зеркало из https://github.com/mozilla/pluotsorbet.git
663 строки
23 KiB
JavaScript
663 строки
23 KiB
JavaScript
// Copyright 2009 The Closure Library Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS-IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
/**
|
|
* @fileoverview Defines a Long class for representing a 64-bit two's-complement
|
|
* integer value, which faithfully simulates the behavior of a Java "long". This
|
|
* implementation is derived from LongLib in GWT.
|
|
*
|
|
*/
|
|
|
|
(function (exports) {
|
|
/**
|
|
* Constructs a 64-bit two's-complement integer, given its low and high 32-bit
|
|
* values as *signed* integers. See the from* functions below for more
|
|
* convenient ways of constructing Longs.
|
|
*
|
|
* The internal representation of a long is the two given signed, 32-bit values.
|
|
* We use 32-bit pieces because these are the size of integers on which
|
|
* Javascript performs bit-operations. For operations like addition and
|
|
* multiplication, we split each number into 16-bit pieces, which can easily be
|
|
* multiplied within Javascript's floating-point representation without overflow
|
|
* or change in sign.
|
|
*
|
|
* In the algorithms below, we frequently reduce the negative case to the
|
|
* positive case by negating the input(s) and then post-processing the result.
|
|
* Note that we must ALWAYS check specially whether those values are MIN_VALUE
|
|
* (-2^63) because -MIN_VALUE == MIN_VALUE (since 2^63 cannot be represented as
|
|
* a positive number, it overflows back into a negative). Not handling this
|
|
* case would often result in infinite recursion.
|
|
*
|
|
* @param {number} low The low (signed) 32 bits of the long.
|
|
* @param {number} high The high (signed) 32 bits of the long.
|
|
* @constructor
|
|
*/
|
|
function Long(low, high) {
|
|
this.low_ = low | 0; // force into 32 signed bits.
|
|
this.high_ = high | 0; // force into 32 signed bits.
|
|
}
|
|
|
|
var IntCache = {};
|
|
|
|
/**
|
|
* Returns a Long representing the given (32-bit) integer value.
|
|
* @param {number} value The 32-bit integer in question.
|
|
* @return {!Long} The corresponding Long value.
|
|
*/
|
|
function fromInt(value) {
|
|
if (-128 <= value && value < 128) {
|
|
var cachedObj = IntCache[value];
|
|
if (cachedObj) {
|
|
return cachedObj;
|
|
}
|
|
}
|
|
|
|
var obj = new Long(value, value < 0 ? -1 : 0);
|
|
if (-128 <= value && value < 128) {
|
|
IntCache[value] = obj;
|
|
}
|
|
return obj;
|
|
};
|
|
|
|
/**
|
|
* Returns a Long representing the given value, provided that it is a finite
|
|
* number. Otherwise, zero is returned.
|
|
* @param {number} value The number in question.
|
|
* @return {!Long} The corresponding Long value.
|
|
*/
|
|
function fromNumber(value) {
|
|
if (isNaN(value) || !isFinite(value)) {
|
|
return ZERO;
|
|
} else if (value <= -TWO_PWR_63_DBL_) {
|
|
return MIN_VALUE;
|
|
} else if (value + 1 >= TWO_PWR_63_DBL_) {
|
|
return MAX_VALUE;
|
|
} else if (value < 0) {
|
|
return fromNumber(-value).negate();
|
|
} else {
|
|
return new Long((value % TWO_PWR_32_DBL_) | 0, (value / TWO_PWR_32_DBL_) | 0);
|
|
}
|
|
};
|
|
|
|
/**
|
|
* Returns a Long representing the 64-bit integer that comes by concatenating
|
|
* the given high and low bits. Each is assumed to use 32 bits.
|
|
* @param {number} lowBits The low 32-bits.
|
|
* @param {number} highBits The high 32-bits.
|
|
* @return {!Long} The corresponding Long value.
|
|
*/
|
|
function fromBits(lowBits, highBits) {
|
|
return new Long(lowBits, highBits);
|
|
};
|
|
|
|
/**
|
|
* Returns a Long representation of the given string, written using the given
|
|
* radix.
|
|
* @param {string} str The textual representation of the Long.
|
|
* @param {number=} opt_radix The radix in which the text is written.
|
|
* @return {!Long} The corresponding Long value.
