717 строки
21 KiB
C
717 строки
21 KiB
C
/*
|
|
* $Id: linkhash.c,v 1.4 2006/01/26 02:16:28 mclark Exp $
|
|
*
|
|
* Copyright (c) 2004, 2005 Metaparadigm Pte. Ltd.
|
|
* Michael Clark <michael@metaparadigm.com>
|
|
* Copyright (c) 2009 Hewlett-Packard Development Company, L.P.
|
|
*
|
|
* This library is free software; you can redistribute it and/or modify
|
|
* it under the terms of the MIT license. See COPYING for details.
|
|
*
|
|
*/
|
|
|
|
#include "config.h"
|
|
|
|
#include <assert.h>
|
|
#include <limits.h>
|
|
#include <stdarg.h>
|
|
#include <stddef.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#ifdef HAVE_ENDIAN_H
|
|
#include <endian.h> /* attempt to define endianness */
|
|
#endif
|
|
|
|
#if defined(_MSC_VER) || defined(__MINGW32__)
|
|
#define WIN32_LEAN_AND_MEAN
|
|
#include <windows.h> /* Get InterlockedCompareExchange */
|
|
#endif
|
|
|
|
#include "linkhash.h"
|
|
#include "random_seed.h"
|
|
|
|
/* hash functions */
|
|
static unsigned long lh_char_hash(const void *k);
|
|
static unsigned long lh_perllike_str_hash(const void *k);
|
|
static lh_hash_fn *char_hash_fn = lh_char_hash;
|
|
|
|
/* comparison functions */
|
|
int lh_char_equal(const void *k1, const void *k2);
|
|
int lh_ptr_equal(const void *k1, const void *k2);
|
|
|
|
int json_global_set_string_hash(const int h)
|
|
{
|
|
switch (h)
|
|
{
|
|
case JSON_C_STR_HASH_DFLT: char_hash_fn = lh_char_hash; break;
|
|
case JSON_C_STR_HASH_PERLLIKE: char_hash_fn = lh_perllike_str_hash; break;
|
|
default: return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static unsigned long lh_ptr_hash(const void *k)
|
|
{
|
|
/* CAW: refactored to be 64bit nice */
|
|
return (unsigned long)((((ptrdiff_t)k * LH_PRIME) >> 4) & ULONG_MAX);
|
|
}
|
|
|
|
int lh_ptr_equal(const void *k1, const void *k2)
|
|
{
|
|
return (k1 == k2);
|
|
}
|
|
|
|
/*
|
|
* hashlittle from lookup3.c, by Bob Jenkins, May 2006, Public Domain.
|
|
* https://burtleburtle.net/bob/c/lookup3.c
|
|
* minor modifications to make functions static so no symbols are exported
|
|
* minor modifications to compile with -Werror
|
|
*/
|
|
|
|
/*
|
|
-------------------------------------------------------------------------------
|
|
lookup3.c, by Bob Jenkins, May 2006, Public Domain.
|
|
|
|
These are functions for producing 32-bit hashes for hash table lookup.
|
|
hashword(), hashlittle(), hashlittle2(), hashbig(), mix(), and final()
|
|
are externally useful functions. Routines to test the hash are included
|
|
if SELF_TEST is defined. You can use this free for any purpose. It's in
|
|
the public domain. It has no warranty.
|
|
|
|
You probably want to use hashlittle(). hashlittle() and hashbig()
|
|
hash byte arrays. hashlittle() is faster than hashbig() on
|
|
little-endian machines. Intel and AMD are little-endian machines.
|
|
On second thought, you probably want hashlittle2(), which is identical to
|
|
hashlittle() except it returns two 32-bit hashes for the price of one.
|
|
You could implement hashbig2() if you wanted but I haven't bothered here.
|
|
|
|
If you want to find a hash of, say, exactly 7 integers, do
|
|
a = i1; b = i2; c = i3;
|
|
mix(a,b,c);
|
|
a += i4; b += i5; c += i6;
|
|
mix(a,b,c);
|
|
a += i7;
|
|
final(a,b,c);
|
|
then use c as the hash value. If you have a variable length array of
|
|
4-byte integers to hash, use hashword(). If you have a byte array (like
|
|
a character string), use hashlittle(). If you have several byte arrays, or
|
|
a mix of things, see the comments above hashlittle().
