зеркало из https://github.com/getsops/sops.git
Add shamir dependency
This commit is contained in:
Родитель
533bc804c0
Коммит
fae5e3c0f2
|
@ -0,0 +1 @@
|
|||
Forked from [Vault](https://github.com/hashicorp/vault/tree/master/shamir)
|
|
@ -0,0 +1,260 @@
|
|||
package shamir
|
||||
|
||||
import (
|
||||
"crypto/rand"
|
||||
"crypto/subtle"
|
||||
"fmt"
|
||||
mathrand "math/rand"
|
||||
"time"
|
||||
)
|
||||
|
||||
const (
|
||||
// ShareOverhead is the byte size overhead of each share
|
||||
// when using Split on a secret. This is caused by appending
|
||||
// a one byte tag to the share.
|
||||
ShareOverhead = 1
|
||||
)
|
||||
|
||||
// polynomial represents a polynomial of arbitrary degree
|
||||
type polynomial struct {
|
||||
coefficients []uint8
|
||||
}
|
||||
|
||||
// makePolynomial constructs a random polynomial of the given
|
||||
// degree but with the provided intercept value.
|
||||
func makePolynomial(intercept, degree uint8) (polynomial, error) {
|
||||
// Create a wrapper
|
||||
p := polynomial{
|
||||
coefficients: make([]byte, degree+1),
|
||||
}
|
||||
|
||||
// Ensure the intercept is set
|
||||
p.coefficients[0] = intercept
|
||||
|
||||
// Assign random co-efficients to the polynomial
|
||||
if _, err := rand.Read(p.coefficients[1:]); err != nil {
|
||||
return p, err
|
||||
}
|
||||
|
||||
return p, nil
|
||||
}
|
||||
|
||||
// evaluate returns the value of the polynomial for the given x
|
||||
func (p *polynomial) evaluate(x uint8) uint8 {
|
||||
// Special case the origin
|
||||
if x == 0 {
|
||||
return p.coefficients[0]
|
||||
}
|
||||
|
||||
// Compute the polynomial value using Horner's method.
|
||||
degree := len(p.coefficients) - 1
|
||||
out := p.coefficients[degree]
|
||||
for i := degree - 1; i >= 0; i-- {
|
||||
coeff := p.coefficients[i]
|
||||
out = add(mult(out, x), coeff)
|
||||
}
|
||||
return out
|
||||
}
|
||||
|
||||
// interpolatePolynomial takes N sample points and returns
|
||||
// the value at a given x using a lagrange interpolation.
|
||||
func interpolatePolynomial(x_samples, y_samples []uint8, x uint8) uint8 {
|
||||
limit := len(x_samples)
|
||||
var result, basis uint8
|
||||
for i := 0; i < limit; i++ {
|
||||
basis = 1
|
||||
for j := 0; j < limit; j++ {
|
||||
if i == j {
|
||||
continue
|
||||
}
|
||||
num := add(x, x_samples[j])
|
||||
denom := add(x_samples[i], x_samples[j])
|
||||
term := div(num, denom)
|
||||
basis = mult(basis, term)
|
||||
}
|
||||
group := mult(y_samples[i], basis)
|
||||
result = add(result, group)
|
||||
}
|
||||
return result
|
||||
}
|
||||
|
||||
// div divides two numbers in GF(2^8)
|
||||
func div(a, b uint8) uint8 {
|
||||
if b == 0 {
|
||||
// leaks some timing information but we don't care anyways as this
|
||||
// should never happen, hence the panic
|
||||
panic("divide by zero")
|
||||
}
|
||||
|
||||
var goodVal, zero uint8
|
||||
log_a := logTable[a]
|
||||
log_b := logTable[b]
|
||||
diff := (int(log_a) - int(log_b)) % 255
|
||||
if diff < 0 {
|
||||
diff += 255
|
||||
}
|
||||
|
||||
ret := expTable[diff]
|
||||
|
||||
// Ensure we return zero if a is zero but aren't subject to timing attacks
|
||||
goodVal = ret
|
||||
|
||||
if subtle.ConstantTimeByteEq(a, 0) == 1 {
|
||||
ret = zero
|
||||
} else {
|
||||
ret = goodVal
|
||||
}
|
||||
|
||||
return ret
|
||||
}
|
||||
|
||||
// mult multiplies two numbers in GF(2^8)
|
||||
func mult(a, b uint8) (out uint8) {
|
||||
var goodVal, zero uint8
|
||||
log_a := logTable[a]
|
||||
log_b := logTable[b]
|
||||
sum := (int(log_a) + int(log_b)) % 255
|
||||
|
||||
ret := expTable[sum]
|
||||
|
||||
// Ensure we return zero if either a or be are zero but aren't subject to
|
||||
// timing attacks
|
||||
goodVal = ret
|
||||
|
||||
if subtle.ConstantTimeByteEq(a, 0) == 1 {
|
||||
ret = zero
|
||||
} else {
|
||||
ret = goodVal
|
||||
}
|
||||
|
||||
if subtle.ConstantTimeByteEq(b, 0) == 1 {
|
||||
ret = zero
|
||||
} else {
|
||||
// This operation does not do anything logically useful. It
|
||||
// only ensures a constant number of assignments to thwart
|
||||
// timing attacks.