|
|
*/
|
|
function fromString(str, opt_radix) {
|
|
if (str.length == 0) {
|
|
throw Error('number format error: empty string');
|
|
}
|
|
|
|
var radix = opt_radix || 10;
|
|
if (radix < 2 || 36 < radix) {
|
|
throw Error('radix out of range: ' + radix);
|
|
}
|
|
|
|
if (str.charAt(0) == '-') {
|
|
return fromString(str.substring(1), radix).negate();
|
|
} else if (str.indexOf('-') >= 0) {
|
|
throw Error('number format error: interior "-" character: ' + str);
|
|
}
|
|
|
|
// Do several (8) digits each time through the loop, so as to
|
|
// minimize the calls to the very expensive emulated div.
|
|
var radixToPower = fromNumber(Math.pow(radix, 8));
|
|
|
|
var result = ZERO;
|
|
for (var i = 0; i < str.length; i += 8) {
|
|
var size = Math.min(8, str.length - i);
|
|
var value = parseInt(str.substring(i, i + size), radix);
|
|
if (size < 8) {
|
|
var power = fromNumber(Math.pow(radix, size));
|
|
result = result.multiply(power).add(fromNumber(value));
|
|
} else {
|
|
result = result.multiply(radixToPower);
|
|
result = result.add(fromNumber(value));
|
|
}
|
|
}
|
|
return result;
|
|
};
|
|
|
|
/** @return {number} The value, assuming it is a 32-bit integer. */
|
|
Long.prototype.toInt = function () {
|
|
return this.low_;
|
|
};
|
|
|
|
/** @return {number} The closest floating-point representation to this value. */
|
|
Long.prototype.toNumber = function () {
|
|
return this.high_ * TWO_PWR_32_DBL_ + this.getLowBitsUnsigned();
|
|
};
|
|
|
|
/**
|
|
* @param {number=} opt_radix The radix in which the text should be written.
|
|
* @return {string} The textual representation of this value.
|
|
*/
|
|
Long.prototype.toString = function (opt_radix) {
|
|
var radix = opt_radix || 10;
|
|
if (radix < 2 || 36 < radix) {
|
|
throw Error('radix out of range: ' + radix);
|
|
}
|
|
|
|
if (this.isZero()) {
|
|
return '0';
|
|
}
|
|
|
|
if (this.isNegative()) {
|
|
if (this.equals(MIN_VALUE)) {
|
|
// We need to change the Long value before it can be negated, so we remove
|
|
// the bottom-most digit in this base and then recurse to do the rest.
|
|
var radixLong = fromNumber(radix);
|
|
var div = this.div(radixLong);
|
|
var rem = div.multiply(radixLong).subtract(this);
|
|
return div.toString(radix) + rem.toInt().toString(radix);
|
|
} else {
|
|
return '-' + this.negate().toString(radix);
|
|
}
|
|
}
|
|
|
|
// Do several (6) digits each time through the loop, so as to
|
|
// minimize the calls to the very expensive emulated div.
|
|
var radixToPower = fromNumber(Math.pow(radix, 6));
|
|
|
|
var rem = this;
|
|
var result = '';
|
|
while (true) {
|
|
var remDiv = rem.div(radixToPower);
|
|
var intval = rem.subtract(remDiv.multiply(radixToPower)).toInt();
|
|
var digits = intval.toString(radix);
|
|
|
|
rem = remDiv;
|
|
if (rem.isZero()) {
|
|
return digits + result;
|
|
} else {
|
|
while (digits.length < 6) {
|
|
digits = '0' + digits;
|
|
}
|
|
result = '' + digits + result;
|
|
}
|
|
}
|
|
};
|
|
|
|
/** @return {number} The high 32-bits as a signed value. */
|
|
Long.prototype.getHighBits = function () {
|
|
return this.high_;
|
|
};
|
|
|
|
/** @return {number} The low 32-bits as a signed value. */
|
|
Long.prototype.getLowBits = function () {
|
|
return this.low_;
|
|
};
|
|
|
|
/** @return {number} The low 32-bits as an unsigned value. */
|
|
Long.prototype.getLowBitsUnsigned = function () {
|
|
return (this.low_ >= 0) ? this.low_ : TWO_PWR_32_DBL_ + this.low_;
|
|
};
|
|
|
|
/**
|
|
* @return {number} Returns the number of bits needed to represent the absolute
|
|
* value of this Long.