|
|
|
|
Why is this so big? I read 12 bytes at a time into 3 4-byte integers,
|
|
then mix those integers. This is fast (you can do a lot more thorough
|
|
mixing with 12*3 instructions on 3 integers than you can with 3 instructions
|
|
on 1 byte), but shoehorning those bytes into integers efficiently is messy.
|
|
-------------------------------------------------------------------------------
|
|
*/
|
|
|
|
/*
|
|
* My best guess at if you are big-endian or little-endian. This may
|
|
* need adjustment.
|
|
*/
|
|
#if (defined(__BYTE_ORDER) && defined(__LITTLE_ENDIAN) && __BYTE_ORDER == __LITTLE_ENDIAN) || \
|
|
(defined(i386) || defined(__i386__) || defined(__i486__) || defined(__i586__) || \
|
|
defined(__i686__) || defined(vax) || defined(MIPSEL))
|
|
#define HASH_LITTLE_ENDIAN 1
|
|
#define HASH_BIG_ENDIAN 0
|
|
#elif (defined(__BYTE_ORDER) && defined(__BIG_ENDIAN) && __BYTE_ORDER == __BIG_ENDIAN) || \
|
|
(defined(sparc) || defined(POWERPC) || defined(mc68000) || defined(sel))
|
|
#define HASH_LITTLE_ENDIAN 0
|
|
#define HASH_BIG_ENDIAN 1
|
|
#else
|
|
#define HASH_LITTLE_ENDIAN 0
|
|
#define HASH_BIG_ENDIAN 0
|
|
#endif
|
|
|
|
#define hashsize(n) ((uint32_t)1 << (n))
|
|
#define hashmask(n) (hashsize(n) - 1)
|
|
#define rot(x, k) (((x) << (k)) | ((x) >> (32 - (k))))
|
|
|
|
/*
|
|
-------------------------------------------------------------------------------
|
|
mix -- mix 3 32-bit values reversibly.
|
|
|
|
This is reversible, so any information in (a,b,c) before mix() is
|
|
still in (a,b,c) after mix().
|
|
|
|
If four pairs of (a,b,c) inputs are run through mix(), or through
|
|
mix() in reverse, there are at least 32 bits of the output that
|
|
are sometimes the same for one pair and different for another pair.
|
|
This was tested for:
|
|
* pairs that differed by one bit, by two bits, in any combination
|
|
of top bits of (a,b,c), or in any combination of bottom bits of
|
|
(a,b,c).
|
|
* "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
|
|
the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
|
|
is commonly produced by subtraction) look like a single 1-bit
|
|
difference.
|
|
* the base values were pseudorandom, all zero but one bit set, or
|
|
all zero plus a counter that starts at zero.
|
|
|
|
Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that
|
|
satisfy this are
|
|
4 6 8 16 19 4
|
|
9 15 3 18 27 15
|
|
14 9 3 7 17 3
|
|
Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing
|
|
for "differ" defined as + with a one-bit base and a two-bit delta. I
|
|
used https://burtleburtle.net/bob/hash/avalanche.html to choose
|
|
the operations, constants, and arrangements of the variables.
|
|
|
|
This does not achieve avalanche. There are input bits of (a,b,c)
|
|
that fail to affect some output bits of (a,b,c), especially of a. The
|
|
most thoroughly mixed value is c, but it doesn't really even achieve
|
|
avalanche in c.
|
|
|
|
This allows some parallelism. Read-after-writes are good at doubling
|
|
the number of bits affected, so the goal of mixing pulls in the opposite
|
|
direction as the goal of parallelism. I did what I could. Rotates
|
|
seem to cost as much as shifts on every machine I could lay my hands
|
|
on, and rotates are much kinder to the top and bottom bits, so I used
|
|
rotates.
|
|
-------------------------------------------------------------------------------
|
|
*/
|
|
/* clang-format off */
|
|
#define mix(a,b,c) \
|
|
{ \
|
|
a -= c; a ^= rot(c, 4); c += b; \
|
|
b -= a; b ^= rot(a, 6); a += c; \
|
|
c -= b; c ^= rot(b, 8); b += a; \
|
|
a -= c; a ^= rot(c,16); c += b; \
|
|
b -= a; b ^= rot(a,19); a += c; \
|
|
c -= b; c ^= rot(b, 4); b += a; \
|
|
}
|
|
/* clang-format on */
|
|
|
|
/*
|
|
-------------------------------------------------------------------------------
|
|
final -- final mixing of 3 32-bit values (a,b,c) into c
|
|
|
|
Pairs of (a,b,c) values differing in only a few bits will usually
|
|
produce values of c that look totally different. This was tested for
|
|
* pairs that differed by one bit, by two bits, in any combination
|
|
of top bits of (a,b,c), or in any combination of bottom bits of
|
|
(a,b,c).