|
||||
goodVal = zero
|
||||
}
|
||||
|
||||
return ret
|
||||
}
|
||||
|
||||
// add combines two numbers in GF(2^8)
|
||||
// This can also be used for subtraction since it is symmetric.
|
||||
func add(a, b uint8) uint8 {
|
||||
return a ^ b
|
||||
}
|
||||
|
||||
// Split takes an arbitrarily long secret and generates a `parts`
|
||||
// number of shares, `threshold` of which are required to reconstruct
|
||||
// the secret. The parts and threshold must be at least 2, and less
|
||||
// than 256. The returned shares are each one byte longer than the secret
|
||||
// as they attach a tag used to reconstruct the secret.
|
||||
func Split(secret []byte, parts, threshold int) ([][]byte, error) {
|
||||
// Sanity check the input
|
||||
if parts < threshold {
|
||||
return nil, fmt.Errorf("parts cannot be less than threshold")
|
||||
}
|
||||
if parts > 255 {
|
||||
return nil, fmt.Errorf("parts cannot exceed 255")
|
||||
}
|
||||
if threshold < 2 {
|
||||
return nil, fmt.Errorf("threshold must be at least 2")
|
||||
}
|
||||
if threshold > 255 {
|
||||
return nil, fmt.Errorf("threshold cannot exceed 255")
|
||||
}
|
||||
if len(secret) == 0 {
|
||||
return nil, fmt.Errorf("cannot split an empty secret")
|
||||
}
|
||||
|
||||
// Generate random list of x coordinates
|
||||
mathrand.Seed(time.Now().UnixNano())
|
||||
xCoordinates := mathrand.Perm(255)
|
||||
|
||||
// Allocate the output array, initialize the final byte
|
||||
// of the output with the offset. The representation of each
|
||||
// output is {y1, y2, .., yN, x}.
|
||||
out := make([][]byte, parts)
|
||||
for idx := range out {
|
||||
out[idx] = make([]byte, len(secret)+1)
|
||||
out[idx][len(secret)] = uint8(xCoordinates[idx]) + 1
|
||||
}
|
||||
|
||||
// Construct a random polynomial for each byte of the secret.
|
||||
// Because we are using a field of size 256, we can only represent
|
||||
// a single byte as the intercept of the polynomial, so we must
|
||||
// use a new polynomial for each byte.
|
||||
for idx, val := range secret {
|
||||
p, err := makePolynomial(val, uint8(threshold-1))
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("failed to generate polynomial: %v", err)
|
||||
}
|
||||
|
||||
// Generate a `parts` number of (x,y) pairs
|
||||
// We cheat by encoding the x value once as the final index,
|
||||
// so that it only needs to be stored once.
|
||||
for i := 0; i < parts; i++ {
|
||||
x := uint8(xCoordinates[i]) + 1
|
||||
y := p.evaluate(x)
|
||||
out[i][idx] = y
|
||||
}
|
||||
}
|
||||
|
||||
// Return the encoded secrets
|
||||
return out, nil
|
||||
}
|
||||
|
||||
// Combine is used to reverse a Split and reconstruct a secret
|
||||
// once a `threshold` number of parts are available.