|
|
*/
|
|
Long.prototype.getNumBitsAbs = function () {
|
|
if (this.isNegative()) {
|
|
if (this.equals(MIN_VALUE)) {
|
|
return 64;
|
|
} else {
|
|
return this.negate().getNumBitsAbs();
|
|
}
|
|
} else {
|
|
var val = this.high_ != 0 ? this.high_ : this.low_;
|
|
for (var bit = 31; bit > 0; bit--) {
|
|
if ((val & (1 << bit)) != 0) {
|
|
break;
|
|
}
|
|
}
|
|
return this.high_ != 0 ? bit + 33 : bit + 1;
|
|
}
|
|
};
|
|
|
|
/** @return {boolean} Whether this value is zero. */
|
|
Long.prototype.isZero = function () {
|
|
return this.high_ == 0 && this.low_ == 0;
|
|
};
|
|
|
|
/** @return {boolean} Whether this value is negative. */
|
|
Long.prototype.isNegative = function () {
|
|
return this.high_ < 0;
|
|
};
|
|
|
|
/** @return {boolean} Whether this value is odd. */
|
|
Long.prototype.isOdd = function () {
|
|
return (this.low_ & 1) == 1;
|
|
};
|
|
|
|
/**
|
|
* @param {Long} other Long to compare against.
|
|
* @return {boolean} Whether this Long equals the other.
|
|
*/
|
|
Long.prototype.equals = function (other) {
|
|
return (this.high_ == other.high_) && (this.low_ == other.low_);
|
|
};
|
|
|
|
/**
|
|
* @param {Long} other Long to compare against.
|
|
* @return {boolean} Whether this Long does not equal the other.
|
|
*/
|
|
Long.prototype.notEquals = function (other) {
|
|
return (this.high_ != other.high_) || (this.low_ != other.low_);
|
|
};
|
|
|
|
/**
|
|
* @param {Long} other Long to compare against.
|
|
* @return {boolean} Whether this Long is less than the other.
|
|
*/
|
|
Long.prototype.lessThan = function (other) {
|
|
return this.compare(other) < 0;
|
|
};
|
|
|
|
/**
|
|
* @param {Long} other Long to compare against.
|
|
* @return {boolean} Whether this Long is less than or equal to the other.
|
|
*/
|
|
Long.prototype.lessThanOrEqual = function (other) {
|
|
return this.compare(other) <= 0;
|
|
};
|
|
|
|
/**
|
|
* @param {Long} other Long to compare against.
|
|
* @return {boolean} Whether this Long is greater than the other.
|
|
*/
|
|
Long.prototype.greaterThan = function (other) {
|
|
return this.compare(other) > 0;
|
|
};
|
|
|
|
/**
|
|
* @param {Long} other Long to compare against.
|
|
* @return {boolean} Whether this Long is greater than or equal to the other.
|
|
*/
|
|
Long.prototype.greaterThanOrEqual = function (other) {
|
|
return this.compare(other) >= 0;
|
|
};
|
|
|
|
/**
|
|
* Compares this Long with the given one.
|
|
* @param {Long} other Long to compare against.
|
|
* @return {number} 0 if they are the same, 1 if the this is greater, and -1
|
|
* if the given one is greater.
|
|
*/
|
|
Long.prototype.compare = function (other) {
|
|
if (this.equals(other)) {
|
|
return 0;
|
|
}
|
|
|
|
var thisNeg = this.isNegative();
|
|
var otherNeg = other.isNegative();
|
|
if (thisNeg && !otherNeg) {
|
|
return -1;
|
|
}
|
|
if (!thisNeg && otherNeg) {
|
|
return 1;
|
|
}
|
|
|
|
// at this point, the signs are the same, so subtraction will not overflow
|
|
if (this.subtract(other).isNegative()) {
|
|
return -1;
|
|
} else {
|
|
return 1;
|
|
}
|
|
};
|
|
|
|
/** @return {!Long} The negation of this value. */
|
|
Long.prototype.negate = function () {
|
|
if (this.equals(MIN_VALUE)) {
|
|
return MIN_VALUE;
|
|
} else {
|
|
return this.not().add(ONE);
|
|
}
|
|
};
|
|
|
|
/**
|
|
* Returns the sum of this and the given Long.
|
|
* @param {Long} other Long to add to this one.
|
|
* @return {!Long} The sum of this and the given Long.
|
|
*/
|
|
Long.prototype.add = function (other) {
|
|
// Divide each number into 4 chunks of 16 bits, and then sum the chunks.