|
|
* "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
|
|
the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
|
|
is commonly produced by subtraction) look like a single 1-bit
|
|
difference.
|
|
* the base values were pseudorandom, all zero but one bit set, or
|
|
all zero plus a counter that starts at zero.
|
|
|
|
These constants passed:
|
|
14 11 25 16 4 14 24
|
|
12 14 25 16 4 14 24
|
|
and these came close:
|
|
4 8 15 26 3 22 24
|
|
10 8 15 26 3 22 24
|
|
11 8 15 26 3 22 24
|
|
-------------------------------------------------------------------------------
|
|
*/
|
|
/* clang-format off */
|
|
#define final(a,b,c) \
|
|
{ \
|
|
c ^= b; c -= rot(b,14); \
|
|
a ^= c; a -= rot(c,11); \
|
|
b ^= a; b -= rot(a,25); \
|
|
c ^= b; c -= rot(b,16); \
|
|
a ^= c; a -= rot(c,4); \
|
|
b ^= a; b -= rot(a,14); \
|
|
c ^= b; c -= rot(b,24); \
|
|
}
|
|
/* clang-format on */
|
|
|
|
/*
|
|
-------------------------------------------------------------------------------
|
|
hashlittle() -- hash a variable-length key into a 32-bit value
|
|
k : the key (the unaligned variable-length array of bytes)
|
|
length : the length of the key, counting by bytes
|
|
initval : can be any 4-byte value
|
|
Returns a 32-bit value. Every bit of the key affects every bit of
|
|
the return value. Two keys differing by one or two bits will have
|
|
totally different hash values.
|
|
|
|
The best hash table sizes are powers of 2. There is no need to do
|
|
mod a prime (mod is sooo slow!). If you need less than 32 bits,
|
|
use a bitmask. For example, if you need only 10 bits, do
|
|
h = (h & hashmask(10));
|
|
In which case, the hash table should have hashsize(10) elements.
|
|
|
|
If you are hashing n strings (uint8_t **)k, do it like this:
|
|
for (i=0, h=0; i<n; ++i) h = hashlittle( k[i], len[i], h);
|
|
|
|
By Bob Jenkins, 2006. bob_jenkins@burtleburtle.net. You may use this
|
|
code any way you wish, private, educational, or commercial. It's free.
|
|
|
|
Use for hash table lookup, or anything where one collision in 2^^32 is
|
|
acceptable. Do NOT use for cryptographic purposes.
|
|
-------------------------------------------------------------------------------
|
|
*/
|
|
|
|
/* clang-format off */
|
|
static uint32_t hashlittle(const void *key, size_t length, uint32_t initval)
|
|
{
|
|
uint32_t a,b,c; /* internal state */
|
|
union
|
|
{
|
|
const void *ptr;
|
|
size_t i;
|
|
} u; /* needed for Mac Powerbook G4 */
|
|
|
|
/* Set up the internal state */
|
|
a = b = c = 0xdeadbeef + ((uint32_t)length) + initval;
|
|
|
|
u.ptr = key;
|
|
if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) {
|
|
const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */
|
|
|
|
/*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
|
|
while (length > 12)
|
|
{
|
|
a += k[0];
|
|
b += k[1];
|
|
c += k[2];
|
|
mix(a,b,c);
|
|
length -= 12;
|
|
k += 3;
|
|
}
|
|
|
|
/*----------------------------- handle the last (probably partial) block */
|
|
/*
|
|
* "k[2]&0xffffff" actually reads beyond the end of the string, but
|
|
* then masks off the part it's not allowed to read. Because the
|
|
* string is aligned, the masked-off tail is in the same word as the
|
|
* rest of the string. Every machine with memory protection I've seen
|
|
* does it on word boundaries, so is OK with this. But VALGRIND will
|
|
* still catch it and complain. The masking trick does make the hash
|
|
* noticeably faster for short strings (like English words).
