This commit is contained in:
Taku Kudo 2018-05-01 10:40:55 +09:00 коммит произвёл GitHub
Родитель b3ea1e21f5
Коммит 06770a3a65
Не найден ключ, соответствующий данной подписи
Идентификатор ключа GPG: 4AEE18F83AFDEB23
1 изменённых файлов: 3 добавлений и 3 удалений

Просмотреть файл

@ -6,7 +6,7 @@ SentencePiece is an unsupervised text tokenizer and detokenizer mainly for
Neural Network-based text generation systems where the vocabulary size Neural Network-based text generation systems where the vocabulary size
is predetermined prior to the neural model training. SentencePiece implements is predetermined prior to the neural model training. SentencePiece implements
**subword units** (e.g., **byte-pair-encoding (BPE)** [[Sennrich et al.](http://www.aclweb.org/anthology/P16-1162)]) and **subword units** (e.g., **byte-pair-encoding (BPE)** [[Sennrich et al.](http://www.aclweb.org/anthology/P16-1162)]) and
**unigram language model** [[Kudo.](http://acl2018.org/conference/accepted-papers/)]) **unigram language model** [[Kudo.](https://arxiv.org/abs/1804.10959)])
with the extension of direct training from raw sentences. with the extension of direct training from raw sentences.
Subword segmentation with unigram language model supports probabilistic subword sampling for **subword regularization** [[Kudo.](http://acl2018.org/conference/accepted-papers/)], a simple technique to improve the robustness of NMT model. SentencePiece allows us to make a purely end-to-end system that does not depend on language-specific pre/postp\ Subword segmentation with unigram language model supports probabilistic subword sampling for **subword regularization** [[Kudo.](http://acl2018.org/conference/accepted-papers/)], a simple technique to improve the robustness of NMT model. SentencePiece allows us to make a purely end-to-end system that does not depend on language-specific pre/postp\
rocessing. rocessing.
@ -14,7 +14,7 @@ rocessing.
**This is not an official Google product.** **This is not an official Google product.**
## Technical highlights ## Technical highlights
- **Multiple subword algorithms**: **BPE** [[Sennrich et al.](http://www.aclweb.org/anthology/P16-1162)] and **unigram language model** [[Kudo.](http://acl2018.org/conference/accepted-papers/)] are supported. - **Multiple subword algorithms**: **BPE** [[Sennrich et al.](http://www.aclweb.org/anthology/P16-1162)] and **unigram language model** [[Kudo.](https://arxiv.org/abs/1804.10959)] are supported.
- **Subword regularization**: SentencePiece implements subwrod sampling for subword regularization which helps to improve the robustness and accuracy of NMT model (Available only on unigram language model.) - **Subword regularization**: SentencePiece implements subwrod sampling for subword regularization which helps to improve the robustness and accuracy of NMT model (Available only on unigram language model.)
- **Purely data driven**: SentencePiece trains tokenization and detokenization - **Purely data driven**: SentencePiece trains tokenization and detokenization
models from only raw sentences. No pre-tokenization ([Moses tokenizer](https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl)/[MeCab](http://taku910.github.io/mecab/)/[KyTea](http://www.phontron.com/kytea/)) is required. models from only raw sentences. No pre-tokenization ([Moses tokenizer](https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl)/[MeCab](http://taku910.github.io/mecab/)/[KyTea](http://www.phontron.com/kytea/)) is required.
@ -29,7 +29,7 @@ rocessing.
|:---|:---:|:---:|:---:| |:---|:---:|:---:|:---:|
|Supported algorithm|BPE, unigram, char, word|BPE|BPE*| |Supported algorithm|BPE, unigram, char, word|BPE|BPE*|
|OSS?|Yes|Yes|Google internal| |OSS?|Yes|Yes|Google internal|
|[Subword regularization](http://acl2018.org/conference/accepted-papers/)|Yes (unigram only)|No|No| |[Subword regularization](https://arxiv.org/abs/1804.10959bb)|Yes (unigram only)|No|No|
|Python Library (pip)|Yes|No|N/A| |Python Library (pip)|Yes|No|N/A|
|C++ Library|Yes|No|N/A| |C++ Library|Yes|No|N/A|
|Pre-segmentation required?|No|Yes|Yes| |Pre-segmentation required?|No|Yes|Yes|