Add SHA-256 implementation from GNU Classpath

This commit is contained in:
Marco Castelluccio 2015-02-17 15:03:35 +01:00
Родитель 65c4d7d96f
Коммит 8d42398ba6
1 изменённых файлов: 275 добавлений и 0 удалений

Просмотреть файл

@ -0,0 +1,275 @@
/* Sha256.java --
Copyright (C) 2003, 2006 Free Software Foundation, Inc.
This file is a part of GNU Classpath.
GNU Classpath is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or (at
your option) any later version.
GNU Classpath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU Classpath; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
USA
Linking this library statically or dynamically with other modules is
making a combined work based on this library. Thus, the terms and
conditions of the GNU General Public License cover the whole
combination.
As a special exception, the copyright holders of this library give you
permission to link this library with independent modules to produce an
executable, regardless of the license terms of these independent
modules, and to copy and distribute the resulting executable under
terms of your choice, provided that you also meet, for each linked
independent module, the terms and conditions of the license of that
module. An independent module is a module which is not derived from
or based on this library. If you modify this library, you may extend
this exception to your version of the library, but you are not
obligated to do so. If you do not wish to do so, delete this
exception statement from your version. */
package gnu.java.security.hash;
/**
* Implementation of SHA2-1 [SHA-256] per the IETF Draft Specification.
* <p>
* References:
* <ol>
* <li><a href="http://ftp.ipv4.heanet.ie/pub/ietf/internet-drafts/draft-ietf-ipsec-ciph-aes-cbc-03.txt">
* Descriptions of SHA-256, SHA-384, and SHA-512</a>,</li>
* <li>http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf</li>
* </ol>
*/
public class Sha256 {
private static final int[] k = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};
private static final int BLOCK_SIZE = 64; // inner block size in bytes
private static final int[] w = new int[64];
/** caches the result of the correctness test, once executed. */
private static Boolean valid;
/** 256-bit interim result. */
private int h0, h1, h2, h3, h4, h5, h6, h7;
/** The hash (output) size in bytes. */
protected int hashSize;
/** The hash (inner) block size in bytes. */
protected int blockSize;
/** Number of bytes processed so far. */
protected long count;
/** Temporary input buffer. */
protected byte[] buffer;
/** Trivial 0-arguments constructor. */
public Sha256()
{
this.hashSize = 32;
this.blockSize = BLOCK_SIZE;
this.buffer = new byte[blockSize];
resetContext();
}
public void update(byte b)
{
// compute number of bytes still unhashed; ie. present in buffer
int i = (int) (count % blockSize);
count++;
buffer[i] = b;
if (i == (blockSize - 1))
transform(buffer, 0);
}
public void update(byte[] b)
{
update(b, 0, b.length);
}
public void update(byte[] b, int offset, int len)
{
int n = (int) (count % blockSize);
count += len;
int partLen = blockSize - n;
int i = 0;
if (len >= partLen)
{
System.arraycopy(b, offset, buffer, n, partLen);
transform(buffer, 0);
for (i = partLen; i + blockSize - 1 < len; i += blockSize)
transform(b, offset + i);
n = 0;
}
if (i < len)
System.arraycopy(b, offset + i, buffer, n, len - i);
}
