mstyle scriptlevel="0">
|
|
<mn>1</mn>
|
|
</mstyle>
|
|
<mstyle scriptlevel="0">
|
|
<mrow>
|
|
<mn>2</mn>
|
|
<mo>+</mo>
|
|
<mfrac>
|
|
<mstyle scriptlevel="0">
|
|
<msup><mn>1</mn><mn>2</mn></msup>
|
|
</mstyle>
|
|
<mstyle scriptlevel="0">
|
|
<mrow>
|
|
<mn>2</mn>
|
|
<mo>+</mo>
|
|
<mfrac>
|
|
<mstyle scriptlevel="0">
|
|
<msup><mn>3</mn><mn>2</mn></msup>
|
|
</mstyle>
|
|
<mstyle scriptlevel="0">
|
|
<mrow>
|
|
<mn>2</mn>
|
|
<mo>+</mo>
|
|
<mfrac>
|
|
<mstyle scriptlevel="0">
|
|
<msup><mn>5</mn><mn>2</mn></msup>
|
|
</mstyle>
|
|
<mstyle scriptlevel="0">
|
|
<mrow>
|
|
<mn>2</mn>
|
|
<mo>+</mo>
|
|
<mfrac>
|
|
<mstyle scriptlevel="0">
|
|
<msup><mn>7</mn><mn>2</mn></msup>
|
|
</mstyle>
|
|
<mstyle scriptlevel="0">
|
|
<mn>2</mn><mo>+</mo><mo fontweight="bold">...</mo>
|
|
</mstyle>
|
|
</mfrac>
|
|
</mrow>
|
|
</mstyle>
|
|
</mfrac>
|
|
</mrow>
|
|
</mstyle>
|
|
</mfrac>
|
|
</mrow>
|
|
</mstyle>
|
|
</mfrac>
|
|
</mrow>
|
|
</mstyle>
|
|
</mfrac>
|
|
</mrow>
|
|
</maction>
|
|
</mrow>
|
|
</math>
|
|
|
|
<br />
|
|
|
|
<math xmlns="&mathml;">
|
|
<!-- {{} \atop i} A {p \atop q} -->
|
|
<mmultiscripts>
|
|
<mi fontweight="bold" fontsize="large">A</mi>
|
|
<mi>q</mi><mi>p</mi>
|
|
<mprescripts/>
|
|
<mi>i</mi><none/>
|
|
</mmultiscripts>
|
|
|
|
<br />
|
|
|
|
<!-- {3 \atop k} R {1 \atop i} {2 \atop j} -->
|
|
<mmultiscripts>
|
|
<mi fontweight="bold">R</mi>
|
|
<mi>i</mi><mi>1</mi>
|
|
<mi>j</mi><mn>230</mn>
|
|
<mi>j</mi><msup><mn>230</mn><mi>y</mi></msup>
|
|
<mi>j</mi><mn>230</mn>
|
|
<mprescripts/>
|
|
<mi>k</mi><mi>3</mi>
|
|
<mi>k</mi><mi>3</mi>
|
|
</mmultiscripts>
|
|
|
|
|
|
<!-- \int_a^b f(x)dx -->
|
|
<msubsup>
|
|
<mo>∫</mo>
|
|
<mi>a</mi>
|
|
<mi>b</mi>
|
|
</msubsup>
|
|
<mrow>
|
|
<mi>f</mi>
|
|
<mo>(</mo>
|
|
<mi>x</mi>
|
|
<mo>)</mo>
|
|
<mo>d</mo>
|
|
<mi>x</mi>
|
|
</mrow>
|
|
|
|
<!-- \frac{\partial}{\partial x}F(x,y) + \frac{\partial}{\partial y}F(x,y) -->