|
||||
func Combine(parts [][]byte) ([]byte, error) {
|
||||
// Verify enough parts provided
|
||||
if len(parts) < 2 {
|
||||
return nil, fmt.Errorf("less than two parts cannot be used to reconstruct the secret")
|
||||
}
|
||||
|
||||
// Verify the parts are all the same length
|
||||
firstPartLen := len(parts[0])
|
||||
if firstPartLen < 2 {
|
||||
return nil, fmt.Errorf("parts must be at least two bytes")
|
||||
}
|
||||
for i := 1; i < len(parts); i++ {
|
||||
if len(parts[i]) != firstPartLen {
|
||||
return nil, fmt.Errorf("all parts must be the same length")
|
||||
}
|
||||
}
|
||||
|
||||
// Create a buffer to store the reconstructed secret
|
||||
secret := make([]byte, firstPartLen-1)
|
||||
|
||||
// Buffer to store the samples
|
||||
x_samples := make([]uint8, len(parts))
|
||||
y_samples := make([]uint8, len(parts))
|
||||
|
||||
// Set the x value for each sample and ensure no x_sample values are the same,
|
||||
// otherwise div() can be unhappy
|
||||
checkMap := map[byte]bool{}
|
||||
for i, part := range parts {
|
||||
samp := part[firstPartLen-1]
|
||||
if exists := checkMap[samp]; exists {
|
||||
return nil, fmt.Errorf("duplicate part detected")
|
||||
}
|
||||
checkMap[samp] = true
|
||||
x_samples[i] = samp
|
||||
}
|
||||
|
||||
// Reconstruct each byte
|
||||
for idx := range secret {
|
||||
// Set the y value for each sample
|
||||
for i, part := range parts {
|
||||
y_samples[i] = part[idx]
|
||||
}
|
||||
|
||||
// Interpolte the polynomial and compute the value at 0
|
||||
val := interpolatePolynomial(x_samples, y_samples, 0)
|
||||
|
||||
// Evaluate the 0th value to get the intercept
|
||||
secret[idx] = val
|
||||
}
|
||||
return secret, nil
|
||||
}
|
|
@ -0,0 +1,198 @@
|
|||
package shamir
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"testing"
|
||||
)
|
||||
|
||||
func TestSplit_invalid(t *testing.T) {
|
||||
secret := []byte("test")
|
||||
|
||||
if _, err := Split(secret, 0, 0); err == nil {
|
||||
t.Fatalf("expect error")
|
||||
}
|
||||
|
||||
if _, err := Split(secret, 2, 3); err == nil {
|
||||
t.Fatalf("expect error")
|
||||
}
|
||||
|
||||
if _, err := Split(secret, 1000, 3); err == nil {
|
||||
t.Fatalf("expect error")
|
||||
}
|
||||
|
||||
if _, err := Split(secret, 10, 1); err == nil {
|
||||
t.Fatalf("expect error")
|
||||
}
|
||||
|
||||
if _, err := Split(nil, 3, 2); err == nil {
|
||||
t.Fatalf("expect error")
|
||||
}
|
||||
}
|
||||
|
||||
func TestSplit(t *testing.T) {
|
||||
secret := []byte("test")
|
||||
|
||||
out, err := Split(secret, 5, 3)
|
||||
if err != nil {
|
||||
t.Fatalf("err: %v", err)
|
||||
}
|
||||
|
||||
if len(out) != 5 {
|
||||
t.Fatalf("bad: %v", out)
|
||||
}
|
||||
|
||||
for _, share := range out {
|
||||
