releases-comm-central/third_party/libgcrypt/cipher/sha256.c

858 строки
24 KiB
C
Исходник Ответственный История

Этот файл содержит невидимые символы Юникода!

Этот файл содержит невидимые символы Юникода, которые могут быть отображены не так, как показано ниже. Если это намеренно, можете спокойно проигнорировать это предупреждение. Используйте кнопку Экранировать, чтобы показать скрытые символы.

/* sha256.c - SHA256 hash function
* Copyright (C) 2003, 2006, 2008, 2009 Free Software Foundation, Inc.
*
* This file is part of Libgcrypt.
*
* Libgcrypt is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation; either version 2.1 of
* the License, or (at your option) any later version.
*
* Libgcrypt is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
/* Test vectors:
"abc"
SHA224: 23097d22 3405d822 8642a477 bda255b3 2aadbce4 bda0b3f7 e36c9da7
SHA256: ba7816bf 8f01cfea 414140de 5dae2223 b00361a3 96177a9c b410ff61 f20015ad
"abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"
SHA224: 75388b16 512776cc 5dba5da1 fd890150 b0c6455c b4f58b19 52522525
SHA256: 248d6a61 d20638b8 e5c02693 0c3e6039 a33ce459 64ff2167 f6ecedd4 19db06c1
"a" one million times
SHA224: 20794655 980c91d8 bbb4c1ea 97618a4b f03f4258 1948b2ee 4ee7ad67
SHA256: cdc76e5c 9914fb92 81a1c7e2 84d73e67 f1809a48 a497200e 046d39cc c7112cd0
*/
#include <config.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "g10lib.h"
#include "bithelp.h"
#include "bufhelp.h"
#include "cipher.h"
#include "hash-common.h"
/* USE_SSSE3 indicates whether to compile with Intel SSSE3 code. */
#undef USE_SSSE3
#if defined(__x86_64__) && defined(HAVE_GCC_INLINE_ASM_SSSE3) && \
defined(HAVE_INTEL_SYNTAX_PLATFORM_AS) && \
(defined(HAVE_COMPATIBLE_GCC_AMD64_PLATFORM_AS) || \
defined(HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS))
# define USE_SSSE3 1
#endif
/* USE_AVX indicates whether to compile with Intel AVX code. */
#undef USE_AVX
#if defined(__x86_64__) && defined(HAVE_GCC_INLINE_ASM_AVX) && \
defined(HAVE_INTEL_SYNTAX_PLATFORM_AS) && \
(defined(HAVE_COMPATIBLE_GCC_AMD64_PLATFORM_AS) || \
defined(HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS))
# define USE_AVX 1
#endif
/* USE_AVX2 indicates whether to compile with Intel AVX2/BMI2 code. */
#undef USE_AVX2
#if defined(__x86_64__) && defined(HAVE_GCC_INLINE_ASM_AVX2) && \
defined(HAVE_GCC_INLINE_ASM_BMI2) && \
defined(HAVE_INTEL_SYNTAX_PLATFORM_AS) && \
(defined(HAVE_COMPATIBLE_GCC_AMD64_PLATFORM_AS) || \
defined(HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS))
# define USE_AVX2 1
#endif
/* USE_SHAEXT indicates whether to compile with Intel SHA Extension code. */
#undef USE_SHAEXT
#if defined(HAVE_GCC_INLINE_ASM_SHAEXT) && \
defined(HAVE_GCC_INLINE_ASM_SSE41) && \
defined(ENABLE_SHAEXT_SUPPORT)
# define USE_SHAEXT 1
#endif
/* USE_ARM_CE indicates whether to enable ARMv8 Crypto Extension assembly