|
|
|
|
<mrow>
|
|
<mfrac>
|
|
<mo>∂</mo>
|
|
<mrow>
|
|
<mo>∂</mo>
|
|
<mi>x</mi>
|
|
</mrow>
|
|
</mfrac>
|
|
|
|
<mrow>
|
|
<mi>F</mi>
|
|
<mo>(</mo>
|
|
<mi>x</mi>
|
|
<mo>,</mo>
|
|
<mi>y</mi>
|
|
<mo>)</mo>
|
|
</mrow>
|
|
|
|
<mo>+</mo>
|
|
|
|
<mfrac>
|
|
<mo>∂</mo>
|
|
<mrow>
|
|
<mo>∂</mo>
|
|
<mi>y</mi>
|
|
</mrow>
|
|
</mfrac>
|
|
|
|
<mrow>
|
|
<mi>F</mi>
|
|
<mo>(</mo>
|
|
<mi>x</mi>
|
|
<mo>,</mo>
|
|
<mi>y</mi>
|
|
<mo>)</mo>
|
|
</mrow>
|
|
</mrow>
|
|
|
|
<mo>∃</mo>
|
|
<mi>a</mi>
|
|
|
|
<!-- a_b -->
|
|
<msub>
|
|
<mi>a</mi>
|
|
<mi>b</mi>
|
|
</msub>
|
|
|
|
<!-- a_i -->
|
|
<msub>
|
|
<mi>a</mi>
|
|
<mi>i</mi>
|
|
</msub>
|
|
|
|
<!-- A_{I_{k}} -->
|
|
|
|
|
|
<mrow>
|
|
<mi>A</mi>
|
|
<mi>A</mi>
|
|
</mrow>
|
|
|
|
<msub>
|
|
<mi>A</mi>
|
|
<msub>
|
|
<mi>A</mi>
|
|
<msub>
|
|
<mi>A</mi>
|
|
<mi>A</mi>
|
|
</msub>
|
|
</msub>
|
|
</msub>
|
|
|
|
<!-- d^b -->
|
|
<msup>
|
|
<mi>d</mi>
|
|
<mi>b</mi>
|
|
</msup>
|
|
|
|
<!-- 2^{a_x} -->
|
|
<msup>
|
|
<mn>2</mn>
|
|
<msub>
|
|
<mi>a</mi>
|
|
<mi>x</mi>
|
|
</msub>
|
|
</msup>
|
|
|
|
<!-- 2^{2^x} -->
|
|
<msup>
|
|
<msup>
|
|
<mn>2</mn>
|
|
<mn>2</mn>
|
|
</msup>
|
|
<mi>x</mi>
|
|
</msup>
|
|
|
|
<!-- {\left( \frac{1}{2} \right) }^{y^{a_x}} -->
|
|
|
|
<msup>
|
|
<mrow>
|
|
<mo>(</mo>
|
|
<mfrac>
|
|
<mn>1</mn>
|
|
<mn>2</mn>
|
|
</mfrac>
|
|
<mo>)</mo>
|
|
</mrow>
|
|
<msup>
|
|
<mi>y</mi>
|
|
<msub>
|
|
<mi>a</mi>
|
|
<mi>x</mi>
|
|
</msub>
|
|
</msup>
|
|
</msup>
|
|
|
|
|
|
<munder>
|
|
<mi>abcd</mi>
|
|
<mi>un</mi>
|
|
</munder>
|
|
|
|
<mover>
|
|
<mi>abcd</mi>
|
|
<mi>ov</mi>
|
|
</mover>
|
|
<munderover>
|
|
<mi>abcd</mi>
|
|
<mi>under</mi>
|
|
<mi>over</mi>
|
|
</munderover>
|
|
|
|
|
|
<!-- a_b^c -->
|
|
<msubsup>
|
|
<mi>a</mi>
|
|
<mi>p</mi>
|
|
<mi>q</mi>
|
|
</msubsup>
|
|
|
|
<!-- a_{b+c}^x -->
|
|
<msubsup>
|
|
<mi>a</mi>
|
|