if len(share) != len(secret)+1 {
|
||||
t.Fatalf("bad: %v", out)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestCombine_invalid(t *testing.T) {
|
||||
// Not enough parts
|
||||
if _, err := Combine(nil); err == nil {
|
||||
t.Fatalf("should err")
|
||||
}
|
||||
|
||||
// Mis-match in length
|
||||
parts := [][]byte{
|
||||
[]byte("foo"),
|
||||
[]byte("ba"),
|
||||
}
|
||||
if _, err := Combine(parts); err == nil {
|
||||
t.Fatalf("should err")
|
||||
}
|
||||
|
||||
//Too short
|
||||
parts = [][]byte{
|
||||
[]byte("f"),
|
||||
[]byte("b"),
|
||||
}
|
||||
if _, err := Combine(parts); err == nil {
|
||||
t.Fatalf("should err")
|
||||
}
|
||||
|
||||
parts = [][]byte{
|
||||
[]byte("foo"),
|
||||
[]byte("foo"),
|
||||
}
|
||||
if _, err := Combine(parts); err == nil {
|
||||
t.Fatalf("should err")
|
||||
}
|
||||
}
|
||||
|
||||
func TestCombine(t *testing.T) {
|
||||
secret := []byte("test")
|
||||
|
||||
out, err := Split(secret, 5, 3)
|
||||
if err != nil {
|
||||
t.Fatalf("err: %v", err)
|
||||
}
|
||||
|
||||
// There is 5*4*3 possible choices,
|
||||
// we will just brute force try them all
|
||||
for i := 0; i < 5; i++ {
|
||||
for j := 0; j < 5; j++ {
|
||||
if j == i {
|
||||
continue
|
||||
}
|
||||
for k := 0; k < 5; k++ {
|
||||
if k == i || k == j {
|
||||
continue
|
||||
}
|
||||
parts := [][]byte{out[i], out[j], out[k]}
|
||||
recomb, err := Combine(parts)
|
||||
if err != nil {
|
||||
t.Fatalf("err: %v", err)
|
||||
}
|
||||
|
||||
if !bytes.Equal(recomb, secret) {
|
||||
t.Errorf("parts: (i:%d, j:%d, k:%d) %v", i, j, k, parts)
|
||||
t.Fatalf("bad: %v %v", recomb, secret)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestField_Add(t *testing.T) {
|
||||
if out := add(16, 16); out != 0 {
|
||||
t.Fatalf("Bad: %v 16", out)
|
||||
}
|
||||
|
||||
if out := add(3, 4); out != 7 {
|
||||
t.Fatalf("Bad: %v 7", out)
|
||||
}
|
||||
}
|
||||
|
||||
func TestField_Mult(t *testing.T) {
|
||||
if out := mult(3, 7); out != 9 {
|
||||
t.Fatalf("Bad: %v 9", out)
|
||||
}
|
||||
|
||||
if out := mult(3, 0); out != 0 {
|
||||
t.Fatalf("Bad: %v 0", out)
|
||||
}
|
||||
|
||||
if out := mult(0, 3); out != 0 {
|
||||
t.Fatalf("Bad: %v 0", out)
|
||||
}
|
||||
}
|
||||
|
||||
func TestField_Divide(t *testing.T) {
|
||||
if out := div(0, 7); out != 0 {
|
||||
t.Fatalf("Bad: %v 0", out)
|
||||
}
|
||||
|
||||
if out := div(3, 3); out != 1 {
|
||||
t.Fatalf("Bad: %v 1", out)
|
||||
}
|
||||
|
||||
if out := div(6, 3); out != 2 {
|
||||
t.Fatalf("Bad: %v 2", out)
|
||||
}
|
||||
}
|
||||
|
||||
func TestPolynomial_Random(t *testing.T) {
|
||||
p, err := makePolynomial(42, 2)
|
||||
if err != nil {
|
||||
t.Fatalf("err: %v", err)
|
||||
}
|
||||
|
||||
if p.coefficients[0] != 42 {
|
||||