* code. */
#undef USE_ARM_CE
#ifdef ENABLE_ARM_CRYPTO_SUPPORT
# if defined(HAVE_ARM_ARCH_V6) && defined(__ARMEL__) \
&& defined(HAVE_COMPATIBLE_GCC_ARM_PLATFORM_AS) \
&& defined(HAVE_GCC_INLINE_ASM_AARCH32_CRYPTO)
# define USE_ARM_CE 1
# elif defined(__AARCH64EL__) \
&& defined(HAVE_COMPATIBLE_GCC_AARCH64_PLATFORM_AS) \
&& defined(HAVE_GCC_INLINE_ASM_AARCH64_CRYPTO)
# define USE_ARM_CE 1
# endif
#endif
/* USE_PPC_CRYPTO indicates whether to enable PowerPC vector crypto
* accelerated code. */
#undef USE_PPC_CRYPTO
#ifdef ENABLE_PPC_CRYPTO_SUPPORT
# if defined(HAVE_COMPATIBLE_CC_PPC_ALTIVEC) && \
defined(HAVE_GCC_INLINE_ASM_PPC_ALTIVEC)
# if __GNUC__ >= 4
# define USE_PPC_CRYPTO 1
# endif
# endif
#endif
/* USE_S390X_CRYPTO indicates whether to enable zSeries code. */
#undef USE_S390X_CRYPTO
#if defined(HAVE_GCC_INLINE_ASM_S390X)
# define USE_S390X_CRYPTO 1
#endif /* USE_S390X_CRYPTO */
typedef struct {
gcry_md_block_ctx_t bctx;
u32 h0,h1,h2,h3,h4,h5,h6,h7;
#ifdef USE_S390X_CRYPTO
u32 final_len_msb, final_len_lsb; /* needs to be right after h7. */
int use_s390x_crypto;
#endif
} SHA256_CONTEXT;
/* Assembly implementations use SystemV ABI, ABI conversion and additional
* stack to store XMM6-XMM15 needed on Win64. */
#undef ASM_FUNC_ABI
#undef ASM_EXTRA_STACK
#if defined(USE_SSSE3) || defined(USE_AVX) || defined(USE_AVX2) || \
defined(USE_SHAEXT)
# ifdef HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS
# define ASM_FUNC_ABI __attribute__((sysv_abi))
# define ASM_EXTRA_STACK (10 * 16 + sizeof(void *) * 4)
# else
# define ASM_FUNC_ABI
# define ASM_EXTRA_STACK 0
# endif
#endif
#ifdef USE_SSSE3
unsigned int _gcry_sha256_transform_amd64_ssse3(const void *input_data,
u32 state[8],
size_t num_blks) ASM_FUNC_ABI;
static unsigned int
do_sha256_transform_amd64_ssse3(void *ctx, const unsigned char *data,
size_t nblks)
{
SHA256_CONTEXT *hd = ctx;
return _gcry_sha256_transform_amd64_ssse3 (data, &hd->h0, nblks)
+ ASM_EXTRA_STACK;
}
#endif
#ifdef USE_AVX
unsigned int _gcry_sha256_transform_amd64_avx(const void *input_data,
u32 state[8],
size_t num_blks) ASM_FUNC_ABI;
static unsigned int
do_sha256_transform_amd64_avx(void *ctx, const unsigned char *data,
size_t nblks)
{
SHA256_CONTEXT *hd = ctx;
return _gcry_sha256_transform_amd64_avx (data, &hd->h0, nblks)
+ ASM_EXTRA_STACK;
}
#endif
#ifdef USE_AVX2
unsigned int _gcry_sha256_transform_amd64_avx2(const void *input_data,
u32 state[8],
size_t num_blks) ASM_FUNC_ABI;
static unsigned int
do_sha256_transform_amd64_avx2(void *ctx, const unsigned char *data,
size_t nblks)
{
SHA256_CONTEXT *hd = ctx;
return _gcry_sha256_transform_amd64_avx2 (data, &hd->h0, nblks)
+ ASM_EXTRA_STACK;
}
#endif
#ifdef USE_SHAEXT
/* Does not need ASM_FUNC_ABI */
unsigned int
_gcry_sha256_transform_intel_shaext(u32 state[8],
const unsigned char *input_data,
