releases-comm-central/third_party/libgcrypt/cipher/sha1.c

627 строки
17 KiB
C
Исходник Ответственный История

Этот файл содержит невидимые символы Юникода!

Этот файл содержит невидимые символы Юникода, которые могут быть отображены не так, как показано ниже. Если это намеренно, можете спокойно проигнорировать это предупреждение. Используйте кнопку Экранировать, чтобы показать скрытые символы.

/* sha1.c - SHA1 hash function
* Copyright (C) 1998, 2001, 2002, 2003, 2008 Free Software Foundation, Inc.
*
* This file is part of Libgcrypt.
*
* Libgcrypt is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation; either version 2.1 of
* the License, or (at your option) any later version.
*
* Libgcrypt is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
/* Test vectors:
*
* "abc"
* A999 3E36 4706 816A BA3E 2571 7850 C26C 9CD0 D89D
*
* "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"
* 8498 3E44 1C3B D26E BAAE 4AA1 F951 29E5 E546 70F1
*/
#include <config.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifdef HAVE_STDINT_H
# include <stdint.h>
#endif
#include "g10lib.h"
#include "bithelp.h"
#include "bufhelp.h"
#include "cipher.h"
#include "sha1.h"
/* USE_SSSE3 indicates whether to compile with Intel SSSE3 code. */
#undef USE_SSSE3
#if defined(__x86_64__) && defined(HAVE_GCC_INLINE_ASM_SSSE3) && \
(defined(HAVE_COMPATIBLE_GCC_AMD64_PLATFORM_AS) || \
defined(HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS))
# define USE_SSSE3 1
#endif
/* USE_AVX indicates whether to compile with Intel AVX code. */
#undef USE_AVX
#if defined(__x86_64__) && defined(HAVE_GCC_INLINE_ASM_AVX) && \
(defined(HAVE_COMPATIBLE_GCC_AMD64_PLATFORM_AS) || \
defined(HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS))
# define USE_AVX 1
#endif
/* USE_BMI2 indicates whether to compile with Intel AVX/BMI2 code. */
#undef USE_BMI2
#if defined(__x86_64__) && defined(HAVE_GCC_INLINE_ASM_AVX) && \
defined(HAVE_GCC_INLINE_ASM_BMI2) && \
(defined(HAVE_COMPATIBLE_GCC_AMD64_PLATFORM_AS) || \
defined(HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS))
# define USE_BMI2 1
#endif
/* USE_NEON indicates whether to enable ARM NEON assembly code. */
#undef USE_NEON
#ifdef ENABLE_NEON_SUPPORT
# if defined(HAVE_ARM_ARCH_V6) && defined(__ARMEL__) \
&& defined(HAVE_COMPATIBLE_GCC_ARM_PLATFORM_AS) \
&& defined(HAVE_GCC_INLINE_ASM_NEON)
# define USE_NEON 1
# endif
#endif
/* USE_ARM_CE indicates whether to enable ARMv8 Crypto Extension assembly
* code. */
#undef USE_ARM_CE
#ifdef ENABLE_ARM_CRYPTO_SUPPORT
# if defined(HAVE_ARM_ARCH_V6) && defined(__ARMEL__) \
&& defined(HAVE_COMPATIBLE_GCC_ARM_PLATFORM_AS) \
&& defined(HAVE_GCC_INLINE_ASM_AARCH32_CRYPTO)
# define USE_ARM_CE 1
# elif defined(__AARCH64EL__) \
&& defined(HAVE_COMPATIBLE_GCC_AARCH64_PLATFORM_AS) \
&& defined(HAVE_GCC_INLINE_ASM_AARCH64_CRYPTO)
# define USE_ARM_CE 1
# endif
#endif
/* A macro to test whether P is properly aligned for an u32 type.
Note that config.h provides a suitable replacement for uintptr_t if
it does not exist in stdint.h. */
/* #if __GNUC__ >= 2 */
/* # define U32_ALIGNED_P(p) (!(((uintptr_t)p) % __alignof__ (u32))) */
/* #else */
/* # define U32_ALIGNED_P(p) (!(((uintptr_t)p) % sizeof (u32))) */
/* #endif */
static unsigned int
transform (void *c, const unsigned char *data, size_t nblks);
static void
sha1_init (void *context, unsigned int flags)
{
SHA1_CONTEXT *hd = context;
unsigned int features = _gcry_get_hw_features ();
(void)flags;
hd->h0 = 0x67452301;
hd->h1 = 0xefcdab89;
hd->h2 = 0x98badcfe;
hd->h3 = 0x10325476;
hd->h4 = 0xc3d2e1f0;
hd->bctx.nblocks = 0;
hd->bctx.nblocks_high = 0;
hd->bctx.count = 0;
hd->bctx.blocksize = 64;
hd->bctx.bwrite = transform;
#ifdef USE_SSSE3
hd->use_ssse3 = (features & HWF_INTEL_SSSE3) != 0;
#endif
#ifdef USE_AVX
/* AVX implementation uses SHLD which is known to be slow on non-Intel CPUs.