|
|
var a48 = this.high_ >>> 16;
|
|
var a32 = this.high_ & 0xFFFF;
|
|
var a16 = this.low_ >>> 16;
|
|
var a00 = this.low_ & 0xFFFF;
|
|
|
|
var b48 = other.high_ >>> 16;
|
|
var b32 = other.high_ & 0xFFFF;
|
|
var b16 = other.low_ >>> 16;
|
|
var b00 = other.low_ & 0xFFFF;
|
|
|
|
var c48 = 0, c32 = 0, c16 = 0, c00 = 0;
|
|
c00 += a00 + b00;
|
|
c16 += c00 >>> 16;
|
|
c00 &= 0xFFFF;
|
|
c16 += a16 + b16;
|
|
c32 += c16 >>> 16;
|
|
c16 &= 0xFFFF;
|
|
c32 += a32 + b32;
|
|
c48 += c32 >>> 16;
|
|
c32 &= 0xFFFF;
|
|
c48 += a48 + b48;
|
|
c48 &= 0xFFFF;
|
|
return fromBits((c16 << 16) | c00, (c48 << 16) | c32);
|
|
};
|
|
|
|
/**
|
|
* Returns the difference of this and the given Long.
|
|
* @param {Long} other Long to subtract from this.
|
|
* @return {!Long} The difference of this and the given Long.
|
|
*/
|
|
Long.prototype.subtract = function (other) {
|
|
return this.add(other.negate());
|
|
};
|
|
|
|
/**
|
|
* Returns the product of this and the given long.
|
|
* @param {Long} other Long to multiply with this.
|
|
* @return {!Long} The product of this and the other.
|
|
*/
|
|
Long.prototype.multiply = function (other) {
|
|
if (this.isZero() | other.isZero()) {
|
|
return ZERO;
|
|
}
|
|
|
|
if (this.equals(MIN_VALUE)) {
|
|
return other.isOdd() ? MIN_VALUE : ZERO;
|
|
} else if (other.equals(MIN_VALUE)) {
|
|
return this.isOdd() ? MIN_VALUE : ZERO;
|
|
}
|
|
|
|
if (this.isNegative()) {
|
|
if (other.isNegative()) {
|
|
return this.negate().multiply(other.negate());
|
|
} else {
|
|
return this.negate().multiply(other).negate();
|
|
}
|
|
} else if (other.isNegative()) {
|
|
return this.multiply(other.negate()).negate();
|
|
}
|
|
|
|
// If both longs are small, use float multiplication
|
|
if (this.lessThan(TWO_PWR_24_) && other.lessThan(TWO_PWR_24_)) {
|
|
return fromNumber(this.toNumber() * other.toNumber());
|
|
}
|
|
|
|
// Divide each long into 4 chunks of 16 bits, and then add up 4x4 products.
|
|
// We can skip products that would overflow.
|
|
var a48 = this.high_ >>> 16;
|
|
var a32 = this.high_ & 0xFFFF;
|
|
var a16 = this.low_ >>> 16;
|
|
var a00 = this.low_ & 0xFFFF;
|
|
|
|
var b48 = other.high_ >>> 16;
|
|
var b32 = other.high_ & 0xFFFF;
|
|
var b16 = other.low_ >>> 16;
|
|
var b00 = other.low_ & 0xFFFF;
|
|
|
|
var c48 = 0, c32 = 0, c16 = 0, c00 = 0;
|
|
c00 += a00 * b00;
|
|
c16 += c00 >>> 16;
|
|
c00 &= 0xFFFF;
|
|
c16 += a16 * b00;
|
|
c32 += c16 >>> 16;
|
|
c16 &= 0xFFFF;
|
|
c16 += a00 * b16;
|
|
c32 += c16 >>> 16;
|
|
c16 &= 0xFFFF;
|
|
c32 += a32 * b00;
|
|
c48 += c32 >>> 16;
|
|
c32 &= 0xFFFF;
|
|
c32 += a16 * b16;
|
|
c48 += c32 >>> 16;
|
|
c32 &= 0xFFFF;
|
|
c32 += a00 * b32;
|
|
c48 += c32 >>> 16;
|
|
c32 &= 0xFFFF;
|
|
c48 += a48 * b00 + a32 * b16 + a16 * b32 + a00 * b48;
|
|
c48 &= 0xFFFF;
|
|
return fromBits((c16 << 16) | c00, (c48 << 16) | c32);
|
|
};
|
|
|
|
/**
|
|
* Returns this Long divided by the given one.
|
|
* @param {Long} other Long by which to divide.
|
|
* @return {!Long} This Long divided by the given one.