|
|
* AddressSanitizer is similarly picky about overrunning
|
|
* the buffer. (https://clang.llvm.org/docs/AddressSanitizer.html)
|
|
*/
|
|
#ifdef VALGRIND
|
|
#define PRECISE_MEMORY_ACCESS 1
|
|
#elif defined(__SANITIZE_ADDRESS__) /* GCC's ASAN */
|
|
#define PRECISE_MEMORY_ACCESS 1
|
|
#elif defined(__has_feature)
|
|
#if __has_feature(address_sanitizer) /* Clang's ASAN */
|
|
#define PRECISE_MEMORY_ACCESS 1
|
|
#endif
|
|
#endif
|
|
#ifndef PRECISE_MEMORY_ACCESS
|
|
|
|
switch(length)
|
|
{
|
|
case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
|
|
case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break;
|
|
case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break;
|
|
case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break;
|
|
case 8 : b+=k[1]; a+=k[0]; break;
|
|
case 7 : b+=k[1]&0xffffff; a+=k[0]; break;
|
|
case 6 : b+=k[1]&0xffff; a+=k[0]; break;
|
|
case 5 : b+=k[1]&0xff; a+=k[0]; break;
|
|
case 4 : a+=k[0]; break;
|
|
case 3 : a+=k[0]&0xffffff; break;
|
|
case 2 : a+=k[0]&0xffff; break;
|
|
case 1 : a+=k[0]&0xff; break;
|
|
case 0 : return c; /* zero length strings require no mixing */
|
|
}
|
|
|
|
#else /* make valgrind happy */
|
|
|
|
const uint8_t *k8 = (const uint8_t *)k;
|
|
switch(length)
|
|
{
|
|
case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
|
|
case 11: c+=((uint32_t)k8[10])<<16; /* fall through */
|
|
case 10: c+=((uint32_t)k8[9])<<8; /* fall through */
|
|
case 9 : c+=k8[8]; /* fall through */
|
|
case 8 : b+=k[1]; a+=k[0]; break;
|
|
case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */
|
|
case 6 : b+=((uint32_t)k8[5])<<8; /* fall through */
|
|
case 5 : b+=k8[4]; /* fall through */
|
|
case 4 : a+=k[0]; break;
|
|
case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */
|
|
case 2 : a+=((uint32_t)k8[1])<<8; /* fall through */
|
|
case 1 : a+=k8[0]; break;
|
|
case 0 : return c;
|
|
}
|
|
|
|
#endif /* !valgrind */
|
|
|
|
}
|
|
else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0))
|
|
{
|
|
const uint16_t *k = (const uint16_t *)key; /* read 16-bit chunks */
|
|
const uint8_t *k8;
|
|
|
|
/*--------------- all but last block: aligned reads and different mixing */
|
|
while (length > 12)
|
|
{
|
|
a += k[0] + (((uint32_t)k[1])<<16);
|
|
b += k[2] + (((uint32_t)k[3])<<16);
|
|
c += k[4] + (((uint32_t)k[5])<<16);
|
|
mix(a,b,c);
|
|
length -= 12;
|
|
k += 6;
|
|
}
|
|
|
|
/*----------------------------- handle the last (probably partial) block */
|
|
k8 = (const uint8_t *)k;
|
|
switch(length)
|
|
{
|
|
case 12: c+=k[4]+(((uint32_t)k[5])<<16);
|
|
b+=k[2]+(((uint32_t)k[3])<<16);
|
|
a+=k[0]+(((uint32_t)k[1])<<16);
|
|
break;
|
|
case 11: c+=((uint32_t)k8[10])<<16; /* fall through */
|
|
case 10: c+=k[4];
|
|
b+=k[2]+(((uint32_t)k[3])<<16);
|
|
a+=k[0]+(((uint32_t)k[1])<<16);
|
|
break;
|
|
case 9 : c+=k8[8]; /* fall through */
|
|
case 8 : b+=k[2]+(((uint32_t)k[3])<<16);
|
|
a+=k[0]+(((uint32_t)k[1])<<16);
|
|
break;
|
|
case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */
