зеркало из https://github.com/mozilla/pluotsorbet.git
560 строки
15 KiB
JavaScript
560 строки
15 KiB
JavaScript
|
// Copyright (c) 2005 Tom Wu
|
||
|
// All Rights Reserved.
|
||
|
// See "LICENSE" for details.
|
||
|
|
||
|
// Basic JavaScript BN library - subset useful for RSA encryption.
|
||
|
|
||
|
// Bits per digit
|
||
|
var dbits;
|
||
|
|
||
|
// JavaScript engine analysis
|
||
|
var canary = 0xdeadbeefcafe;
|
||
|
var j_lm = ((canary&0xffffff)==0xefcafe);
|
||
|
|
||
|
// (public) Constructor
|
||
|
function BigInteger(a,b,c) {
|
||
|
if(a != null)
|
||
|
if("number" == typeof a) this.fromNumber(a,b,c);
|
||
|
else if(b == null && "string" != typeof a) this.fromString(a,256);
|
||
|
else this.fromString(a,b);
|
||
|
}
|
||
|
|
||
|
// return new, unset BigInteger
|
||
|
function nbi() { return new BigInteger(null); }
|
||
|
|
||
|
// am: Compute w_j += (x*this_i), propagate carries,
|
||
|
// c is initial carry, returns final carry.
|
||
|
// c < 3*dvalue, x < 2*dvalue, this_i < dvalue
|
||
|
// We need to select the fastest one that works in this environment.
|
||
|
|
||
|
// am1: use a single mult and divide to get the high bits,
|
||
|
// max digit bits should be 26 because
|
||
|
// max internal value = 2*dvalue^2-2*dvalue (< 2^53)
|
||
|
function am1(i,x,w,j,c,n) {
|
||
|
while(--n >= 0) {
|
||
|
var v = x*this[i++]+w[j]+c;
|
||
|
c = Math.floor(v/0x4000000);
|
||
|
w[j++] = v&0x3ffffff;
|
||
|
}
|
||
|
return c;
|
||
|
}
|
||
|
// am2 avoids a big mult-and-extract completely.
|
||
|
// Max digit bits should be <= 30 because we do bitwise ops
|
||
|
// on values up to 2*hdvalue^2-hdvalue-1 (< 2^31)
|
||
|
function am2(i,x,w,j,c,n) {
|
||
|
var xl = x&0x7fff, xh = x>>15;
|
||
|
while(--n >= 0) {
|
||
|
var l = this[i]&0x7fff;
|
||
|
var h = this[i++]>>15;
|
||
|
var m = xh*l+h*xl;
|
||
|
l = xl*l+((m&0x7fff)<<15)+w[j]+(c&0x3fffffff);
|
||
|
c = (l>>>30)+(m>>>15)+xh*h+(c>>>30);
|
||
|
w[j++] = l&0x3fffffff;
|
||
|
}
|
||
|
return c;
|
||
|
}
|
||
|
// Alternately, set max digit bits to 28 since some
|
||
|
// browsers slow down when dealing with 32-bit numbers.