* Therefore use this implementation on Intel CPUs only. */
hd->use_avx = (features & HWF_INTEL_AVX) && (features & HWF_INTEL_FAST_SHLD);
#endif
#ifdef USE_BMI2
hd->use_bmi2 = (features & HWF_INTEL_AVX) && (features & HWF_INTEL_BMI2);
#endif
#ifdef USE_NEON
hd->use_neon = (features & HWF_ARM_NEON) != 0;
#endif
#ifdef USE_ARM_CE
hd->use_arm_ce = (features & HWF_ARM_SHA1) != 0;
#endif
(void)features;
}
/*
* Initialize the context HD. This is used to prepare the use of
* _gcry_sha1_mixblock. WARNING: This is a special purpose function
* for exclusive use by random-csprng.c.
*/
void
_gcry_sha1_mixblock_init (SHA1_CONTEXT *hd)
{
sha1_init (hd, 0);
}
/* Round function macros. */
#define K1 0x5A827999L
#define K2 0x6ED9EBA1L
#define K3 0x8F1BBCDCL
#define K4 0xCA62C1D6L
#define F1(x,y,z) ( z ^ ( x & ( y ^ z ) ) )
#define F2(x,y,z) ( x ^ y ^ z )
#define F3(x,y,z) ( ( x & y ) | ( z & ( x | y ) ) )
#define F4(x,y,z) ( x ^ y ^ z )
#define M(i) ( tm = x[ i &0x0f] \
^ x[(i-14)&0x0f] \
^ x[(i-8) &0x0f] \
^ x[(i-3) &0x0f], \
(x[i&0x0f] = rol(tm, 1)))
#define R(a,b,c,d,e,f,k,m) do { e += rol( a, 5 ) \
+ f( b, c, d ) \
+ k \
+ m; \
b = rol( b, 30 ); \
} while(0)
#ifdef USE_NEON
unsigned int
_gcry_sha1_transform_armv7_neon (void *state, const unsigned char *data,
size_t nblks);
#endif
#ifdef USE_ARM_CE
unsigned int
_gcry_sha1_transform_armv8_ce (void *state, const unsigned char *data,
size_t nblks);
#endif
/*
* Transform NBLOCKS of each 64 bytes (16 32-bit words) at DATA.
*/
static unsigned int
transform_blk (void *ctx, const unsigned char *data)
{
SHA1_CONTEXT *hd = ctx;
const u32 *idata = (const void *)data;
register u32 a, b, c, d, e; /* Local copies of the chaining variables. */
register u32 tm; /* Helper. */
u32 x[16]; /* The array we work on. */
#define I(i) (x[i] = buf_get_be32(idata + i))
/* Get the values of the chaining variables. */
a = hd->h0;
b = hd->h1;
c = hd->h2;
d = hd->h3;
e = hd->h4;
/* Transform. */
R( a, b, c, d, e, F1, K1, I( 0) );
R( e, a, b, c, d, F1, K1, I( 1) );
R( d, e, a, b, c, F1, K1, I( 2) );
R( c, d, e, a, b, F1, K1, I( 3) );
R( b, c, d, e, a, F1, K1, I( 4) );
R( a, b, c, d, e, F1, K1, I( 5) );
R( e, a, b, c, d, F1, K1, I( 6) );
R( d, e, a, b, c, F1, K1, I( 7) );
R( c, d, e, a, b, F1, K1, I( 8) );
R( b, c, d, e, a, F1, K1, I( 9) );
R( a, b, c, d, e, F1, K1, I(10) );
R( e, a, b, c, d, F1, K1, I(11) );
R( d, e, a, b, c, F1, K1, I(12) );
R( c, d, e, a, b, F1, K1, I(13) );
R( b, c, d, e, a, F1, K1, I(14) );
R( a, b, c, d, e, F1, K1, I(15) );
R( e, a, b, c, d, F1, K1, M(16) );
R( d, e, a, b, c, F1, K1, M(17) );
R( c, d, e, a, b, F1, K1, M(18) );
R( b, c, d, e, a, F1, K1, M(19) );
R( a, b, c, d, e, F2, K2, M(20) );
R( e, a, b, c, d, F2, K2, M(21) );
R( d, e, a, b, c, F2, K2, M(22) );
R( c, d, e, a, b, F2, K2, M(23) );
R( b, c, d, e, a, F2, K2, M(24) );
R( a, b, c, d, e, F2, K2, M(25) );
R( e, a, b, c, d, F2, K2, M(26) );
R( d, e, a, b, c, F2, K2, M(27) );
R( c, d, e, a, b, F2, K2, M(28) );
R( b, c, d, e, a, F2, K2, M(29) );
R( a, b, c, d, e, F2, K2, M(30) );
R( e, a, b, c, d, F2, K2, M(31) );
R( d, e, a, b, c, F2, K2, M(32) );