|
|
*/
|
|
Long.prototype.div = function (other) {
|
|
if (other.isZero()) {
|
|
throw Error('division by zero');
|
|
} else if (this.isZero()) {
|
|
return ZERO;
|
|
}
|
|
|
|
if (this.equals(MIN_VALUE)) {
|
|
if (other.equals(ONE) || other.equals(NEG_ONE)) {
|
|
return MIN_VALUE;
|
|
} else if (other.equals(MIN_VALUE)) {
|
|
return ONE;
|
|
} else {
|
|
// At this point, we have |other| >= 2, so |this/other| < |MIN_VALUE|.
|
|
var halfThis = this.shiftRight(1);
|
|
var l_approx = halfThis.div(other).shiftLeft(1);
|
|
if (l_approx.equals(ZERO)) {
|
|
return other.isNegative() ? ONE : NEG_ONE;
|
|
} else {
|
|
var rem = this.subtract(other.multiply(l_approx));
|
|
var result = l_approx.add(rem.div(other));
|
|
return result;
|
|
}
|
|
}
|
|
} else if (other.equals(MIN_VALUE)) {
|
|
return ZERO;
|
|
}
|
|
|
|
if (this.isNegative()) {
|
|
if (other.isNegative()) {
|
|
return this.negate().div(other.negate());
|
|
} else {
|
|
return this.negate().div(other).negate();
|
|
}
|
|
} else if (other.isNegative()) {
|
|
return this.div(other.negate()).negate();
|
|
}
|
|
|
|
// Repeat the following until the remainder is less than other: find a
|
|
// floating-point that approximates remainder / other *from below*, add this
|
|
// into the result, and subtract it from the remainder. It is critical that
|
|
// the approximate value is less than or equal to the real value so that the
|
|
// remainder never becomes negative.
|
|
var res = ZERO;
|
|
var rem = this;
|
|
while (rem.greaterThanOrEqual(other)) {
|
|
// Approximate the result of division. This may be a little greater or
|
|
// smaller than the actual value.
|
|
var approx = Math.max(1, Math.floor(rem.toNumber() / other.toNumber()));
|
|
|
|
// We will tweak the approximate result by changing it in the 48-th digit or
|
|
// the smallest non-fractional digit, whichever is larger.
|
|
var log2 = Math.ceil(Math.log(approx) / Math.LN2);
|
|
var delta = 1;
|
|
if (log2 > 48)
|
|
delta = Math.pow(2, log2 - 48);
|
|
|
|
// Decrease the approximation until it is smaller than the remainder. Note
|
|
// that if it is too large, the product overflows and is negative.
|
|
var approxRes = fromNumber(approx);
|
|
var approxRem = approxRes.multiply(other);
|
|
while (approxRem.isNegative() || approxRem.greaterThan(rem)) {
|
|
approx -= delta;
|
|
approxRes = fromNumber(approx);
|
|
approxRem = approxRes.multiply(other);
|
|
}
|
|
|
|
// We know the answer can't be zero... and actually, zero would cause
|
|
// infinite recursion since we would make no progress.
|
|
if (approxRes.isZero()) {
|
|
approxRes = ONE;
|
|
}
|
|
|
|
res = res.add(approxRes);
|
|
rem = rem.subtract(approxRem);
|
|
}
|
|
return res;
|
|
};
|
|
|
|
/**
|
|
* Returns this Long modulo the given one.
|
|
* @param {Long} other Long by which to mod.
|
|
* @return {!Long} This Long modulo the given one.
|
|
*/
|
|
Long.prototype.modulo = function (other) {
|
|
return this.subtract(this.div(other).multiply(other));
|
|
};
|
|
|
|
/** @return {!Long} The bitwise-NOT of this value. */
|
|
Long.prototype.not = function () {
|
|
return fromBits(~this.low_, ~this.high_);
|
|
};
|
|
|
|
/**
|
|
* Returns the bitwise-AND of this Long and the given one.
|
|
* @param {Long} other The Long with which to AND.
|
|
* @return {!Long} The bitwise-AND of this and the other.
|
|
*/
|
|
Long.prototype.and = function (other) {
|
|
return fromBits(this.low_ & other.low_, this.high_ & other.high_);
|
|
};
|
|
|
|
/**
|
|
* Returns the bitwise-OR of this Long and the given one.
|
|
* @param {Long} other The Long with which to OR.
|
|
* @return {!Long} The bitwise-OR of this and the other.