<mrow>
|
|
<mi>a</mi>
|
|
<mo>+</mo>
|
|
<mi>b</mi>
|
|
</mrow>
|
|
<mi>x</mi>
|
|
</msubsup>
|
|
|
|
|
|
<!-- d^{ \left( \frac{a}{b} \right) } -->
|
|
|
|
<msup>
|
|
<mi>d</mi>
|
|
<mrow>
|
|
<mo>(</mo>
|
|
<mfrac>
|
|
<mi>a</mi>
|
|
<mi>b</mi>
|
|
</mfrac>
|
|
<mo>)</mo>
|
|
</mrow>
|
|
</msup>
|
|
|
|
|
|
<!-- \frac{d*b^{ \left( \frac{i+j}{n!} \right) } + p_y*q}
|
|
{p^x*b_x + \frac{a+c}{d}} -->
|
|
|
|
<mfrac>
|
|
<mrow>
|
|
<mi>d</mi>
|
|
<mo>*</mo>
|
|
<msup>
|
|
<mi>T</mi>
|
|
<mrow>
|
|
<mo>(</mo>
|
|
<mfrac>
|
|
<mrow>
|
|
<mi>i</mi>
|
|
<mo>+</mo>
|
|
<mi>j</mi>
|
|
</mrow>
|
|
<mi>n</mi>
|
|
</mfrac>
|
|
<mo>)</mo>
|
|
</mrow>
|
|
</msup>
|
|
<mo>+</mo>
|
|
<msub>
|
|
<mi>p</mi>
|
|
<mi>y</mi>
|
|
</msub>
|
|
<mo>*</mo>
|
|
<mi>q</mi>
|
|
</mrow>
|
|
<mrow>
|
|
<msup>
|
|
<mi>p</mi>
|
|
<mi>x</mi>
|
|
</msup>
|
|
<mo>*</mo>
|
|
<msub>
|
|
<mi>b</mi>
|
|
<mi>x</mi>
|
|
</msub>
|
|
<mo>+</mo>
|
|
<mfrac>
|
|
<mrow>
|
|
<mi>a</mi>
|
|
<mo>+</mo>
|
|
<mi>c</mi>
|
|
</mrow>
|
|
<mi>d</mi>
|
|
</mfrac>
|
|
</mrow>
|
|
</mfrac>
|
|
|
|
|
|
<ms>This is a text in ms</ms>
|
|
|
|
<!-- x^2 + 4*x + \frac{p}{q} = 0 -->
|
|
|
|
<mrow>
|
|
<mrow>
|
|
<msup>
|
|
<mi>x</mi>
|
|
<mn>2</mn>
|
|
</msup>
|
|
<mo>+</mo>
|
|
<mrow>
|
|
<mn>4</mn>
|
|
<mo>*</mo>
|
|
<mi>x</mi>
|
|
</mrow>
|
|
<mo>+</mo>
|
|
<mfrac>
|
|
<mi>p</mi>
|
|
<mi>q</mi>
|
|
</mfrac>
|
|
</mrow>
|
|
<mo>=</mo>
|
|
<mn>0</mn>
|
|
</mrow>
|
|
|
|
|
|
<mtext>This is a text in mtext</mtext>
|
|
<merror>This is a text in merror</merror>
|
|
|
|
<mrow>
|
|
<msub>
|
|
<mi>a</mi>
|
|
<mn>0</mn>
|
|
</msub>
|
|
<mo>+</mo>
|
|
<mfrac>
|
|
<mstyle scriptlevel="0">
|
|
<mn>1</mn>
|
|
</mstyle>
|
|
<mstyle scriptlevel="0">
|
|
<mrow>
|
|
<msub>
|
|
<mi>a</mi>
|
|
<mn>1</mn>
|
|
</msub>
|
|
<mo>+</mo>
|
|
<mfrac>
|
|
<mstyle scriptlevel="0">
|
|
<mn>1</mn>
|
|
</mstyle>
|
|
<mstyle scriptlevel="0">
|
|
<mrow>