size_t num_blks);
static unsigned int
do_sha256_transform_intel_shaext(void *ctx, const unsigned char *data,
size_t nblks)
{
SHA256_CONTEXT *hd = ctx;
return _gcry_sha256_transform_intel_shaext (&hd->h0, data, nblks);
}
#endif
#ifdef USE_ARM_CE
unsigned int _gcry_sha256_transform_armv8_ce(u32 state[8],
const void *input_data,
size_t num_blks);
static unsigned int
do_sha256_transform_armv8_ce(void *ctx, const unsigned char *data,
size_t nblks)
{
SHA256_CONTEXT *hd = ctx;
return _gcry_sha256_transform_armv8_ce (&hd->h0, data, nblks);
}
#endif
#ifdef USE_PPC_CRYPTO
unsigned int _gcry_sha256_transform_ppc8(u32 state[8],
const unsigned char *input_data,
size_t num_blks);
unsigned int _gcry_sha256_transform_ppc9(u32 state[8],
const unsigned char *input_data,
size_t num_blks);
static unsigned int
do_sha256_transform_ppc8(void *ctx, const unsigned char *data, size_t nblks)
{
SHA256_CONTEXT *hd = ctx;
return _gcry_sha256_transform_ppc8 (&hd->h0, data, nblks);
}
static unsigned int
do_sha256_transform_ppc9(void *ctx, const unsigned char *data, size_t nblks)
{
SHA256_CONTEXT *hd = ctx;
return _gcry_sha256_transform_ppc9 (&hd->h0, data, nblks);
}
#endif
#ifdef USE_S390X_CRYPTO
#include "asm-inline-s390x.h"
static unsigned int
do_sha256_transform_s390x (void *ctx, const unsigned char *data, size_t nblks)
{
SHA256_CONTEXT *hd = ctx;
kimd_execute (KMID_FUNCTION_SHA256, &hd->h0, data, nblks * 64);
return 0;
}
static unsigned int
do_sha256_final_s390x (void *ctx, const unsigned char *data, size_t datalen,
u32 len_msb, u32 len_lsb)
{
SHA256_CONTEXT *hd = ctx;
/* Make sure that 'final_len' is positioned at correct offset relative
* to 'h0'. This is because we are passing 'h0' pointer as start of
* parameter block to 'klmd' instruction. */
gcry_assert (offsetof (SHA256_CONTEXT, final_len_msb)
- offsetof (SHA256_CONTEXT, h0) == 8 * sizeof(u32));
gcry_assert (offsetof (SHA256_CONTEXT, final_len_lsb)
- offsetof (SHA256_CONTEXT, final_len_msb) == 1 * sizeof(u32));
hd->final_len_msb = len_msb;
hd->final_len_lsb = len_lsb;
klmd_execute (KMID_FUNCTION_SHA256, &hd->h0, data, datalen);
return 0;
}
#endif
static unsigned int
do_transform_generic (void *ctx, const unsigned char *data, size_t nblks);
static void
sha256_common_init (SHA256_CONTEXT *hd)
{
unsigned int features = _gcry_get_hw_features ();
hd->bctx.nblocks = 0;
hd->bctx.nblocks_high = 0;
hd->bctx.count = 0;
hd->bctx.blocksize_shift = _gcry_ctz(64);
/* Order of feature checks is important here; last match will be
* selected. Keep slower implementations at the top and faster at
* the bottom. */
hd->bctx.bwrite = do_transform_generic;
#ifdef USE_SSSE3
if ((features & HWF_INTEL_SSSE3) != 0)
hd->bctx.bwrite = do_sha256_transform_amd64_ssse3;
#endif
#ifdef USE_AVX
/* AVX implementation uses SHLD which is known to be slow on non-Intel CPUs.