|
|
case 6 : b+=k[2];
|
|
a+=k[0]+(((uint32_t)k[1])<<16);
|
|
break;
|
|
case 5 : b+=k8[4]; /* fall through */
|
|
case 4 : a+=k[0]+(((uint32_t)k[1])<<16);
|
|
break;
|
|
case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */
|
|
case 2 : a+=k[0];
|
|
break;
|
|
case 1 : a+=k8[0];
|
|
break;
|
|
case 0 : return c; /* zero length requires no mixing */
|
|
}
|
|
|
|
}
|
|
else
|
|
{
|
|
/* need to read the key one byte at a time */
|
|
const uint8_t *k = (const uint8_t *)key;
|
|
|
|
/*--------------- all but the last block: affect some 32 bits of (a,b,c) */
|
|
while (length > 12)
|
|
{
|
|
a += k[0];
|
|
a += ((uint32_t)k[1])<<8;
|
|
a += ((uint32_t)k[2])<<16;
|
|
a += ((uint32_t)k[3])<<24;
|
|
b += k[4];
|
|
b += ((uint32_t)k[5])<<8;
|
|
b += ((uint32_t)k[6])<<16;
|
|
b += ((uint32_t)k[7])<<24;
|
|
c += k[8];
|
|
c += ((uint32_t)k[9])<<8;
|
|
c += ((uint32_t)k[10])<<16;
|
|
c += ((uint32_t)k[11])<<24;
|
|
mix(a,b,c);
|
|
length -= 12;
|
|
k += 12;
|
|
}
|
|
|
|
/*-------------------------------- last block: affect all 32 bits of (c) */
|
|
switch(length) /* all the case statements fall through */
|
|
{
|
|
case 12: c+=((uint32_t)k[11])<<24; /* FALLTHRU */
|
|
case 11: c+=((uint32_t)k[10])<<16; /* FALLTHRU */
|
|
case 10: c+=((uint32_t)k[9])<<8; /* FALLTHRU */
|
|
case 9 : c+=k[8]; /* FALLTHRU */
|
|
case 8 : b+=((uint32_t)k[7])<<24; /* FALLTHRU */
|
|
case 7 : b+=((uint32_t)k[6])<<16; /* FALLTHRU */
|
|
case 6 : b+=((uint32_t)k[5])<<8; /* FALLTHRU */
|
|
case 5 : b+=k[4]; /* FALLTHRU */
|
|
case 4 : a+=((uint32_t)k[3])<<24; /* FALLTHRU */
|
|
case 3 : a+=((uint32_t)k[2])<<16; /* FALLTHRU */
|
|
case 2 : a+=((uint32_t)k[1])<<8; /* FALLTHRU */
|
|
case 1 : a+=k[0];
|
|
break;
|
|
case 0 : return c;
|
|
}
|
|
}
|
|
|
|
final(a,b,c);
|
|
return c;
|
|
}
|
|
/* clang-format on */
|
|
|
|
/* a simple hash function similar to what perl does for strings.
|
|
* for good results, the string should not be excessively large.
|
|
*/
|
|
static unsigned long lh_perllike_str_hash(const void *k)
|
|
{
|
|
const char *rkey = (const char *)k;
|
|
unsigned hashval = 1;
|
|
|
|
while (*rkey)
|
|
hashval = hashval * 33 + *rkey++;
|
|
|
|
return hashval;
|
|
}
|
|
|
|
static unsigned long lh_char_hash(const void *k)
|
|
{
|
|
#if defined _MSC_VER || defined __MINGW32__
|
|
#define RANDOM_SEED_TYPE LONG
|
|
#else
|
|
#define RANDOM_SEED_TYPE int
|
|
#endif
|
|
static volatile RANDOM_SEED_TYPE random_seed = -1;
|
|
|
|
if (random_seed == -1)
|
|
{
|
|
RANDOM_SEED_TYPE seed;
|
|
/* we can't use -1 as it is the uninitialized sentinel */
|
|
while ((seed = json_c_get_random_seed()) == -1) {}
|
|
#if SIZEOF_INT == 8 && defined __GCC_HAVE_SYNC_COMPARE_AND_SWAP_8
|
|
#define USE_SYNC_COMPARE_AND_SWAP 1
|
|
#endif
|
|
#if SIZEOF_INT == 4 && defined __GCC_HAVE_SYNC_COMPARE_AND_SWAP_4
|
|
#define USE_SYNC_COMPARE_AND_SWAP 1
|
|
#endif
|
|
#if SIZEOF_INT == 2 && defined __GCC_HAVE_SYNC_COMPARE_AND_SWAP_2
|
|
#define USE_SYNC_COMPARE_AND_SWAP 1
|
|
#endif
|
|