|
|
<msub>
|
|
<mi>a</mi>
|
|
<mn>2</mn>
|
|
</msub>
|
|
<mo>+</mo>
|
|
<mfrac>
|
|
<mstyle scriptlevel="0">
|
|
<mn>1</mn>
|
|
</mstyle>
|
|
<mstyle scriptlevel="0">
|
|
<msub>
|
|
<mi>a</mi>
|
|
<mn>3</mn>
|
|
</msub>
|
|
</mstyle>
|
|
</mfrac>
|
|
</mrow>
|
|
</mstyle>
|
|
</mfrac>
|
|
</mrow>
|
|
</mstyle>
|
|
</mfrac>
|
|
</mrow>
|
|
|
|
<mo>;</mo>
|
|
|
|
<mrow>
|
|
<msub>
|
|
<mi>c</mi>
|
|
<mrow>
|
|
<mi>i</mi><mo>+</mo><mi>j</mi>
|
|
</mrow>
|
|
</msub>
|
|
<mo>←</mo>
|
|
<mrow>
|
|
<msub><mi>a</mi><mi>i</mi></msub>
|
|
<mo>*</mo>
|
|
<msub><mi>b</mi><mi>j</mi></msub>
|
|
</mrow>
|
|
</mrow>
|
|
|
|
<br />
|
|
|
|
<mrow>
|
|
<msup>
|
|
<mi>e</mi>
|
|
<mrow>
|
|
<mi>i</mi>
|
|
<mo>π</mo>
|
|
</mrow>
|
|
</msup>
|
|
<mo>+</mo>
|
|
<mn>1</mn>
|
|
<mo>=</mo>
|
|
<mn>0</mn>
|
|
|
|
<mo>;</mo>
|
|
</mrow>
|
|
|
|
<mrow>
|
|
<mi>G</mi>
|
|
<mo>=</mo>
|
|
<mfrac>
|
|
<mrow>
|
|
<mi>F</mi>
|
|
<msup><mi>d</mi><mn>2</mn></msup>
|
|
</mrow>
|
|
<mrow>
|
|
<msub><mi>m</mi><mn>1</mn></msub>
|
|
<msub><mi>m</mi><mn>2</mn></msub>
|
|
</mrow>
|
|
</mfrac>
|
|
</mrow>
|
|
|
|
<mo>;</mo>
|
|
|
|
<mrow>
|
|
<mi>t</mi><mo>+=</mo><mi>dt</mi>
|
|
</mrow>
|
|
|
|
<br />
|
|
|
|
|
|
|
|
<mrow>
|
|
<mi>x</mi>
|
|
<mo>=</mo>
|
|
<mi>a</mi>
|
|
<mo>*</mo>
|
|
<mi>b</mi>
|
|
<mo>+</mo>
|
|
<mrow>
|
|
<mo stretchy="false">(</mo>
|
|
<mfrac linethickness="2">
|
|
<mrow>
|
|
<mi>aa</mi>
|
|
<mo>+</mo>
|
|
<mi>b</mi>
|
|
</mrow>
|
|
<mfrac>
|
|
<mi>xy</mi>
|
|
<mi>z</mi>
|
|
</mfrac>
|
|
</mfrac>
|
|
<mo>)</mo>
|
|
</mrow>
|
|
</mrow>
|
|
|
|
<mfrac>
|
|
<mfrac>
|
|
<mi>x</mi>
|
|
<mi>z</mi>
|
|
</mfrac>
|
|
<mstyle scriptlevel="-3">
|
|
<mfrac>
|
|
<mi>dy</mi>
|
|
<mstyle scriptlevel="1">
|
|
<mi>z</mi>
|
|
</mstyle>
|
|
</mfrac>
|
|
</mstyle>
|
|
</mfrac>
|
|
|
|
|
|
<mfrac>
|
|
<mstyle scriptlevel="0">
|
|
<mi>x</mi>
|
|
</mstyle>
|
|
<mi>z</mi>
|
|
</mfrac>
|
|
|
|