* Therefore use this implementation on Intel CPUs only. */
if ((features & HWF_INTEL_AVX) && (features & HWF_INTEL_FAST_SHLD))
hd->bctx.bwrite = do_sha256_transform_amd64_avx;
#endif
#ifdef USE_AVX2
if ((features & HWF_INTEL_AVX2) && (features & HWF_INTEL_BMI2))
hd->bctx.bwrite = do_sha256_transform_amd64_avx2;
#endif
#ifdef USE_SHAEXT
if ((features & HWF_INTEL_SHAEXT) && (features & HWF_INTEL_SSE4_1))
hd->bctx.bwrite = do_sha256_transform_intel_shaext;
#endif
#ifdef USE_ARM_CE
if ((features & HWF_ARM_SHA2) != 0)
hd->bctx.bwrite = do_sha256_transform_armv8_ce;
#endif
#ifdef USE_PPC_CRYPTO
if ((features & HWF_PPC_VCRYPTO) != 0)
hd->bctx.bwrite = do_sha256_transform_ppc8;
if ((features & HWF_PPC_VCRYPTO) != 0 && (features & HWF_PPC_ARCH_3_00) != 0)
hd->bctx.bwrite = do_sha256_transform_ppc9;
#endif
#ifdef USE_S390X_CRYPTO
hd->use_s390x_crypto = 0;
if ((features & HWF_S390X_MSA) != 0)
{
if ((kimd_query () & km_function_to_mask (KMID_FUNCTION_SHA256)) &&
(klmd_query () & km_function_to_mask (KMID_FUNCTION_SHA256)))
{
hd->bctx.bwrite = do_sha256_transform_s390x;
hd->use_s390x_crypto = 1;
}
}
#endif
(void)features;
}
static void
sha256_init (void *context, unsigned int flags)
{
SHA256_CONTEXT *hd = context;
(void)flags;
hd->h0 = 0x6a09e667;
hd->h1 = 0xbb67ae85;
hd->h2 = 0x3c6ef372;
hd->h3 = 0xa54ff53a;
hd->h4 = 0x510e527f;
hd->h5 = 0x9b05688c;
hd->h6 = 0x1f83d9ab;
hd->h7 = 0x5be0cd19;
sha256_common_init (hd);
}
static void
sha224_init (void *context, unsigned int flags)
{
SHA256_CONTEXT *hd = context;
(void)flags;
hd->h0 = 0xc1059ed8;
hd->h1 = 0x367cd507;
hd->h2 = 0x3070dd17;
hd->h3 = 0xf70e5939;
hd->h4 = 0xffc00b31;
hd->h5 = 0x68581511;
hd->h6 = 0x64f98fa7;
hd->h7 = 0xbefa4fa4;
sha256_common_init (hd);
}
/*
Transform the message X which consists of 16 32-bit-words. See FIPS
180-2 for details. */
#define R(a,b,c,d,e,f,g,h,k,w) do \
{ \
t1 = (h) + Sum1((e)) + Cho((e),(f),(g)) + (k) + (w); \
t2 = Sum0((a)) + Maj((a),(b),(c)); \
d += t1; \
h = t1 + t2; \
} while (0)
/* (4.2) same as SHA-1's F1. */
#define Cho(x, y, z) (z ^ (x & (y ^ z)))
/* (4.3) same as SHA-1's F3 */
#define Maj(x, y, z) ((x & y) + (z & (x ^ y)))
/* (4.4) */
#define Sum0(x) (ror (x, 2) ^ ror (x, 13) ^ ror (x, 22))
/* (4.5) */
#define Sum1(x) (ror (x, 6) ^ ror (x, 11) ^ ror (x, 25))
/* Message expansion */
#define S0(x) (ror ((x), 7) ^ ror ((x), 18) ^ ((x) >> 3)) /* (4.6) */
#define S1(x) (ror ((x), 17) ^ ror ((x), 19) ^ ((x) >> 10)) /* (4.7) */
#define I(i) ( w[i] = buf_get_be32(data + i * 4) )
#define W(i) ( w[i&0x0f] = S1(w[(i-2) &0x0f]) \
+ w[(i-7) &0x0f] \
+ S0(w[(i-15)&0x0f]) \