|
||
|
function am3(i,x,w,j,c,n) {
|
||
|
var xl = x&0x3fff, xh = x>>14;
|
||
|
while(--n >= 0) {
|
||
|
var l = this[i]&0x3fff;
|
||
|
var h = this[i++]>>14;
|
||
|
var m = xh*l+h*xl;
|
||
|
l = xl*l+((m&0x3fff)<<14)+w[j]+c;
|
||
|
c = (l>>28)+(m>>14)+xh*h;
|
||
|
w[j++] = l&0xfffffff;
|
||
|
}
|
||
|
return c;
|
||
|
}
|
||
|
if(j_lm && (navigator.appName == "Microsoft Internet Explorer")) {
|
||
|
BigInteger.prototype.am = am2;
|
||
|
dbits = 30;
|
||
|
}
|
||
|
else if(j_lm && (navigator.appName != "Netscape")) {
|
||
|
BigInteger.prototype.am = am1;
|
||
|
dbits = 26;
|
||
|
}
|
||
|
else { // Mozilla/Netscape seems to prefer am3
|
||
|
BigInteger.prototype.am = am3;
|
||
|
dbits = 28;
|
||
|
}
|
||
|
|
||
|
BigInteger.prototype.DB = dbits;
|
||
|
BigInteger.prototype.DM = ((1<<dbits)-1);
|
||
|
BigInteger.prototype.DV = (1<<dbits);
|
||
|
|
||
|
var BI_FP = 52;
|
||
|
BigInteger.prototype.FV = Math.pow(2,BI_FP);
|
||
|
BigInteger.prototype.F1 = BI_FP-dbits;
|
||
|
BigInteger.prototype.F2 = 2*dbits-BI_FP;
|
||
|
|
||
|
// Digit conversions
|
||
|
var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz";
|
||
|
var BI_RC = new Array();
|
||
|
var rr,vv;
|
||
|
rr = "0".charCodeAt(0);
|
||
|
for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv;
|
||
|
rr = "a".charCodeAt(0);
|
||
|
for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
|
||
|
rr = "A".charCodeAt(0);
|
||
|
for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
|
||
|
|
||
|
function int2char(n) { return BI_RM.charAt(n); }
|
||
|
function intAt(s,i) {
|
||
|
var c = BI_RC[s.charCodeAt(i)];
|
||
|
return (c==null)?-1:c;
|
||
|
}
|
||
|
|
||
|
// (protected) copy this to r
|
||
|
function bnpCopyTo(r) {
|
||
|
for(var i = this.t-1; i >= 0; --i) r[i] = this[i];
|
||
|
r.t = this.t;
|
||
|
r.s = this.s;
|
||
|
}
|
||
|
|
||
|
// (protected) set from integer value x, -DV <= x < DV
|
||
|
function bnpFromInt(x) {
|
||
|
this.t = 1;
|
||
|
this.s = (x<0)?-1:0;
|
||
|
if(x > 0) this[0] = x;
|
||
|
else if(x < -1) this[0] = x+this.DV;
|
||
|
else this.t = 0;
|
||
|
}
|
||
|
|
||
|
// return bigint initialized to value
|
||
|
function nbv(i) { var r = nbi(); r.fromInt(i); return r; }
|
||
|
|
||
|
// (protected) set from string and radix
|
||
|
function bnpFromString(s,b) {
|
||
|
var k;
|
||
|
if(b == 16) k = 4;
|
||
|
else if(b == 8) k = 3;
|
||
|
else if(b == 256) k = 8; // byte array
|
||
|
else if(b == 2) k = 1;
|
||
|
else if(b == 32) k = 5;
|
||
|
else if(b == 4) k = 2;
|
||
|
else { this.fromRadix(s,b); return; }
|
||
|
this.t = 0;
|
||
|
this.s = 0;
|
||
|
