This commit is contained in:
Taku Kudo 2018-04-29 23:55:13 +09:00 коммит произвёл GitHub
Родитель b33be3d274
Коммит 767eac7835
Не найден ключ, соответствующий данной подписи
Идентификатор ключа GPG: 4AEE18F83AFDEB23
1 изменённых файлов: 8 добавлений и 5 удалений

Просмотреть файл

@ -5,15 +5,18 @@
SentencePiece is an unsupervised text tokenizer and detokenizer mainly for
Neural Network-based text generation systems where the vocabulary size
is predetermined prior to the neural model training. SentencePiece implements
**sub-word units** (also known as **wordpieces** [[Wu et al.](https://arxiv.org/pdf/1609.08144.pdf)]
[[Schuster et al.](https://static.googleusercontent.com/media/research.google.com/ja//pubs/archive/37842.pdf)]
and **byte-pair-encoding (BPE)** [[Sennrich et al.](http://www.aclweb.org/anthology/P16-1162)]) with the extension of direct
training from raw sentences. SentencePiece allows us to make a purely end-to-end
system that does not depend on language-specific pre/postprocessing.
**subword units** (e.g., **byte-pair-encoding (BPE)** [[Sennrich et al.](http://www.aclweb.org/anthology/P16-1162)]) and
**unigram language model** [[Kudo.](http://acl2018.org/conference/accepted-papers/)])
with the extension of direct training from raw sentences.
Subword segmentation with unigram language model supports probabilistic subword sampling for **subword regularization** [[Kudo.](http://acl2018.org/conference/accepted-papers\
/)], a simple technique to improve the robustness of NMT model. SentencePiece allows us to make a purely end-to-end system that does not depend on language-specific pre/postp\
rocessing.
**This is not an official Google product.**
## Technical highlights
- **Multiple subword algorithms**: **BPE** [[Sennrich et al.](http://www.aclweb.org/anthology/P16-1162)] and **unigram language model** [[Kudo.](http://acl2018.org/conference/accepted-papers/)] are supported.
- **Subword regularization**: SentencePiece implements subwrod sampling for subword regularization which helps to improve the robustness and accuracy of NMT model (Available only on unigram language model.)
- **Purely data driven**: SentencePiece trains tokenization and detokenization
models from only raw sentences. No pre-tokenization ([Moses tokenizer](https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl)/[MeCab](http://taku910.github.io/mecab/)/[KyTea](http://www.phontron.com/kytea/)) is required.
- **Language independent**: SentencePiece treats the sentences just as sequences of Unicode characters. There is no language-dependent logic.