t.Fatalf("bad: %v", p.coefficients)
|
||||
}
|
||||
}
|
||||
|
||||
func TestPolynomial_Eval(t *testing.T) {
|
||||
p, err := makePolynomial(42, 1)
|
||||
if err != nil {
|
||||
t.Fatalf("err: %v", err)
|
||||
}
|
||||
|
||||
if out := p.evaluate(0); out != 42 {
|
||||
t.Fatalf("bad: %v", out)
|
||||
}
|
||||
|
||||
out := p.evaluate(1)
|
||||
exp := add(42, mult(1, p.coefficients[1]))
|
||||
if out != exp {
|
||||
t.Fatalf("bad: %v %v %v", out, exp, p.coefficients)
|
||||
}
|
||||
}
|
||||
|
||||
func TestInterpolate_Rand(t *testing.T) {
|
||||
for i := 0; i < 256; i++ {
|
||||
p, err := makePolynomial(uint8(i), 2)
|
||||
if err != nil {
|
||||
t.Fatalf("err: %v", err)
|
||||
}
|
||||
|
||||
x_vals := []uint8{1, 2, 3}
|
||||
y_vals := []uint8{p.evaluate(1), p.evaluate(2), p.evaluate(3)}
|
||||
out := interpolatePolynomial(x_vals, y_vals, 0)
|
||||
if out != uint8(i) {
|
||||
t.Fatalf("Bad: %v %d", out, i)
|
||||
}
|
||||
}
|
||||
}
|
|
@ -0,0 +1,77 @@
|
|||
package shamir
|
||||
|
||||
// Tables taken from http://www.samiam.org/galois.html
|
||||
// They use 0xe5 (229) as the generator
|
||||
|
||||
var (
|
||||
// logTable provides the log(X)/log(g) at each index X
|
||||
logTable = [256]uint8{
|
||||
0x00, 0xff, 0xc8, 0x08, 0x91, 0x10, 0xd0, 0x36,
|
||||
0x5a, 0x3e, 0xd8, 0x43, 0x99, 0x77, 0xfe, 0x18,
|
||||
0x23, 0x20, 0x07, 0x70, 0xa1, 0x6c, 0x0c, 0x7f,
|
||||
0x62, 0x8b, 0x40, 0x46, 0xc7, 0x4b, 0xe0, 0x0e,
|
||||
0xeb, 0x16, 0xe8, 0xad, 0xcf, 0xcd, 0x39, 0x53,
|
||||
0x6a, 0x27, 0x35, 0x93, 0xd4, 0x4e, 0x48, 0xc3,
|
||||
0x2b, 0x79, 0x54, 0x28, 0x09, 0x78, 0x0f, 0x21,
|
||||
0x90, 0x87, 0x14, 0x2a, 0xa9, 0x9c, 0xd6, 0x74,
|
||||
0xb4, 0x7c, 0xde, 0xed, 0xb1, 0x86, 0x76, 0xa4,
|
||||
0x98, 0xe2, 0x96, 0x8f, 0x02, 0x32, 0x1c, 0xc1,
|
||||
0x33, 0xee, 0xef, 0x81, 0xfd, 0x30, 0x5c, 0x13,
|
||||
0x9d, 0x29, 0x17, 0xc4, 0x11, 0x44, 0x8c, 0x80,
|
||||
0xf3, 0x73, 0x42, 0x1e, 0x1d, 0xb5, 0xf0, 0x12,
|
||||
0xd1, 0x5b, 0x41, 0xa2, 0xd7, 0x2c, 0xe9, 0xd5,
|
||||
0x59, 0xcb, 0x50, 0xa8, 0xdc, 0xfc, 0xf2, 0x56,
|
||||
0x72, 0xa6, 0x65, 0x2f, 0x9f, 0x9b, 0x3d, 0xba,
|
||||
0x7d, 0xc2, 0x45, 0x82, 0xa7, 0x57, 0xb6, 0xa3,
|
||||
0x7a, 0x75, 0x4f, 0xae, 0x3f, 0x37, 0x6d, 0x47,
|
||||
0x61, 0xbe, 0xab, 0xd3, 0x5f, 0xb0, 0x58, 0xaf,
|
||||
0xca, 0x5e, 0xfa, 0x85, 0xe4, 0x4d, 0x8a, 0x05,
|
||||
0xfb, 0x60, 0xb7, 0x7b, 0xb8, 0x26, 0x4a, 0x67,
|
||||
0xc6, 0x1a, 0xf8, 0x69, 0x25, 0xb3, 0xdb, 0xbd,
|
||||
0x66, 0xdd, 0xf1, 0xd2, 0xdf, 0x03, 0x8d, 0x34,
|
||||
0xd9, 0x92, 0x0d, 0x63, 0x55, 0xaa, 0x49, 0xec,
|
||||
0xbc, 0x95, 0x3c, 0x84, 0x0b, 0xf5, 0xe6, 0xe7,
|
||||
0xe5, 0xac, 0x7e, 0x6e, 0xb9, 0xf9, 0xda, 0x8e,
|
||||
0x9a, 0xc9, 0x24, 0xe1, 0x0a, 0x15, 0x6b, 0x3a,
|
||||
0xa0, 0x51, 0xf4, 0xea, 0xb2, 0x97, 0x9e, 0x5d,