var i = s.length, mi = false, sh = 0;
|
||
|
while(--i >= 0) {
|
||
|
var x = (k==8)?s[i]&0xff:intAt(s,i);
|
||
|
if(x < 0) {
|
||
|
if(s.charAt(i) == "-") mi = true;
|
||
|
continue;
|
||
|
}
|
||
|
mi = false;
|
||
|
if(sh == 0)
|
||
|
this[this.t++] = x;
|
||
|
else if(sh+k > this.DB) {
|
||
|
this[this.t-1] |= (x&((1<<(this.DB-sh))-1))<<sh;
|
||
|
this[this.t++] = (x>>(this.DB-sh));
|
||
|
}
|
||
|
else
|
||
|
this[this.t-1] |= x<<sh;
|
||
|
sh += k;
|
||
|
if(sh >= this.DB) sh -= this.DB;
|
||
|
}
|
||
|
if(k == 8 && (s[0]&0x80) != 0) {
|
||
|
this.s = -1;
|
||
|
if(sh > 0) this[this.t-1] |= ((1<<(this.DB-sh))-1)<<sh;
|
||
|
}
|
||
|
this.clamp();
|
||
|
if(mi) BigInteger.ZERO.subTo(this,this);
|
||
|
}
|
||
|
|
||
|
// (protected) clamp off excess high words
|
||
|
function bnpClamp() {
|
||
|
var c = this.s&this.DM;
|
||
|
while(this.t > 0 && this[this.t-1] == c) --this.t;
|
||
|
}
|
||
|
|
||
|
// (public) return string representation in given radix
|
||
|
function bnToString(b) {
|
||
|
if(this.s < 0) return "-"+this.negate().toString(b);
|
||
|
var k;
|
||
|
if(b == 16) k = 4;
|
||
|
else if(b == 8) k = 3;
|
||
|
else if(b == 2) k = 1;
|
||
|
else if(b == 32) k = 5;
|
||
|
else if(b == 4) k = 2;
|
||
|
else return this.toRadix(b);
|
||
|
var km = (1<<k)-1, d, m = false, r = "", i = this.t;
|
||
|
var p = this.DB-(i*this.DB)%k;
|
||
|
if(i-- > 0) {
|
||
|
if(p < this.DB && (d = this[i]>>p) > 0) { m = true; r = int2char(d); }
|
||
|
while(i >= 0) {
|
||
|
if(p < k) {
|
||
|
d = (this[i]&((1<<p)-1))<<(k-p);
|
||
|
d |= this[--i]>>(p+=this.DB-k);
|
||
|
}
|
||
|
else {
|
||
|
d = (this[i]>>(p-=k))&km;
|
||
|
if(p <= 0) { p += this.DB; --i; }
|
||
|
}
|
||
|
if(d > 0) m = true;
|
||
|
if(m) r += int2char(d);
|
||
|
}
|
||
|
}
|
||
|
return m?r:"0";
|
||
|
}
|
||
|
|
||
|
// (public) -this
|
||
|
function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; }
|
||
|
|
||
|
// (public) |this|
|
||
|
function bnAbs() { return (this.s<0)?this.negate():this; }
|
||
|
|
||
|
// (public) return + if this > a, - if this < a, 0 if equal
|
||
|
function bnCompareTo(a) {
|
||
|
var r = this.s-a.s;
|
||
|
if(r != 0) return r;
|
||
|
var i = this.t;
|
||
|
r = i-a.t;
|
||
|
if(r != 0) return (this.s<0)?-r:r;
|
||
|
while(--i >= 0) if((r=this[i]-a[i]) != 0) return r;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
// returns bit length of the integer x
|
||
|
function nbits(x) {
|
||
|
var r = 1, t;
|
||
|
if((t=x>>>16) != 0) { x = t; r += 16; }
|
||
|
if((t=x>>8) != 0) { x = t; r += 8; }
|
||
|
if((t=x>>4) != 0) { x = t; r += 4; }
|
||
|
if((t=x>>2) != 0) { x = t; r += 2; }