R( c, d, e, a, b, F2, K2, M(33) );
R( b, c, d, e, a, F2, K2, M(34) );
R( a, b, c, d, e, F2, K2, M(35) );
R( e, a, b, c, d, F2, K2, M(36) );
R( d, e, a, b, c, F2, K2, M(37) );
R( c, d, e, a, b, F2, K2, M(38) );
R( b, c, d, e, a, F2, K2, M(39) );
R( a, b, c, d, e, F3, K3, M(40) );
R( e, a, b, c, d, F3, K3, M(41) );
R( d, e, a, b, c, F3, K3, M(42) );
R( c, d, e, a, b, F3, K3, M(43) );
R( b, c, d, e, a, F3, K3, M(44) );
R( a, b, c, d, e, F3, K3, M(45) );
R( e, a, b, c, d, F3, K3, M(46) );
R( d, e, a, b, c, F3, K3, M(47) );
R( c, d, e, a, b, F3, K3, M(48) );
R( b, c, d, e, a, F3, K3, M(49) );
R( a, b, c, d, e, F3, K3, M(50) );
R( e, a, b, c, d, F3, K3, M(51) );
R( d, e, a, b, c, F3, K3, M(52) );
R( c, d, e, a, b, F3, K3, M(53) );
R( b, c, d, e, a, F3, K3, M(54) );
R( a, b, c, d, e, F3, K3, M(55) );
R( e, a, b, c, d, F3, K3, M(56) );
R( d, e, a, b, c, F3, K3, M(57) );
R( c, d, e, a, b, F3, K3, M(58) );
R( b, c, d, e, a, F3, K3, M(59) );
R( a, b, c, d, e, F4, K4, M(60) );
R( e, a, b, c, d, F4, K4, M(61) );
R( d, e, a, b, c, F4, K4, M(62) );
R( c, d, e, a, b, F4, K4, M(63) );
R( b, c, d, e, a, F4, K4, M(64) );
R( a, b, c, d, e, F4, K4, M(65) );
R( e, a, b, c, d, F4, K4, M(66) );
R( d, e, a, b, c, F4, K4, M(67) );
R( c, d, e, a, b, F4, K4, M(68) );
R( b, c, d, e, a, F4, K4, M(69) );
R( a, b, c, d, e, F4, K4, M(70) );
R( e, a, b, c, d, F4, K4, M(71) );
R( d, e, a, b, c, F4, K4, M(72) );
R( c, d, e, a, b, F4, K4, M(73) );
R( b, c, d, e, a, F4, K4, M(74) );
R( a, b, c, d, e, F4, K4, M(75) );
R( e, a, b, c, d, F4, K4, M(76) );
R( d, e, a, b, c, F4, K4, M(77) );
R( c, d, e, a, b, F4, K4, M(78) );
R( b, c, d, e, a, F4, K4, M(79) );
/* Update the chaining variables. */
hd->h0 += a;
hd->h1 += b;
hd->h2 += c;
hd->h3 += d;
hd->h4 += e;
return /* burn_stack */ 88+4*sizeof(void*);
}
/* Assembly implementations use SystemV ABI, ABI conversion and additional
* stack to store XMM6-XMM15 needed on Win64. */
#undef ASM_FUNC_ABI
#undef ASM_EXTRA_STACK
#if defined(USE_SSSE3) || defined(USE_AVX) || defined(USE_BMI2)
# ifdef HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS
# define ASM_FUNC_ABI __attribute__((sysv_abi))
# define ASM_EXTRA_STACK (10 * 16)
# else
# define ASM_FUNC_ABI
# define ASM_EXTRA_STACK 0
# endif
#endif
#ifdef USE_SSSE3
unsigned int
_gcry_sha1_transform_amd64_ssse3 (void *state, const unsigned char *data,
size_t nblks) ASM_FUNC_ABI;
#endif
#ifdef USE_AVX
unsigned int
_gcry_sha1_transform_amd64_avx (void *state, const unsigned char *data,
size_t nblks) ASM_FUNC_ABI;
#endif
#ifdef USE_BMI2
unsigned int
_gcry_sha1_transform_amd64_avx_bmi2 (void *state, const unsigned char *data,
size_t nblks) ASM_FUNC_ABI;
#endif
static unsigned int
transform (void *ctx, const unsigned char *data, size_t nblks)
{
SHA1_CONTEXT *hd = ctx;
unsigned int burn;
#ifdef USE_BMI2
if (hd->use_bmi2)
return _gcry_sha1_transform_amd64_avx_bmi2 (&hd->h0, data, nblks)
+ 4 * sizeof(void*) + ASM_EXTRA_STACK;
#endif
#ifdef USE_AVX
if (hd->use_avx)
return _gcry_sha1_transform_amd64_avx (&hd->h0, data, nblks)
+ 4 * sizeof(void*) + ASM_EXTRA_STACK;
#endif
#ifdef USE_SSSE3