|
||||
0x22, 0x88, 0x94, 0xce, 0x19, 0x01, 0x71, 0x4c,
|
||||
0xa5, 0xe3, 0xc5, 0x31, 0xbb, 0xcc, 0x1f, 0x2d,
|
||||
0x3b, 0x52, 0x6f, 0xf6, 0x2e, 0x89, 0xf7, 0xc0,
|
||||
0x68, 0x1b, 0x64, 0x04, 0x06, 0xbf, 0x83, 0x38}
|
||||
|
||||
// expTable provides the anti-log or exponentiation value
|
||||
// for the equivalent index
|
||||
expTable = [256]uint8{
|
||||
0x01, 0xe5, 0x4c, 0xb5, 0xfb, 0x9f, 0xfc, 0x12,
|
||||
0x03, 0x34, 0xd4, 0xc4, 0x16, 0xba, 0x1f, 0x36,
|
||||
0x05, 0x5c, 0x67, 0x57, 0x3a, 0xd5, 0x21, 0x5a,
|
||||
0x0f, 0xe4, 0xa9, 0xf9, 0x4e, 0x64, 0x63, 0xee,
|
||||
0x11, 0x37, 0xe0, 0x10, 0xd2, 0xac, 0xa5, 0x29,
|
||||
0x33, 0x59, 0x3b, 0x30, 0x6d, 0xef, 0xf4, 0x7b,
|
||||
0x55, 0xeb, 0x4d, 0x50, 0xb7, 0x2a, 0x07, 0x8d,
|
||||
0xff, 0x26, 0xd7, 0xf0, 0xc2, 0x7e, 0x09, 0x8c,
|
||||
0x1a, 0x6a, 0x62, 0x0b, 0x5d, 0x82, 0x1b, 0x8f,
|
||||
0x2e, 0xbe, 0xa6, 0x1d, 0xe7, 0x9d, 0x2d, 0x8a,
|
||||
0x72, 0xd9, 0xf1, 0x27, 0x32, 0xbc, 0x77, 0x85,
|
||||
0x96, 0x70, 0x08, 0x69, 0x56, 0xdf, 0x99, 0x94,
|
||||
0xa1, 0x90, 0x18, 0xbb, 0xfa, 0x7a, 0xb0, 0xa7,
|
||||
0xf8, 0xab, 0x28, 0xd6, 0x15, 0x8e, 0xcb, 0xf2,
|
||||
0x13, 0xe6, 0x78, 0x61, 0x3f, 0x89, 0x46, 0x0d,
|
||||
0x35, 0x31, 0x88, 0xa3, 0x41, 0x80, 0xca, 0x17,
|
||||
0x5f, 0x53, 0x83, 0xfe, 0xc3, 0x9b, 0x45, 0x39,
|
||||
0xe1, 0xf5, 0x9e, 0x19, 0x5e, 0xb6, 0xcf, 0x4b,
|
||||
0x38, 0x04, 0xb9, 0x2b, 0xe2, 0xc1, 0x4a, 0xdd,
|
||||
0x48, 0x0c, 0xd0, 0x7d, 0x3d, 0x58, 0xde, 0x7c,
|
||||
0xd8, 0x14, 0x6b, 0x87, 0x47, 0xe8, 0x79, 0x84,
|
||||
0x73, 0x3c, 0xbd, 0x92, 0xc9, 0x23, 0x8b, 0x97,
|
||||
0x95, 0x44, 0xdc, 0xad, 0x40, 0x65, 0x86, 0xa2,
|
||||
0xa4, 0xcc, 0x7f, 0xec, 0xc0, 0xaf, 0x91, 0xfd,
|
||||
0xf7, 0x4f, 0x81, 0x2f, 0x5b, 0xea, 0xa8, 0x1c,
|
||||
0x02, 0xd1, 0x98, 0x71, 0xed, 0x25, 0xe3, 0x24,
|
||||
0x06, 0x68, 0xb3, 0x93, 0x2c, 0x6f, 0x3e, 0x6c,
|
||||
0x0a, 0xb8, 0xce, 0xae, 0x74, 0xb1, 0x42, 0xb4,
|
||||
0x1e, 0xd3, 0x49, 0xe9, 0x9c, 0xc8, 0xc6, 0xc7,
|
||||
0x22, 0x6e, 0xdb, 0x20, 0xbf, 0x43, 0x51, 0x52,
|
||||
0x66, 0xb2, 0x76, 0x60, 0xda, 0xc5, 0xf3, 0xf6,
|
||||
0xaa, 0xcd, 0x9a, 0xa0, 0x75, 0x54, 0x0e, 0x01}
|
||||
)
|
|
@ -0,0 +1,13 @@
|
|||
package shamir
|
||||
|
||||
import "testing"
|
||||
|
||||
func TestTables(t *testing.T) {
|
||||
for i := 1; i < 256; i++ {
|
||||
logV := logTable[i]
|
||||
expV := expTable[logV]
|
||||
if expV != uint8(i) {
|
||||
t.Fatalf("bad: %d log: %d exp: %d", i, logV, expV)
|
||||
}
|
||||
}
|
||||
}
|
2
sops.go
2
sops.go
|
@ -43,7 +43,7 @@ import (
|
|||
"strings"
|
||||
"time"
|
||||
|
||||
"github.com/hashicorp/vault/shamir"
|
||||
"go.mozilla.org/sops/shamir"
|
||||
"go.mozilla.org/sops/kms"
|
||||
"go.mozilla.org/sops/pgp"
|
||||
)
|
||||
|
|
Загрузка…
Ссылка в новой задаче