|
||
|
if((t=x>>1) != 0) { x = t; r += 1; }
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
// (public) return the number of bits in "this"
|
||
|
function bnBitLength() {
|
||
|
if(this.t <= 0) return 0;
|
||
|
return this.DB*(this.t-1)+nbits(this[this.t-1]^(this.s&this.DM));
|
||
|
}
|
||
|
|
||
|
// (protected) r = this << n*DB
|
||
|
function bnpDLShiftTo(n,r) {
|
||
|
var i;
|
||
|
for(i = this.t-1; i >= 0; --i) r[i+n] = this[i];
|
||
|
for(i = n-1; i >= 0; --i) r[i] = 0;
|
||
|
r.t = this.t+n;
|
||
|
r.s = this.s;
|
||
|
}
|
||
|
|
||
|
// (protected) r = this >> n*DB
|
||
|
function bnpDRShiftTo(n,r) {
|
||
|
for(var i = n; i < this.t; ++i) r[i-n] = this[i];
|
||
|
r.t = Math.max(this.t-n,0);
|
||
|
r.s = this.s;
|
||
|
}
|
||
|
|
||
|
// (protected) r = this << n
|
||
|
function bnpLShiftTo(n,r) {
|
||
|
var bs = n%this.DB;
|
||
|
var cbs = this.DB-bs;
|
||
|
var bm = (1<<cbs)-1;
|
||
|
var ds = Math.floor(n/this.DB), c = (this.s<<bs)&this.DM, i;
|
||
|
for(i = this.t-1; i >= 0; --i) {
|
||
|
r[i+ds+1] = (this[i]>>cbs)|c;
|
||
|
c = (this[i]&bm)<<bs;
|
||
|
}
|
||
|
for(i = ds-1; i >= 0; --i) r[i] = 0;
|
||
|
r[ds] = c;
|
||
|
r.t = this.t+ds+1;
|
||
|
r.s = this.s;
|
||
|
r.clamp();
|
||
|
}
|
||
|
|
||
|
// (protected) r = this >> n
|
||
|
function bnpRShiftTo(n,r) {
|
||
|
r.s = this.s;
|
||
|
var ds = Math.floor(n/this.DB);
|
||
|
if(ds >= this.t) { r.t = 0; return; }
|
||
|
var bs = n%this.DB;
|
||
|
var cbs = this.DB-bs;
|
||
|
var bm = (1<<bs)-1;
|
||
|
r[0] = this[ds]>>bs;
|
||
|
for(var i = ds+1; i < this.t; ++i) {
|
||
|
r[i-ds-1] |= (this[i]&bm)<<cbs;
|
||
|
r[i-ds] = this[i]>>bs;
|
||
|
}
|
||
|
if(bs > 0) r[this.t-ds-1] |= (this.s&bm)<<cbs;
|
||
|
r.t = this.t-ds;
|
||
|
r.clamp();
|
||
|
}
|
||
|
|
||
|
// (protected) r = this - a
|
||
|
function bnpSubTo(a,r) {
|
||
|
var i = 0, c = 0, m = Math.min(a.t,this.t);
|
||
|
while(i < m) {
|
||
|
c += this[i]-a[i];
|
||
|
r[i++] = c&this.DM;
|
||
|
c >>= this.DB;
|
||
|
}
|
||
|
if(a.t < this.t) {
|
||
|
c -= a.s;
|
||
|
while(i < this.t) {
|
||
|
c += this[i];
|
||
|
r[i++] = c&this.DM;
|
||
|
c >>= this.DB;
|
||
|
}
|
||
|
c += this.s;
|
||
|
}
|
||
|
else {
|
||
|
c += this.s;
|
||
|
while(i < a.t) {
|
||
|
c -= a[i];
|
||
|
r[i++] = c&this.DM;
|
||
|
c >>= this.DB;
|
||
|
}
|
||
|
c -= a.s;
|
||
|
}
|
||
|
r.s = (c<0)?-1:0;
|
||
|
if(c < -1) r[i++] = this.DV+c;
|
||
|
else if(c > 0) r[i++] = c;
|
||
|
r.t = i;
|
||
|
r.clamp();
|
||
|
}
|
||
|
|
||
|
// (protected) r = this * a, r != this,a (HAC 14.12)
|
||
|
// "this" should be the larger one if appropriate.