if (hd->use_ssse3)
return _gcry_sha1_transform_amd64_ssse3 (&hd->h0, data, nblks)
+ 4 * sizeof(void*) + ASM_EXTRA_STACK;
#endif
#ifdef USE_ARM_CE
if (hd->use_arm_ce)
return _gcry_sha1_transform_armv8_ce (&hd->h0, data, nblks);
#endif
#ifdef USE_NEON
if (hd->use_neon)
return _gcry_sha1_transform_armv7_neon (&hd->h0, data, nblks)
+ 4 * sizeof(void*);
#endif
do
{
burn = transform_blk (hd, data);
data += 64;
}
while (--nblks);
#ifdef ASM_EXTRA_STACK
/* 'transform_blk' is typically inlined and XMM6-XMM15 are stored at
* the prologue of this function. Therefore need to add ASM_EXTRA_STACK to
* here too.
*/
burn += ASM_EXTRA_STACK;
#endif
return burn;
}
/*
* Apply the SHA-1 transform function on the buffer BLOCKOF64BYTE
* which must have a length 64 bytes. BLOCKOF64BYTE must be 32-bit
* aligned. Updates the 20 bytes in BLOCKOF64BYTE with its mixed
* content. Returns the number of bytes which should be burned on the
* stack. You need to use _gcry_sha1_mixblock_init to initialize the
* context.
* WARNING: This is a special purpose function for exclusive use by
* random-csprng.c.
*/
unsigned int
_gcry_sha1_mixblock (SHA1_CONTEXT *hd, void *blockof64byte)
{
u32 *p = blockof64byte;
unsigned int nburn;
nburn = transform (hd, blockof64byte, 1);
p[0] = hd->h0;
p[1] = hd->h1;
p[2] = hd->h2;
p[3] = hd->h3;
p[4] = hd->h4;
return nburn;
}
/* The routine final terminates the computation and
* returns the digest.
* The handle is prepared for a new cycle, but adding bytes to the
* handle will the destroy the returned buffer.
* Returns: 20 bytes representing the digest.
*/
static void
sha1_final(void *context)
{
SHA1_CONTEXT *hd = context;
u32 t, th, msb, lsb;
unsigned char *p;
unsigned int burn;
_gcry_md_block_write (hd, NULL, 0); /* flush */;
t = hd->bctx.nblocks;
if (sizeof t == sizeof hd->bctx.nblocks)
th = hd->bctx.nblocks_high;
else
th = hd->bctx.nblocks >> 32;
/* multiply by 64 to make a byte count */
lsb = t << 6;
msb = (th << 6) | (t >> 26);
/* add the count */
t = lsb;
if( (lsb += hd->bctx.count) < t )
msb++;
/* multiply by 8 to make a bit count */
t = lsb;
lsb <<= 3;
msb <<= 3;
msb |= t >> 29;
if( hd->bctx.count < 56 ) /* enough room */
{
hd->bctx.buf[hd->bctx.count++] = 0x80; /* pad */
while( hd->bctx.count < 56 )
hd->bctx.buf[hd->bctx.count++] = 0; /* pad */
}
else /* need one extra block */
{
hd->bctx.buf[hd->bctx.count++] = 0x80; /* pad character */
while( hd->bctx.count < 64 )
hd->bctx.buf[hd->bctx.count++] = 0;
_gcry_md_block_write(hd, NULL, 0); /* flush */;
memset(hd->bctx.buf, 0, 56 ); /* fill next block with zeroes */
}
/* append the 64 bit count */
buf_put_be32(hd->bctx.buf + 56, msb);
buf_put_be32(hd->bctx.buf + 60, lsb);
burn = transform( hd, hd->bctx.buf, 1 );
_gcry_burn_stack (burn);
p = hd->bctx.buf;
#define X(a) do { buf_put_be32(p, hd->h##a); p += 4; } while(0)
X(0);
X(1);
X(2);
X(3);
X(4);
#undef X
}
static unsigned char *
sha1_read( void *context )
{
SHA1_CONTEXT *hd = context;
return hd->bctx.buf;
}
/****************
* Shortcut functions which puts the hash value of the supplied buffer
* into outbuf which must have a size of 20 bytes.
