189 строки
4.5 KiB
C
189 строки
4.5 KiB
C
/* mpi-mod.c - Modular reduction
|
|
Copyright (C) 1998, 1999, 2001, 2002, 2003,
|
|
2007 Free Software Foundation, Inc.
|
|
|
|
This file is part of Libgcrypt.
|
|
|
|
Libgcrypt is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU Lesser General Public License as
|
|
published by the Free Software Foundation; either version 2.1 of
|
|
the License, or (at your option) any later version.
|
|
|
|
Libgcrypt is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
|
|
USA. */
|
|
|
|
|
|
#include <config.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
|
|
#include "mpi-internal.h"
|
|
#include "longlong.h"
|
|
#include "g10lib.h"
|
|
|
|
|
|
/* Context used with Barrett reduction. */
|
|
struct barrett_ctx_s
|
|
{
|
|
gcry_mpi_t m; /* The modulus - may not be modified. */
|
|
int m_copied; /* If true, M needs to be released. */
|
|
int k;
|
|
gcry_mpi_t y;
|
|
gcry_mpi_t r1; /* Helper MPI. */
|
|
gcry_mpi_t r2; /* Helper MPI. */
|
|
gcry_mpi_t r3; /* Helper MPI allocated on demand. */
|
|
};
|
|
|
|
|
|
|
|
void
|
|
_gcry_mpi_mod (gcry_mpi_t rem, gcry_mpi_t dividend, gcry_mpi_t divisor)
|
|
{
|
|
_gcry_mpi_fdiv_r (rem, dividend, divisor);
|
|
}
|
|
|
|
|
|
/* This function returns a new context for Barrett based operations on
|
|
the modulus M. This context needs to be released using
|
|
_gcry_mpi_barrett_free. If COPY is true M will be transferred to
|
|
the context and the user may change M. If COPY is false, M may not
|
|
be changed until gcry_mpi_barrett_free has been called. */
|
|
mpi_barrett_t
|
|
_gcry_mpi_barrett_init (gcry_mpi_t m, int copy)
|
|
{
|
|
mpi_barrett_t ctx;
|
|
gcry_mpi_t tmp;
|
|
|
|
mpi_normalize (m);
|
|
ctx = xcalloc (1, sizeof *ctx);
|
|
|
|
if (copy)
|
|
{
|
|
ctx->m = mpi_copy (m);
|
|
ctx->m_copied = 1;
|
|
}
|
|
else
|
|
ctx->m = m;
|
|
|
|
ctx->k = mpi_get_nlimbs (m);
|
|
tmp = mpi_alloc (ctx->k + 1);
|
|
|
|
/* Barrett precalculation: y = floor(b^(2k) / m). */
|
|
mpi_set_ui (tmp, 1);
|
|
mpi_lshift_limbs (tmp, 2 * ctx->k);
|
|
mpi_fdiv_q (tmp, tmp, m);
|
|
|
|
ctx->y = tmp;
|
|
ctx->r1 = mpi_alloc ( 2 * ctx->k + 1 );
|
|
ctx->r2 = mpi_alloc ( 2 * ctx->k + 1 );
|
|
|
|
return ctx;
|
|
}
|
|
|
|
void
|
|
_gcry_mpi_barrett_free (mpi_barrett_t ctx)
|
|
{
|
|
if (ctx)
|
|
{
|
|
mpi_free (ctx->y);
|
|
mpi_free (ctx->r1);
|
|
mpi_free (ctx->r2);
|
|
if (ctx->r3)
|
|
mpi_free (ctx->r3);
|
|
if (ctx->m_copied)
|
|
mpi_free (ctx->m);
|
|
xfree (ctx);
|
|
}
|
|
}
|
|
|
|
|
|
/* R = X mod M
|
|
|
|
Using Barrett reduction. Before using this function
|
|
_gcry_mpi_barrett_init must have been called to do the
|
|
precalculations. CTX is the context created by this precalculation
|
|
and also conveys M. If the Barret reduction could no be done a
|
|
straightforward reduction method is used.
|
|
|
|
We assume that these conditions are met:
|
|
Input: x =(x_2k-1 ...x_0)_b
|
|
m =(m_k-1 ....m_0)_b with m_k-1 != 0
|
|
Output: r = x mod m
|
|
*/
|
|
void
|
|
_gcry_mpi_mod_barrett (gcry_mpi_t r, gcry_mpi_t x, mpi_barrett_t ctx)
|
|
{
|
|
gcry_mpi_t m = ctx->m;
|
|
int k = ctx->k;
|
|
gcry_mpi_t y = ctx->y;
|
|
gcry_mpi_t r1 = ctx->r1;
|
|
gcry_mpi_t r2 = ctx->r2;
|
|
int sign;
|
|
|
|
mpi_normalize (x);
|
|
if (mpi_get_nlimbs (x) > 2*k )
|
|
{
|
|
mpi_mod (r, x, m);
|
|
return;
|
|
}
|
|
|
|
sign = x->sign;
|
|
x->sign = 0;
|
|
|
|
/* 1. q1 = floor( x / b^k-1)
|
|
* q2 = q1 * y
|
|
* q3 = floor( q2 / b^k+1 )
|
|
* Actually, we don't need qx, we can work direct on r2
|
|
*/
|
|
mpi_set ( r2, x );
|
|
mpi_rshift_limbs ( r2, k-1 );
|
|
mpi_mul ( r2, r2, y );
|
|
mpi_rshift_limbs ( r2, k+1 );
|
|
|
|
/* 2. r1 = x mod b^k+1
|
|
* r2 = q3 * m mod b^k+1
|
|
* r = r1 - r2
|
|
* 3. if r < 0 then r = r + b^k+1
|
|
*/
|
|
mpi_set ( r1, x );
|
|
if ( r1->nlimbs > k+1 ) /* Quick modulo operation. */
|
|
r1->nlimbs = k+1;
|
|
mpi_mul ( r2, r2, m );
|
|
if ( r2->nlimbs > k+1 ) /* Quick modulo operation. */
|
|
r2->nlimbs = k+1;
|
|
mpi_sub ( r, r1, r2 );
|
|
|
|
if ( mpi_has_sign ( r ) )
|
|
{
|
|
if (!ctx->r3)
|
|
{
|
|
ctx->r3 = mpi_alloc ( k + 2 );
|
|
mpi_set_ui (ctx->r3, 1);
|
|
mpi_lshift_limbs (ctx->r3, k + 1 );
|
|
}
|
|
mpi_add ( r, r, ctx->r3 );
|
|
}
|
|
|
|
/* 4. while r >= m do r = r - m */
|
|
while ( mpi_cmp( r, m ) >= 0 )
|
|
mpi_sub ( r, r, m );
|
|
|
|
x->sign = sign;
|
|
}
|
|
|
|
|
|
void
|
|
_gcry_mpi_mul_barrett (gcry_mpi_t w, gcry_mpi_t u, gcry_mpi_t v,
|
|
mpi_barrett_t ctx)
|
|
{
|
|
mpi_mul (w, u, v);
|
|
mpi_mod_barrett (w, w, ctx);
|
|
}
|