#if defined USE_SYNC_COMPARE_AND_SWAP
|
|
(void)__sync_val_compare_and_swap(&random_seed, -1, seed);
|
|
#elif defined _MSC_VER || defined __MINGW32__
|
|
InterlockedCompareExchange(&random_seed, seed, -1);
|
|
#else
|
|
//#warning "racy random seed initialization if used by multiple threads"
|
|
random_seed = seed; /* potentially racy */
|
|
#endif
|
|
}
|
|
|
|
return hashlittle((const char *)k, strlen((const char *)k), (uint32_t)random_seed);
|
|
}
|
|
|
|
int lh_char_equal(const void *k1, const void *k2)
|
|
{
|
|
return (strcmp((const char *)k1, (const char *)k2) == 0);
|
|
}
|
|
|
|
struct lh_table *lh_table_new(int size, lh_entry_free_fn *free_fn, lh_hash_fn *hash_fn,
|
|
lh_equal_fn *equal_fn)
|
|
{
|
|
int i;
|
|
struct lh_table *t;
|
|
|
|
/* Allocate space for elements to avoid divisions by zero. */
|
|
assert(size > 0);
|
|
t = (struct lh_table *)calloc(1, sizeof(struct lh_table));
|
|
if (!t)
|
|
return NULL;
|
|
|
|
t->count = 0;
|
|
t->size = size;
|
|
t->table = (struct lh_entry *)calloc(size, sizeof(struct lh_entry));
|
|
if (!t->table)
|
|
{
|
|
free(t);
|
|
return NULL;
|
|
}
|
|
t->free_fn = free_fn;
|
|
t->hash_fn = hash_fn;
|
|
t->equal_fn = equal_fn;
|
|
for (i = 0; i < size; i++)
|
|
t->table[i].k = LH_EMPTY;
|
|
return t;
|
|
}
|
|
|
|
struct lh_table *lh_kchar_table_new(int size, lh_entry_free_fn *free_fn)
|
|
{
|
|
return lh_table_new(size, free_fn, char_hash_fn, lh_char_equal);
|
|
}
|
|
|
|
struct lh_table *lh_kptr_table_new(int size, lh_entry_free_fn *free_fn)
|
|
{
|
|
return lh_table_new(size, free_fn, lh_ptr_hash, lh_ptr_equal);
|
|
}
|
|
|
|
int lh_table_resize(struct lh_table *t, int new_size)
|
|
{
|
|
struct lh_table *new_t;
|
|
struct lh_entry *ent;
|
|
|
|
new_t = lh_table_new(new_size, NULL, t->hash_fn, t->equal_fn);
|
|
if (new_t == NULL)
|
|
return -1;
|
|
|
|
for (ent = t->head; ent != NULL; ent = ent->next)
|
|
{
|
|
unsigned long h = lh_get_hash(new_t, ent->k);
|
|
unsigned int opts = 0;
|
|
if (ent->k_is_constant)
|
|
opts = JSON_C_OBJECT_ADD_CONSTANT_KEY;
|
|
if (lh_table_insert_w_hash(new_t, ent->k, ent->v, h, opts) != 0)
|
|
{
|
|
lh_table_free(new_t);
|
|
return -1;
|
|
}
|
|
}
|
|
free(t->table);
|
|
t->table = new_t->table;
|
|
t->size = new_size;
|
|
t->head = new_t->head;
|
|
t->tail = new_t->tail;
|
|
free(new_t);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void lh_table_free(struct lh_table *t)
|
|
{
|
|
struct lh_entry *c;
|
|
if (t->free_fn)
|
|
{
|
|
for (c = t->head; c != NULL; c = c->next)
|
|
t->free_fn(c);
|
|
}
|
|
free(t->table);
|
|
free(t);
|
|
}
|
|
|
|
int lh_table_insert_w_hash(struct lh_table *t, const void *k, const void *v, const unsigned long h,
|
|
const unsigned opts)
|
|
{
|
|
unsigned long n;
|
|
|
|
if (t->count >= t->size * LH_LOAD_FACTOR)
|
|
{
|
|
/* Avoid signed integer overflow with large tables. */
|
|
int new_size = (t->size > INT_MAX / 2) ? INT_MAX : (t->size * 2);
|
|
if (t->size == INT_MAX || lh_table_resize(t, new_size) != 0)
|
|
return -1;
|
|
}
|
|
|
|
n = h % t->size;