<mstyle scriptlevel="-4">
|
|
<mi>x</mi>
|
|
</mstyle>
|
|
|
|
</math>
|
|
|
|
<math xmlns="&mathml;" mode="display">
|
|
<mrow>
|
|
<msub>
|
|
<mi>Z</mi>
|
|
<mi>α</mi>
|
|
</msub>
|
|
<mrow>
|
|
<mo>(</mo>
|
|
<mi>f</mi>
|
|
<mo>)</mo>
|
|
</mrow>
|
|
<mo>=</mo>
|
|
|
|
<mfrac>
|
|
<mn>1</mn>
|
|
<mrow>
|
|
<mn>2</mn>
|
|
<mi>i</mi>
|
|
<mo> </mo>
|
|
<mi>cos</mi>
|
|
<mo>(</mo>
|
|
<mfrac>
|
|
<mrow>
|
|
<mi>α</mi>
|
|
<mi>π</mi>
|
|
</mrow>
|
|
<mn>2</mn>
|
|
</mfrac>
|
|
<mo>)</mo>
|
|
</mrow>
|
|
</mfrac>
|
|
|
|
<mrow>
|
|
<msub>
|
|
<mo>∫</mo>
|
|
<mi>C</mi>
|
|
</msub>
|
|
<mfrac>
|
|
<mrow>
|
|
<mi>f</mi>
|
|
<mo stretchy='false'>(</mo>
|
|
<mi>i</mi>
|
|
<mi>z</mi>
|
|
<mo stretchy='false'>)</mo>
|
|
<msup>
|
|
<mrow>
|
|
<mo>(</mo>
|
|
<mo>-</mo>
|
|
<mi>z</mi>
|
|
<mo>)</mo>
|
|
</mrow>
|
|
<mi>α</mi>
|
|
</msup>
|
|
</mrow>
|
|
<mrow>
|
|
<msup>
|
|
<mi>e</mi>
|
|
<mrow>
|
|
<mn>2</mn>
|
|
<mi>π</mi>
|
|
<mi>z</mi>
|
|
</mrow>
|
|
</msup>
|
|
<mo>-</mo>
|
|
<mn>1</mn>
|
|
</mrow>
|
|
</mfrac>
|
|
</mrow>
|
|
<mi>dz</mi>
|
|
</mrow>
|
|
</math>
|
|
|
|
<br />
|
|
|
|
<br />
|
|
|
|
And this is from the "Thomson scattering theory"
|
|
|
|
<math xmlns="&mathml;" mode="display">
|
|
<mrow>
|
|
<mtable align='left'>
|
|
|
|
<mtr>
|
|
<mtd columnalign='left'>
|
|
<mrow>
|
|
<mfrac>
|
|
<mrow>
|
|
<msup>
|
|
<mi>d</mi>
|
|
<mn>2</mn>
|
|
</msup>
|
|
<mi>P</mi>
|
|
</mrow>
|
|
|
|
<mrow>
|
|
<mi>d</mi>
|
|
<msub>
|
|
<mi>Ω</mi>
|
|
<mi>s</mi>
|
|
</msub>
|
|
<mo> </mo>
|
|
<mi>d</mi>
|
|
<msub>
|
|
<mi>ω</mi>
|
|
<mi>s</mi>
|
|
</msub>
|
|
</mrow>
|
|
</mfrac>
|
|
</mrow>
|
|
</mtd>
|
|
|
|
<mtd columnalign='left'>
|
|
<mrow>
|
|
<mo>=</mo>
|
|
</mrow>
|
|
</mtd>
|
|
|
|
<mtd columnalign='left'>
|
|
<mrow>
|
|
<msubsup>
|
|
<mi>r</mi>
|
|
<mi>e</mi>
|
|
<mn>2</mn>
|
|
</msubsup>
|
|
|
|
<msub>
|
|
<mo>∫</mo>
|
|
<mi>V</mi>
|
|
</msub>
|
|
|
|