+ w[(i-16)&0x0f] )
static unsigned int
do_transform_generic (void *ctx, const unsigned char *data, size_t nblks)
{
SHA256_CONTEXT *hd = ctx;
static const u32 K[64] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};
do
{
u32 a,b,c,d,e,f,g,h,t1,t2;
u32 w[16];
a = hd->h0;
b = hd->h1;
c = hd->h2;
d = hd->h3;
e = hd->h4;
f = hd->h5;
g = hd->h6;
h = hd->h7;
R(a, b, c, d, e, f, g, h, K[0], I(0));
R(h, a, b, c, d, e, f, g, K[1], I(1));
R(g, h, a, b, c, d, e, f, K[2], I(2));
R(f, g, h, a, b, c, d, e, K[3], I(3));
R(e, f, g, h, a, b, c, d, K[4], I(4));
R(d, e, f, g, h, a, b, c, K[5], I(5));
R(c, d, e, f, g, h, a, b, K[6], I(6));
R(b, c, d, e, f, g, h, a, K[7], I(7));
R(a, b, c, d, e, f, g, h, K[8], I(8));
R(h, a, b, c, d, e, f, g, K[9], I(9));
R(g, h, a, b, c, d, e, f, K[10], I(10));
R(f, g, h, a, b, c, d, e, K[11], I(11));
R(e, f, g, h, a, b, c, d, K[12], I(12));
R(d, e, f, g, h, a, b, c, K[13], I(13));
R(c, d, e, f, g, h, a, b, K[14], I(14));
R(b, c, d, e, f, g, h, a, K[15], I(15));
R(a, b, c, d, e, f, g, h, K[16], W(16));
R(h, a, b, c, d, e, f, g, K[17], W(17));
R(g, h, a, b, c, d, e, f, K[18], W(18));
R(f, g, h, a, b, c, d, e, K[19], W(19));
R(e, f, g, h, a, b, c, d, K[20], W(20));
R(d, e, f, g, h, a, b, c, K[21], W(21));
R(c, d, e, f, g, h, a, b, K[22], W(22));
R(b, c, d, e, f, g, h, a, K[23], W(23));
R(a, b, c, d, e, f, g, h, K[24], W(24));
R(h, a, b, c, d, e, f, g, K[25], W(25));
R(g, h, a, b, c, d, e, f, K[26], W(26));
R(f, g, h, a, b, c, d, e, K[27], W(27));
R(e, f, g, h, a, b, c, d, K[28], W(28));
R(d, e, f, g, h, a, b, c, K[29], W(29));
R(c, d, e, f, g, h, a, b, K[30], W(30));
R(b, c, d, e, f, g, h, a, K[31], W(31));
R(a, b, c, d, e, f, g, h, K[32], W(32));
R(h, a, b, c, d, e, f, g, K[33], W(33));
R(g, h, a, b, c, d, e, f, K[34], W(34));
R(f, g, h, a, b, c, d, e, K[35], W(35));
R(e, f, g, h, a, b, c, d, K[36], W(36));
R(d, e, f, g, h, a, b, c, K[37], W(37));
R(c, d, e, f, g, h, a, b, K[38], W(38));
R(b, c, d, e, f, g, h, a, K[39], W(39));
R(a, b, c, d, e, f, g, h, K[40], W(40));
R(h, a, b, c, d, e, f, g, K[41], W(41));
R(g, h, a, b, c, d, e, f, K[42], W(42));
R(f, g, h, a, b, c, d, e, K[43], W(43));
R(e, f, g, h, a, b, c, d, K[44], W(44));
R(d, e, f, g, h, a, b, c, K[45], W(45));
R(c, d, e, f, g, h, a, b, K[46], W(46));
R(b, c, d, e, f, g, h, a, K[47], W(47));
R(a, b, c, d, e, f, g, h, K[48], W(48));
R(h, a, b, c, d, e, f, g, K[49], W(49));
R(g, h, a, b, c, d, e, f, K[50], W(50));
R(f, g, h, a, b, c, d, e, K[51], W(51));
R(e, f, g, h, a, b, c, d, K[52], W(52));
R(d, e, f, g, h, a, b, c, K[53], W(53));
R(c, d, e, f, g, h, a, b, K[54], W(54));