|
|
|
|
while (1)
|
|
{
|
|
if (t->table[n].k == LH_EMPTY || t->table[n].k == LH_FREED)
|
|
break;
|
|
if ((int)++n == t->size)
|
|
n = 0;
|
|
}
|
|
|
|
t->table[n].k = k;
|
|
t->table[n].k_is_constant = (opts & JSON_C_OBJECT_ADD_CONSTANT_KEY);
|
|
t->table[n].v = v;
|
|
t->count++;
|
|
|
|
if (t->head == NULL)
|
|
{
|
|
t->head = t->tail = &t->table[n];
|
|
t->table[n].next = t->table[n].prev = NULL;
|
|
}
|
|
else
|
|
{
|
|
t->tail->next = &t->table[n];
|
|
t->table[n].prev = t->tail;
|
|
t->table[n].next = NULL;
|
|
t->tail = &t->table[n];
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
int lh_table_insert(struct lh_table *t, const void *k, const void *v)
|
|
{
|
|
return lh_table_insert_w_hash(t, k, v, lh_get_hash(t, k), 0);
|
|
}
|
|
|
|
struct lh_entry *lh_table_lookup_entry_w_hash(struct lh_table *t, const void *k,
|
|
const unsigned long h)
|
|
{
|
|
unsigned long n = h % t->size;
|
|
int count = 0;
|
|
|
|
while (count < t->size)
|
|
{
|
|
if (t->table[n].k == LH_EMPTY)
|
|
return NULL;
|
|
if (t->table[n].k != LH_FREED && t->equal_fn(t->table[n].k, k))
|
|
return &t->table[n];
|
|
if ((int)++n == t->size)
|
|
n = 0;
|
|
count++;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
struct lh_entry *lh_table_lookup_entry(struct lh_table *t, const void *k)
|
|
{
|
|
return lh_table_lookup_entry_w_hash(t, k, lh_get_hash(t, k));
|
|
}
|
|
|
|
json_bool lh_table_lookup_ex(struct lh_table *t, const void *k, void **v)
|
|
{
|
|
struct lh_entry *e = lh_table_lookup_entry(t, k);
|
|
if (e != NULL)
|
|
{
|
|
if (v != NULL)
|
|
*v = lh_entry_v(e);
|
|
return 1; /* key found */
|
|
}
|
|
if (v != NULL)
|
|
*v = NULL;
|
|
return 0; /* key not found */
|
|
}
|
|
|
|
int lh_table_delete_entry(struct lh_table *t, struct lh_entry *e)
|
|
{
|
|
/* CAW: fixed to be 64bit nice, still need the crazy negative case... */
|
|
ptrdiff_t n = (ptrdiff_t)(e - t->table);
|
|
|
|
/* CAW: this is bad, really bad, maybe stack goes other direction on this machine... */
|
|
if (n < 0)
|
|
{
|
|
return -2;
|
|
}
|
|
|
|
if (t->table[n].k == LH_EMPTY || t->table[n].k == LH_FREED)
|
|
return -1;
|
|
t->count--;
|
|
if (t->free_fn)
|
|
t->free_fn(e);
|
|
t->table[n].v = NULL;
|
|
t->table[n].k = LH_FREED;
|
|
if (t->tail == &t->table[n] && t->head == &t->table[n])
|
|
{
|
|
t->head = t->tail = NULL;
|
|
}
|
|
else if (t->head == &t->table[n])
|
|
{
|
|
t->head->next->prev = NULL;
|
|
t->head = t->head->next;
|
|
}
|
|
else if (t->tail == &t->table[n])
|
|
{
|
|
t->tail->prev->next = NULL;
|
|
t->tail = t->tail->prev;
|
|
}
|
|
else
|
|
{
|
|
t->table[n].prev->next = t->table[n].next;
|
|
t->table[n].next->prev = t->table[n].prev;
|
|
}
|
|
t->table[n].next = t->table[n].prev = NULL;
|
|
return 0;
|
|
}
|
|
|
|
int lh_table_delete(struct lh_table *t, const void *k)
|
|
{
|
|
struct lh_entry *e = lh_table_lookup_entry(t, k);
|
|
if (!e)
|
|
return -1;
|
|
return lh_table_delete_entry(t, e);
|
|
}
|
|
|
|
int lh_table_length(struct lh_table *t)
|
|
{
|
|
return t->count;
|
|
}
|