|
||
|
function bnpMultiplyTo(a,r) {
|
||
|
var x = this.abs(), y = a.abs();
|
||
|
var i = x.t;
|
||
|
r.t = i+y.t;
|
||
|
while(--i >= 0) r[i] = 0;
|
||
|
for(i = 0; i < y.t; ++i) r[i+x.t] = x.am(0,y[i],r,i,0,x.t);
|
||
|
r.s = 0;
|
||
|
r.clamp();
|
||
|
if(this.s != a.s) BigInteger.ZERO.subTo(r,r);
|
||
|
}
|
||
|
|
||
|
// (protected) r = this^2, r != this (HAC 14.16)
|
||
|
function bnpSquareTo(r) {
|
||
|
var x = this.abs();
|
||
|
var i = r.t = 2*x.t;
|
||
|
while(--i >= 0) r[i] = 0;
|
||
|
for(i = 0; i < x.t-1; ++i) {
|
||
|
var c = x.am(i,x[i],r,2*i,0,1);
|
||
|
if((r[i+x.t]+=x.am(i+1,2*x[i],r,2*i+1,c,x.t-i-1)) >= x.DV) {
|
||
|
r[i+x.t] -= x.DV;
|
||
|
r[i+x.t+1] = 1;
|
||
|
}
|
||
|
}
|
||
|
if(r.t > 0) r[r.t-1] += x.am(i,x[i],r,2*i,0,1);
|
||
|
r.s = 0;
|
||
|
r.clamp();
|
||
|
}
|
||
|
|
||
|
// (protected) divide this by m, quotient and remainder to q, r (HAC 14.20)
|
||
|
// r != q, this != m. q or r may be null.
|
||
|
function bnpDivRemTo(m,q,r) {
|
||
|
var pm = m.abs();
|
||
|
if(pm.t <= 0) return;
|
||
|
var pt = this.abs();
|
||
|
if(pt.t < pm.t) {
|
||
|
if(q != null) q.fromInt(0);
|
||
|
if(r != null) this.copyTo(r);
|
||
|
return;
|
||
|
}
|
||
|
if(r == null) r = nbi();
|
||
|
var y = nbi(), ts = this.s, ms = m.s;
|
||
|
var nsh = this.DB-nbits(pm[pm.t-1]); // normalize modulus
|
||
|
if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); }
|
||
|
else { pm.copyTo(y); pt.copyTo(r); }
|
||
|
var ys = y.t;
|
||
|
var y0 = y[ys-1];
|
||
|
if(y0 == 0) return;
|
||
|
var yt = y0*(1<<this.F1)+((ys>1)?y[ys-2]>>this.F2:0);
|
||
|
var d1 = this.FV/yt, d2 = (1<<this.F1)/yt, e = 1<<this.F2;
|
||
|
var i = r.t, j = i-ys, t = (q==null)?nbi():q;
|
||
|
y.dlShiftTo(j,t);
|
||
|
if(r.compareTo(t) >= 0) {
|
||
|
r[r.t++] = 1;
|
||
|
r.subTo(t,r);
|
||
|
}
|
||
|
BigInteger.ONE.dlShiftTo(ys,t);
|
||
|
t.subTo(y,y); // "negative" y so we can replace sub with am later
|
||
|
while(y.t < ys) y[y.t++] = 0;
|
||
|
while(--j >= 0) {
|
||
|
// Estimate quotient digit
|
||
|
var qd = (r[--i]==y0)?this.DM:Math.floor(r[i]*d1+(r[i-1]+e)*d2);
|
||
|
if((r[i]+=y.am(0,qd,r,j,0,ys)) < qd) { // Try it out
|
||
|
y.dlShiftTo(j,t);
|
||
|
r.subTo(t,r);
|
||
|
while(r[i] < --qd) r.subTo(t,r);
|
||
|
}
|
||
|
}
|
||
|
if(q != null) {
|
||
|
r.drShiftTo(ys,q);
|
||
|
if(ts != ms) BigInteger.ZERO.subTo(q,q);
|
||
|
}
|
||
|
r.t = ys;
|
||
|
r.clamp();
|
||
|
if(nsh > 0) r.rShiftTo(nsh,r); // Denormalize remainder
|
||
|
if(ts < 0) BigInteger.ZERO.subTo(r,r);
|
||
|
}
|
||
|
|
||
|
// (public) this mod a
|
||
|
function bnMod(a) {
|
||
|
var r = nbi();
|
||
|
this.abs().divRemTo(a,null,r);
|
||
|
if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r,r);
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
// Modular reduction using "classic" algorithm
|
||
|