R(b, c, d, e, f, g, h, a, K[55], W(55));
R(a, b, c, d, e, f, g, h, K[56], W(56));
R(h, a, b, c, d, e, f, g, K[57], W(57));
R(g, h, a, b, c, d, e, f, K[58], W(58));
R(f, g, h, a, b, c, d, e, K[59], W(59));
R(e, f, g, h, a, b, c, d, K[60], W(60));
R(d, e, f, g, h, a, b, c, K[61], W(61));
R(c, d, e, f, g, h, a, b, K[62], W(62));
R(b, c, d, e, f, g, h, a, K[63], W(63));
hd->h0 += a;
hd->h1 += b;
hd->h2 += c;
hd->h3 += d;
hd->h4 += e;
hd->h5 += f;
hd->h6 += g;
hd->h7 += h;
data += 64;
}
while (--nblks);
return 26*4 + 32 + 3 * sizeof(void*);
}
#undef S0
#undef S1
#undef R
/*
The routine finally terminates the computation and returns the
digest. The handle is prepared for a new cycle, but adding bytes
to the handle will the destroy the returned buffer. Returns: 32
bytes with the message the digest. */
static void
sha256_final(void *context)
{
SHA256_CONTEXT *hd = context;
u32 t, th, msb, lsb;
byte *p;
unsigned int burn;
t = hd->bctx.nblocks;
if (sizeof t == sizeof hd->bctx.nblocks)
th = hd->bctx.nblocks_high;
else
th = hd->bctx.nblocks >> 32;
/* multiply by 64 to make a byte count */
lsb = t << 6;
msb = (th << 6) | (t >> 26);
/* add the count */
t = lsb;
if ((lsb += hd->bctx.count) < t)
msb++;
/* multiply by 8 to make a bit count */
t = lsb;
lsb <<= 3;
msb <<= 3;
msb |= t >> 29;
if (0)
{ }
#ifdef USE_S390X_CRYPTO
else if (hd->use_s390x_crypto)
{
burn = do_sha256_final_s390x (hd, hd->bctx.buf, hd->bctx.count, msb, lsb);
}
#endif
else if (hd->bctx.count < 56) /* enough room */
{
hd->bctx.buf[hd->bctx.count++] = 0x80; /* pad */
if (hd->bctx.count < 56)
memset (&hd->bctx.buf[hd->bctx.count], 0, 56 - hd->bctx.count);
/* append the 64 bit count */
buf_put_be32(hd->bctx.buf + 56, msb);
buf_put_be32(hd->bctx.buf + 60, lsb);
burn = (*hd->bctx.bwrite) (hd, hd->bctx.buf, 1);
}
else /* need one extra block */
{
hd->bctx.buf[hd->bctx.count++] = 0x80; /* pad character */
/* fill pad and next block with zeroes */
memset (&hd->bctx.buf[hd->bctx.count], 0, 64 - hd->bctx.count + 56);
/* append the 64 bit count */
buf_put_be32(hd->bctx.buf + 64 + 56, msb);
buf_put_be32(hd->bctx.buf + 64 + 60, lsb);
burn = (*hd->bctx.bwrite) (hd, hd->bctx.buf, 2);
}
p = hd->bctx.buf;
#define X(a) do { buf_put_be32(p, hd->h##a); p += 4; } while(0)
X(0);
X(1);
X(2);
X(3);
X(4);
X(5);
X(6);
X(7);
#undef X
hd->bctx.count = 0;
_gcry_burn_stack (burn);
}
static byte *
sha256_read (void *context)
{
SHA256_CONTEXT *hd = context;
return hd->bctx.buf;
}
/* Shortcut functions which puts the hash value of the supplied buffer
* into outbuf which must have a size of 32 bytes. */
void