<mo lspace='0'><</mo>
|
|
<msub>
|
|
<mi>S</mi>
|
|
<mi>i</mi>
|
|
</msub>
|
|
<mo>></mo>
|
|
|
|
<msup>
|
|
<mi>d</mi>
|
|
<mn>3</mn>
|
|
</msup>
|
|
|
|
<mi fontweight='bold'>r</mi>
|
|
<mo>∫</mo>
|
|
|
|
<msup>
|
|
<mrow>
|
|
<mo lspace='0' rspace='0' symmetric='false'>|</mo>
|
|
|
|
<mover accent='true'>
|
|
<mi fontweight='bold'>e</mi>
|
|
<mo>^</mo>
|
|
</mover>
|
|
|
|
<mo>.</mo>
|
|
|
|
<mover accent='true'>
|
|
<mo>Π</mo>
|
|
<mo>↔</mo>
|
|
</mover>
|
|
|
|
<mo>.</mo>
|
|
|
|
<mover accent='true'>
|
|
<mi fontweight='bold'>e</mi>
|
|
<mo>^</mo>
|
|
</mover>
|
|
|
|
<mo lspace='0' rspace='0' symmetric='false'>|</mo>
|
|
</mrow>
|
|
<mn>2</mn>
|
|
</msup>
|
|
|
|
<msup>
|
|
<mi>κ</mi>
|
|
<mn>2</mn>
|
|
</msup>
|
|
|
|
<mi>f</mi>
|
|
<mo> </mo>
|
|
<mi>δ</mi>
|
|
|
|
<mrow>
|
|
<mo stretchy='false'>(</mo>
|
|
<mi fontweight='bold'>k</mi>
|
|
<mo>.</mo>
|
|
<mi fontweight='bold'>v</mi>
|
|
<mo>-</mo>
|
|
<mi>ω</mi>
|
|
<mo stretchy='false'>)</mo>
|
|
</mrow>
|
|
|
|
<msup>
|
|
<mi>d</mi>
|
|
<mn>3</mn>
|
|
</msup>
|
|
|
|
<mi fontweight='bold'>v</mi>
|
|
</mrow>
|
|
</mtd>
|
|
</mtr>
|
|
|
|
<mtr>
|
|
<mtd></mtd>
|
|
|
|
<mtd columnalign='left'>
|
|
<mrow>
|
|
<mo>=</mo>
|
|
</mrow>
|
|
</mtd>
|
|
|
|
<mtd columnalign='left'>
|
|
<mrow>
|
|
<msubsup>
|
|
<mi>r</mi>
|
|
<mi>e</mi>
|
|
<mn>2</mn>
|
|
</msubsup>
|
|
|
|
<msub>
|
|
<mo>∫</mo>
|
|
<mi>V</mi>
|
|
</msub>
|
|
|
|
<mo lspace='0'><</mo>
|
|
<msub>
|
|
<mi>S</mi>
|
|
<mi>i</mi>
|
|
</msub>
|
|
<mo>></mo>
|
|
|
|
<msup>
|
|
<mi>d</mi>
|
|
<mn>3</mn>
|
|
</msup>
|
|
|
|
<mi fontweight='bold'>r</mi>
|
|
<mo>∫</mo>
|
|
|
|
<msup>
|
|
<mrow>
|
|
<mo symmetric='false' lspace='0' rspace='0'>|</mo>
|
|
<mn>1</mn>
|
|
<mo>-</mo>
|
|
|
|
<mfrac>
|
|
<mrow>
|
|
<mo stretchy='false'>(</mo>
|
|
<mn>1</mn>
|
|
<mo>-</mo>
|
|
<mover accent='true'>
|
|
<mi fontweight='bold'>s</mi>
|
|
<mo>^</mo>
|
|
</mover>
|