function Classic(m) { this.m = m; }
|
||
|
function cConvert(x) {
|
||
|
if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m);
|
||
|
else return x;
|
||
|
}
|
||
|
function cRevert(x) { return x; }
|
||
|
function cReduce(x) { x.divRemTo(this.m,null,x); }
|
||
|
function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
|
||
|
function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
|
||
|
|
||
|
Classic.prototype.convert = cConvert;
|
||
|
Classic.prototype.revert = cRevert;
|
||
|
Classic.prototype.reduce = cReduce;
|
||
|
Classic.prototype.mulTo = cMulTo;
|
||
|
Classic.prototype.sqrTo = cSqrTo;
|
||
|
|
||
|
// (protected) return "-1/this % 2^DB"; useful for Mont. reduction
|
||
|
// justification:
|
||
|
// xy == 1 (mod m)
|
||
|
// xy = 1+km
|
||
|
// xy(2-xy) = (1+km)(1-km)
|
||
|
// x[y(2-xy)] = 1-k^2m^2
|
||
|
// x[y(2-xy)] == 1 (mod m^2)
|
||
|
// if y is 1/x mod m, then y(2-xy) is 1/x mod m^2
|
||
|
// should reduce x and y(2-xy) by m^2 at each step to keep size bounded.
|
||
|
// JS multiply "overflows" differently from C/C++, so care is needed here.
|
||
|
function bnpInvDigit() {
|
||
|
if(this.t < 1) return 0;
|
||
|
var x = this[0];
|
||
|
if((x&1) == 0) return 0;
|
||
|
var y = x&3; // y == 1/x mod 2^2
|
||
|
y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4
|
||
|
y = (y*(2-(x&0xff)*y))&0xff; // y == 1/x mod 2^8
|
||
|
y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff; // y == 1/x mod 2^16
|
||
|
// last step - calculate inverse mod DV directly;
|
||
|
// assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints
|
||
|
y = (y*(2-x*y%this.DV))%this.DV; // y == 1/x mod 2^dbits
|
||
|
// we really want the negative inverse, and -DV < y < DV
|
||
|
return (y>0)?this.DV-y:-y;
|
||
|
}
|
||
|
|
||
|
// Montgomery reduction
|
||
|
function Montgomery(m) {
|
||
|
this.m = m;
|
||
|
this.mp = m.invDigit();
|
||
|
this.mpl = this.mp&0x7fff;
|
||
|
this.mph = this.mp>>15;
|
||
|
this.um = (1<<(m.DB-15))-1;
|
||
|
this.mt2 = 2*m.t;
|
||
|
}
|
||
|
|
||
|
// xR mod m
|
||
|
function montConvert(x) {
|
||
|
var r = nbi();
|
||
|
x.abs().dlShiftTo(this.m.t,r);
|
||
|
r.divRemTo(this.m,null,r);
|
||
|
if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r,r);
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
// x/R mod m
|
||
|
function montRevert(x) {
|
||
|
var r = nbi();
|
||
|
x.copyTo(r);
|
||
|
this.reduce(r);
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
// x = x/R mod m (HAC 14.32)
|
||
|
function montReduce(x) {
|
||
|
while(x.t <= this.mt2) // pad x so am has enough room later
|
||
|
x[x.t++] = 0;
|
||
|
for(var i = 0; i < this.m.t; ++i) {
|
||
|
// faster way of calculating u0 = x[i]*mp mod DV
|
||
|
var j = x[i]&0x7fff;
|
||
|
var u0 = (j*this.mpl+(((j*this.mph+(x[i]>>15)*this.mpl)&this.um)<<15))&x.DM;
|
||
|