|
|
*/
|
|
Long.prototype.or = function (other) {
|
|
return fromBits(this.low_ | other.low_, this.high_ | other.high_);
|
|
};
|
|
|
|
/**
|
|
* Returns the bitwise-XOR of this Long and the given one.
|
|
* @param {Long} other The Long with which to XOR.
|
|
* @return {!Long} The bitwise-XOR of this and the other.
|
|
*/
|
|
Long.prototype.xor = function (other) {
|
|
return fromBits(this.low_ ^ other.low_, this.high_ ^ other.high_);
|
|
};
|
|
|
|
/**
|
|
* Returns this Long with bits shifted to the left by the given amount.
|
|
* @param {number} numBits The number of bits by which to shift.
|
|
* @return {!Long} This shifted to the left by the given amount.
|
|
*/
|
|
Long.prototype.shiftLeft = function (numBits) {
|
|
numBits &= 63;
|
|
if (numBits == 0) {
|
|
return this;
|
|
} else {
|
|
var low = this.low_;
|
|
if (numBits < 32) {
|
|
var high = this.high_;
|
|
return fromBits(low << numBits, (high << numBits) | (low >>> (32 - numBits)));
|
|
} else {
|
|
return fromBits(0, low << (numBits - 32));
|
|
}
|
|
}
|
|
};
|
|
|
|
/**
|
|
* Returns this Long with bits shifted to the right by the given amount.
|
|
* @param {number} numBits The number of bits by which to shift.
|
|
* @return {!Long} This shifted to the right by the given amount.
|
|
*/
|
|
Long.prototype.shiftRight = function (numBits) {
|
|
numBits &= 63;
|
|
if (numBits == 0) {
|
|
return this;
|
|
} else {
|
|
var high = this.high_;
|
|
if (numBits < 32) {
|
|
var low = this.low_;
|
|
return fromBits((low >>> numBits) | (high << (32 - numBits)), high >> numBits);
|
|
} else {
|
|
return fromBits(high >> (numBits - 32), high >= 0 ? 0 : -1);
|
|
}
|
|
}
|
|
};
|
|
|
|
/**
|
|
* Returns this Long with bits shifted to the right by the given amount, with
|
|
* the new top bits matching the current sign bit.
|
|
* @param {number} numBits The number of bits by which to shift.
|
|
* @return {!Long} This shifted to the right by the given amount, with
|
|
* zeros placed into the new leading bits.
|
|
*/
|
|
Long.prototype.shiftRightUnsigned = function (numBits) {
|
|
numBits &= 63;
|
|
if (numBits == 0) {
|
|
return this;
|
|
} else {
|
|
var high = this.high_;
|
|
if (numBits < 32) {
|
|
var low = this.low_;
|
|
return fromBits((low >>> numBits) | (high << (32 - numBits)), high >>> numBits);
|
|
} else if (numBits == 32) {
|
|
return fromBits(high, 0);
|
|
} else {
|
|
return fromBits(high >>> (numBits - 32), 0);
|
|
}
|
|
}
|
|
};
|
|
|
|
var ZERO = fromInt(0);
|
|
var ONE = fromInt(1);
|
|
var NEG_ONE = fromInt(-1);
|
|
var MAX_VALUE = fromBits(0xFFFFFFFF, 0x7FFFFFFF);
|
|
var MIN_VALUE = fromBits(0, 0x80000000);
|
|
|
|
var TWO_PWR_24_ = fromInt(TWO_PWR_24_DBL_);
|
|
|
|
var TWO_PWR_16_DBL_ = 1 << 16;
|
|
var TWO_PWR_24_DBL_ = 1 << 24;
|
|
var TWO_PWR_32_DBL_ = TWO_PWR_16_DBL_ * TWO_PWR_16_DBL_;
|
|
var TWO_PWR_31_DBL_ = TWO_PWR_32_DBL_ / 2;
|
|
var TWO_PWR_48_DBL_ = TWO_PWR_32_DBL_ * TWO_PWR_16_DBL_;
|
|
var TWO_PWR_64_DBL_ = TWO_PWR_32_DBL_ * TWO_PWR_32_DBL_;
|
|
var TWO_PWR_63_DBL_ = TWO_PWR_64_DBL_ / 2;
|
|
|
|
exports.ZERO = ZERO;
|
|
exports.ONE = ONE;
|
|
|
|
exports.fromInt = fromInt;
|
|
exports.fromNumber = fromNumber;
|
|
exports.fromBits = fromBits;
|
|
exports.fromString = fromString;
|
|
})(typeof exports === "undefined" ? this.Long = {} : exports);
|