_gcry_sha256_hash_buffer (void *outbuf, const void *buffer, size_t length)
{
SHA256_CONTEXT hd;
sha256_init (&hd, 0);
_gcry_md_block_write (&hd, buffer, length);
sha256_final (&hd);
memcpy (outbuf, hd.bctx.buf, 32);
}
/* Variant of the above shortcut function using multiple buffers. */
void
_gcry_sha256_hash_buffers (void *outbuf, const gcry_buffer_t *iov, int iovcnt)
{
SHA256_CONTEXT hd;
sha256_init (&hd, 0);
for (;iovcnt > 0; iov++, iovcnt--)
_gcry_md_block_write (&hd,
(const char*)iov[0].data + iov[0].off, iov[0].len);
sha256_final (&hd);
memcpy (outbuf, hd.bctx.buf, 32);
}
/* Shortcut functions which puts the hash value of the supplied buffer
* into outbuf which must have a size of 28 bytes. */
static void
_gcry_sha224_hash_buffer (void *outbuf, const void *buffer, size_t length)
{
SHA256_CONTEXT hd;
sha224_init (&hd, 0);
_gcry_md_block_write (&hd, buffer, length);
sha256_final (&hd);
memcpy (outbuf, hd.bctx.buf, 28);
}
/* Variant of the above shortcut function using multiple buffers. */
static void
_gcry_sha224_hash_buffers (void *outbuf, const gcry_buffer_t *iov, int iovcnt)
{
SHA256_CONTEXT hd;
sha224_init (&hd, 0);
for (;iovcnt > 0; iov++, iovcnt--)
_gcry_md_block_write (&hd,
(const char*)iov[0].data + iov[0].off, iov[0].len);
sha256_final (&hd);
memcpy (outbuf, hd.bctx.buf, 28);
}
/*
Self-test section.
*/
static gpg_err_code_t
selftests_sha224 (int extended, selftest_report_func_t report)
{
const char *what;
const char *errtxt;
what = "short string";
errtxt = _gcry_hash_selftest_check_one
(GCRY_MD_SHA224, 0,
"abc", 3,
"\x23\x09\x7d\x22\x34\x05\xd8\x22\x86\x42\xa4\x77\xbd\xa2\x55\xb3"
"\x2a\xad\xbc\xe4\xbd\xa0\xb3\xf7\xe3\x6c\x9d\xa7", 28);
if (errtxt)
goto failed;
if (extended)
{
what = "long string";
errtxt = _gcry_hash_selftest_check_one
(GCRY_MD_SHA224, 0,
"abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", 56,
"\x75\x38\x8b\x16\x51\x27\x76\xcc\x5d\xba\x5d\xa1\xfd\x89\x01\x50"
"\xb0\xc6\x45\x5c\xb4\xf5\x8b\x19\x52\x52\x25\x25", 28);
if (errtxt)
goto failed;
what = "one million \"a\"";
errtxt = _gcry_hash_selftest_check_one
(GCRY_MD_SHA224, 1,
NULL, 0,
"\x20\x79\x46\x55\x98\x0c\x91\xd8\xbb\xb4\xc1\xea\x97\x61\x8a\x4b"
"\xf0\x3f\x42\x58\x19\x48\xb2\xee\x4e\xe7\xad\x67", 28);
if (errtxt)
goto failed;
}
return 0; /* Succeeded. */
failed:
if (report)
report ("digest", GCRY_MD_SHA224, what, errtxt);
return GPG_ERR_SELFTEST_FAILED;
}
static gpg_err_code_t
selftests_sha256 (int extended, selftest_report_func_t report)
{
const char *what;
const char *errtxt;
what = "short string";
errtxt = _gcry_hash_selftest_check_one
(GCRY_MD_SHA256, 0,