// use am to combine the multiply-shift-add into one call
|
||
|
j = i+this.m.t;
|
||
|
x[j] += this.m.am(0,u0,x,i,0,this.m.t);
|
||
|
// propagate carry
|
||
|
while(x[j] >= x.DV) { x[j] -= x.DV; x[++j]++; }
|
||
|
}
|
||
|
x.clamp();
|
||
|
x.drShiftTo(this.m.t,x);
|
||
|
if(x.compareTo(this.m) >= 0) x.subTo(this.m,x);
|
||
|
}
|
||
|
|
||
|
// r = "x^2/R mod m"; x != r
|
||
|
function montSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
|
||
|
|
||
|
// r = "xy/R mod m"; x,y != r
|
||
|
function montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
|
||
|
|
||
|
Montgomery.prototype.convert = montConvert;
|
||
|
Montgomery.prototype.revert = montRevert;
|
||
|
Montgomery.prototype.reduce = montReduce;
|
||
|
Montgomery.prototype.mulTo = montMulTo;
|
||
|
Montgomery.prototype.sqrTo = montSqrTo;
|
||
|
|
||
|
// (protected) true iff this is even
|
||
|
function bnpIsEven() { return ((this.t>0)?(this[0]&1):this.s) == 0; }
|
||
|
|
||
|
// (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79)
|
||
|
function bnpExp(e,z) {
|
||
|
if(e > 0xffffffff || e < 1) return BigInteger.ONE;
|
||
|
var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1;
|
||
|
g.copyTo(r);
|
||
|
while(--i >= 0) {
|
||
|
z.sqrTo(r,r2);
|
||
|
if((e&(1<<i)) > 0) z.mulTo(r2,g,r);
|
||
|
else { var t = r; r = r2; r2 = t; }
|
||
|
}
|
||
|
return z.revert(r);
|
||
|
}
|
||
|
|
||
|
// (public) this^e % m, 0 <= e < 2^32
|
||
|
function bnModPowInt(e,m) {
|
||
|
var z;
|
||
|
if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m);
|
||
|
return this.exp(e,z);
|
||
|
}
|
||
|
|
||
|
// protected
|
||
|
BigInteger.prototype.copyTo = bnpCopyTo;
|
||
|
BigInteger.prototype.fromInt = bnpFromInt;
|
||
|
BigInteger.prototype.fromString = bnpFromString;
|
||
|
BigInteger.prototype.clamp = bnpClamp;
|
||
|
BigInteger.prototype.dlShiftTo = bnpDLShiftTo;
|
||
|
BigInteger.prototype.drShiftTo = bnpDRShiftTo;
|
||
|
BigInteger.prototype.lShiftTo = bnpLShiftTo;
|
||
|
BigInteger.prototype.rShiftTo = bnpRShiftTo;
|
||
|
BigInteger.prototype.subTo = bnpSubTo;
|
||
|
BigInteger.prototype.multiplyTo = bnpMultiplyTo;
|
||
|
BigInteger.prototype.squareTo = bnpSquareTo;
|
||
|
BigInteger.prototype.divRemTo = bnpDivRemTo;
|
||
|
BigInteger.prototype.invDigit = bnpInvDigit;
|
||
|
BigInteger.prototype.isEven = bnpIsEven;
|
||
|
BigInteger.prototype.exp = bnpExp;
|
||
|
|
||
|
// public
|
||
|
BigInteger.prototype.toString = bnToString;
|
||
|
BigInteger.prototype.negate = bnNegate;
|
||
|
BigInteger.prototype.abs = bnAbs;
|
||
|
BigInteger.prototype.compareTo = bnCompareTo;
|
||
|
BigInteger.prototype.bitLength = bnBitLength;
|
||
|
BigInteger.prototype.mod = bnMod;
|
||
|
BigInteger.prototype.modPowInt = bnModPowInt;
|
||
|
|
||
|
// "constants"
|
||
|
BigInteger.ZERO = nbv(0);
|
||
|
BigInteger.ONE = nbv(1);
|