|
<mo>.</mo>
|
|
<mover accent='true'>
|
|
<mi fontweight='bold'>ı</mi>
|
|
<mo>^</mo>
|
|
</mover>
|
|
<mo stretchy='false'>)</mo>
|
|
</mrow>
|
|
|
|
<mrow>
|
|
<mo stretchy='false'>(</mo>
|
|
<mn>1</mn>
|
|
<mo>-</mo>
|
|
<msub>
|
|
<mi>β</mi>
|
|
<mi>i</mi>
|
|
</msub>
|
|
<mo stretchy='false'>)</mo>
|
|
<mo stretchy='false'>(</mo>
|
|
<mn>1</mn>
|
|
<mo>-</mo>
|
|
<msub>
|
|
<mi>β</mi>
|
|
<mi>s</mi>
|
|
</msub>
|
|
<mo stretchy='false'>)</mo>
|
|
</mrow>
|
|
</mfrac>
|
|
|
|
<msubsup>
|
|
<mi>β</mi>
|
|
<mi>e</mi>
|
|
<mn>2</mn>
|
|
</msubsup>
|
|
|
|
<mo symmetric='false' lspace='0' rspace='0'>|</mo>
|
|
</mrow>
|
|
<mn>2</mn>
|
|
</msup>
|
|
|
|
<mspace width="thinmathspace"/>
|
|
|
|
<msup>
|
|
<mrow>
|
|
<mo symmetric='false' rspace='0'>|</mo>
|
|
<mfrac>
|
|
|
|
<mrow>
|
|
<mn>1</mn>
|
|
<mo>-</mo>
|
|
<msub>
|
|
<mi>β</mi>
|
|
<mi>i</mi>
|
|
</msub>
|
|
</mrow>
|
|
|
|
<mrow>
|
|
<mn>1</mn>
|
|
<mo>-</mo>
|
|
<msub>
|
|
<mi>β</mi>
|
|
<mi>s</mi>
|
|
</msub>
|
|
</mrow>
|
|
</mfrac>
|
|
|
|
<mo symmetric='false' lspace='0' rspace='0'>|</mo>
|
|
</mrow>
|
|
<mn>2</mn>
|
|
</msup>
|
|
</mrow>
|
|
</mtd>
|
|
|
|
</mtr>
|
|
|
|
<mtr>
|
|
<mtd></mtd>
|
|
<mtd></mtd>
|
|
<mtd columnalign='left'>
|
|
<mrow>
|
|
<mo>×</mo>
|
|
|
|
<mrow>
|
|
<mo stretchy='false'>(</mo>
|
|
<mn>1</mn>
|
|
<mo>-</mo>
|
|
<msup>
|
|
<mi>β</mi>
|
|
<mn>2</mn>
|
|
</msup>
|
|
<mo stretchy='false'>)</mo>
|
|
</mrow>
|
|
|
|
<mo> </mo>
|
|
<mi>f</mi>
|
|
<mo> </mo>
|
|
<mi>δ</mi>
|
|
|
|
<mrow>
|
|
<mo stretchy='false'>(</mo>
|
|
<mi fontweight='bold'>k</mi>
|
|
<mo>.</mo>
|
|
<mi fontweight='bold'>v</mi>
|
|
<mo>-</mo>
|
|
<mi>ω</mi>
|
|
<mo stretchy='false'>)</mo>
|
|
</mrow>
|
|
|
|
<msup>
|
|
<mi>d</mi>
|
|
<mn>3</mn>
|
|
</msup>
|
|
|
|
<mi fontweight='bold'>v</mi>
|
|
</mrow>
|
|
</mtd>
|
|
|
|
</mtr>
|
|
</mtable>
|
|
</mrow>
|
|
</math>
|
|
|
|
</body>
|
|
</html>
|