public byte[] digest()
{
byte[] tail = padBuffer(); // pad remaining bytes in buffer
update(tail, 0, tail.length); // last transform of a message
byte[] result = getResult(); // make a result out of context
reset(); // reset this instance for future re-use
return result;
}
public void reset()
{ // reset this instance for future re-use
count = 0L;
for (int i = 0; i < blockSize;)
buffer[i++] = 0;
resetContext();
}
public static final int[] G(int hh0, int hh1, int hh2, int hh3, int hh4,
int hh5, int hh6, int hh7, byte[] in, int offset)
{
return sha(hh0, hh1, hh2, hh3, hh4, hh5, hh6, hh7, in, offset);
}
protected void transform(byte[] in, int offset)
{
int[] result = sha(h0, h1, h2, h3, h4, h5, h6, h7, in, offset);
h0 = result[0];
h1 = result[1];
h2 = result[2];
h3 = result[3];
h4 = result[4];
h5 = result[5];
h6 = result[6];
h7 = result[7];
}
protected byte[] padBuffer()
{
int n = (int)(count % BLOCK_SIZE);
int padding = (n < 56) ? (56 - n) : (120 - n);
byte[] result = new byte[padding + 8];
// padding is always binary 1 followed by binary 0s
result[0] = (byte) 0x80;
// save number of bits, casting the long to an array of 8 bytes
long bits = count << 3;
result[padding++] = (byte)(bits >>> 56);
result[padding++] = (byte)(bits >>> 48);
result[padding++] = (byte)(bits >>> 40);
result[padding++] = (byte)(bits >>> 32);
result[padding++] = (byte)(bits >>> 24);
result[padding++] = (byte)(bits >>> 16);
result[padding++] = (byte)(bits >>> 8);
result[padding ] = (byte) bits;
return result;
}
protected byte[] getResult()
{
return new byte[] {
(byte)(h0 >>> 24), (byte)(h0 >>> 16), (byte)(h0 >>> 8), (byte) h0,
(byte)(h1 >>> 24), (byte)(h1 >>> 16), (byte)(h1 >>> 8), (byte) h1,
(byte)(h2 >>> 24), (byte)(h2 >>> 16), (byte)(h2 >>> 8), (byte) h2,
(byte)(h3 >>> 24), (byte)(h3 >>> 16), (byte)(h3 >>> 8), (byte) h3,
(byte)(h4 >>> 24), (byte)(h4 >>> 16), (byte)(h4 >>> 8), (byte) h4,
(byte)(h5 >>> 24), (byte)(h5 >>> 16), (byte)(h5 >>> 8), (byte) h5,
(byte)(h6 >>> 24), (byte)(h6 >>> 16), (byte)(h6 >>> 8), (byte) h6,
(byte)(h7 >>> 24), (byte)(h7 >>> 16), (byte)(h7 >>> 8), (byte) h7 };
}
protected void resetContext()
{
// magic SHA-256 initialisation constants
h0 = 0x6a09e667;
h1 = 0xbb67ae85;
h2 = 0x3c6ef372;
h3 = 0xa54ff53a;
h4 = 0x510e527f;
h5 = 0x9b05688c;
h6 = 0x1f83d9ab;
h7 = 0x5be0cd19;
}
private static synchronized final int[] sha(int hh0, int hh1, int hh2,
int hh3, int hh4, int hh5,
int hh6, int hh7, byte[] in,
int offset)
{
int A = hh0;
int B = hh1;
int C = hh2;
int D = hh3;
int E = hh4;
int F = hh5;
int G = hh6;
int H = hh7;
int r, T, T2;
for (r = 0; r < 16; r++)
w[r] = (in[offset++] << 24
| (in[offset++] & 0xFF) << 16
| (in[offset++] & 0xFF) << 8
| (in[offset++] & 0xFF));
for (r = 16; r < 64; r++)
{
T = w[r - 2];
T2 = w[r - 15];
w[r] = ((((T >>> 17) | (T << 15)) ^ ((T >>> 19) | (T << 13)) ^ (T >>> 10))
+ w[r - 7]
+ (((T2 >>> 7) | (T2 << 25))
^ ((T2 >>> 18) | (T2 << 14))
^ (T2 >>> 3)) + w[r - 16]);
}
for (r = 0; r < 64; r++)
{
T = (H
+ (((E >>> 6) | (E << 26))
^ ((E >>> 11) | (E << 21))
^ ((E >>> 25) | (E << 7)))
+ ((E & F) ^ (~E & G)) + k[r] + w[r]);
T2 = ((((A >>> 2) | (A << 30))
^ ((A >>> 13) | (A << 19))
^ ((A >>> 22) | (A << 10))) + ((A & B) ^ (A & C) ^ (B & C)));
H = G;
G = F;
F = E;
E = D + T;
D = C;
C = B;
B = A;
A = T + T2;
}
return new int[] {
hh0 + A, hh1 + B, hh2 + C, hh3 + D,
hh4 + E, hh5 + F, hh6 + G, hh7 + H };
}
}