*/
void
_gcry_sha1_hash_buffer (void *outbuf, const void *buffer, size_t length)
{
SHA1_CONTEXT hd;
sha1_init (&hd, 0);
_gcry_md_block_write (&hd, buffer, length);
sha1_final (&hd);
memcpy (outbuf, hd.bctx.buf, 20);
}
/* Variant of the above shortcut function using a multiple buffers. */
void
_gcry_sha1_hash_buffers (void *outbuf, const gcry_buffer_t *iov, int iovcnt)
{
SHA1_CONTEXT hd;
sha1_init (&hd, 0);
for (;iovcnt > 0; iov++, iovcnt--)
_gcry_md_block_write (&hd,
(const char*)iov[0].data + iov[0].off, iov[0].len);
sha1_final (&hd);
memcpy (outbuf, hd.bctx.buf, 20);
}
/*
Self-test section.
*/
static gpg_err_code_t
selftests_sha1 (int extended, selftest_report_func_t report)
{
const char *what;
const char *errtxt;
what = "short string";
errtxt = _gcry_hash_selftest_check_one
(GCRY_MD_SHA1, 0,
"abc", 3,
"\xA9\x99\x3E\x36\x47\x06\x81\x6A\xBA\x3E"
"\x25\x71\x78\x50\xC2\x6C\x9C\xD0\xD8\x9D", 20);
if (errtxt)
goto failed;
if (extended)
{
what = "long string";
errtxt = _gcry_hash_selftest_check_one
(GCRY_MD_SHA1, 0,
"abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", 56,
"\x84\x98\x3E\x44\x1C\x3B\xD2\x6E\xBA\xAE"
"\x4A\xA1\xF9\x51\x29\xE5\xE5\x46\x70\xF1", 20);
if (errtxt)
goto failed;
what = "one million \"a\"";
errtxt = _gcry_hash_selftest_check_one
(GCRY_MD_SHA1, 1,
NULL, 0,
"\x34\xAA\x97\x3C\xD4\xC4\xDA\xA4\xF6\x1E"
"\xEB\x2B\xDB\xAD\x27\x31\x65\x34\x01\x6F", 20);
if (errtxt)
goto failed;
}
return 0; /* Succeeded. */
failed:
if (report)
report ("digest", GCRY_MD_SHA1, what, errtxt);
return GPG_ERR_SELFTEST_FAILED;
}
/* Run a full self-test for ALGO and return 0 on success. */
static gpg_err_code_t
run_selftests (int algo, int extended, selftest_report_func_t report)
{
gpg_err_code_t ec;
switch (algo)
{
case GCRY_MD_SHA1:
ec = selftests_sha1 (extended, report);
break;
default:
ec = GPG_ERR_DIGEST_ALGO;
break;
}
return ec;
}
static unsigned char asn[15] = /* Object ID is 1.3.14.3.2.26 */
{ 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03,
0x02, 0x1a, 0x05, 0x00, 0x04, 0x14 };
static gcry_md_oid_spec_t oid_spec_sha1[] =
{
/* iso.member-body.us.rsadsi.pkcs.pkcs-1.5 (sha1WithRSAEncryption) */
{ "1.2.840.113549.1.1.5" },
/* iso.member-body.us.x9-57.x9cm.3 (dsaWithSha1)*/
{ "1.2.840.10040.4.3" },
/* from NIST's OIW (sha1) */
{ "1.3.14.3.2.26" },
/* from NIST OIW (sha-1WithRSAEncryption) */
{ "1.3.14.3.2.29" },
/* iso.member-body.us.ansi-x9-62.signatures.ecdsa-with-sha1 */
{ "1.2.840.10045.4.1" },
{ NULL },
};
gcry_md_spec_t _gcry_digest_spec_sha1 =
{
GCRY_MD_SHA1, {0, 1},
"SHA1", asn, DIM (asn), oid_spec_sha1, 20,
sha1_init, _gcry_md_block_write, sha1_final, sha1_read, NULL,
sizeof (SHA1_CONTEXT),
run_selftests
};