"abc", 3,
"\xba\x78\x16\xbf\x8f\x01\xcf\xea\x41\x41\x40\xde\x5d\xae\x22\x23"
"\xb0\x03\x61\xa3\x96\x17\x7a\x9c\xb4\x10\xff\x61\xf2\x00\x15\xad", 32);
if (errtxt)
goto failed;
if (extended)
{
what = "long string";
errtxt = _gcry_hash_selftest_check_one
(GCRY_MD_SHA256, 0,
"abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", 56,
"\x24\x8d\x6a\x61\xd2\x06\x38\xb8\xe5\xc0\x26\x93\x0c\x3e\x60\x39"
"\xa3\x3c\xe4\x59\x64\xff\x21\x67\xf6\xec\xed\xd4\x19\xdb\x06\xc1",
32);
if (errtxt)
goto failed;
what = "one million \"a\"";
errtxt = _gcry_hash_selftest_check_one
(GCRY_MD_SHA256, 1,
NULL, 0,
"\xcd\xc7\x6e\x5c\x99\x14\xfb\x92\x81\xa1\xc7\xe2\x84\xd7\x3e\x67"
"\xf1\x80\x9a\x48\xa4\x97\x20\x0e\x04\x6d\x39\xcc\xc7\x11\x2c\xd0",
32);
if (errtxt)
goto failed;
}
return 0; /* Succeeded. */
failed:
if (report)
report ("digest", GCRY_MD_SHA256, what, errtxt);
return GPG_ERR_SELFTEST_FAILED;
}
/* Run a full self-test for ALGO and return 0 on success. */
static gpg_err_code_t
run_selftests (int algo, int extended, selftest_report_func_t report)
{
gpg_err_code_t ec;
switch (algo)
{
case GCRY_MD_SHA224:
ec = selftests_sha224 (extended, report);
break;
case GCRY_MD_SHA256:
ec = selftests_sha256 (extended, report);
break;
default:
ec = GPG_ERR_DIGEST_ALGO;
break;
}
return ec;
}
static byte asn224[19] = /* Object ID is 2.16.840.1.101.3.4.2.4 */
{ 0x30, 0x2D, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48,
0x01, 0x65, 0x03, 0x04, 0x02, 0x04, 0x05, 0x00, 0x04,
0x1C
};
static gcry_md_oid_spec_t oid_spec_sha224[] =
{
/* From RFC3874, Section 4 */
{ "2.16.840.1.101.3.4.2.4" },
{ NULL },
};
static byte asn256[19] = /* Object ID is 2.16.840.1.101.3.4.2.1 */
{ 0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86,
0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05,
0x00, 0x04, 0x20 };
static gcry_md_oid_spec_t oid_spec_sha256[] =
{
/* According to the OpenPGP draft rfc2440-bis06 */
{ "2.16.840.1.101.3.4.2.1" },
/* PKCS#1 sha256WithRSAEncryption */
{ "1.2.840.113549.1.1.11" },
{ NULL },
};
gcry_md_spec_t _gcry_digest_spec_sha224 =
{
GCRY_MD_SHA224, {0, 1},
"SHA224", asn224, DIM (asn224), oid_spec_sha224, 28,
sha224_init, _gcry_md_block_write, sha256_final, sha256_read, NULL,
_gcry_sha224_hash_buffer, _gcry_sha224_hash_buffers,
sizeof (SHA256_CONTEXT),
run_selftests
};
gcry_md_spec_t _gcry_digest_spec_sha256 =
{
GCRY_MD_SHA256, {0, 1},
"SHA256", asn256, DIM (asn256), oid_spec_sha256, 32,
sha256_init, _gcry_md_block_write, sha256_final, sha256_read, NULL,
_gcry_sha256_hash_buffer, _gcry_sha256_hash_buffers,
sizeof (SHA256_CONTEXT),
run_selftests
};