зеркало из https://github.com/mozilla/subword-nmt.git
368 строки
14 KiB
Python
Executable File
368 строки
14 KiB
Python
Executable File
#!/usr/bin/env python
|
|
# -*- coding: utf-8 -*-
|
|
# Author: Rico Sennrich
|
|
|
|
"""Use operations learned with learn_bpe.py to encode a new text.
|
|
The text will not be smaller, but use only a fixed vocabulary, with rare words
|
|
encoded as variable-length sequences of subword units.
|
|
|
|
Reference:
|
|
Rico Sennrich, Barry Haddow and Alexandra Birch (2015). Neural Machine Translation of Rare Words with Subword Units.
|
|
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (ACL 2016). Berlin, Germany.
|
|
"""
|
|
|
|
from __future__ import unicode_literals, division
|
|
|
|
import sys
|
|
import os
|
|
import inspect
|
|
import codecs
|
|
import io
|
|
import argparse
|
|
import re
|
|
import warnings
|
|
import random
|
|
|
|
|
|
# hack for python2/3 compatibility
|
|
from io import open
|
|
argparse.open = open
|
|
|
|
class BPE(object):
|
|
|
|
def __init__(self, codes, merges=-1, separator='@@', vocab=None, glossaries=None):
|
|
|
|
codes.seek(0)
|
|
offset=1
|
|
|
|
# check version information
|
|
firstline = codes.readline()
|
|
if firstline.startswith('#version:'):
|
|
self.version = tuple([int(x) for x in re.sub(r'(\.0+)*$','', firstline.split()[-1]).split(".")])
|
|
offset += 1
|
|
else:
|
|
self.version = (0, 1)
|
|
codes.seek(0)
|
|
|
|
self.bpe_codes = [tuple(item.strip('\r\n ').split(' ')) for (n, item) in enumerate(codes) if (n < merges or merges == -1)]
|
|
|
|
for i, item in enumerate(self.bpe_codes):
|
|
if len(item) != 2:
|
|
sys.stderr.write('Error: invalid line {0} in BPE codes file: {1}\n'.format(i+offset, ' '.join(item)))
|
|
sys.stderr.write('The line should exist of exactly two subword units, separated by whitespace\n')
|
|
sys.exit(1)
|
|
|
|
# some hacking to deal with duplicates (only consider first instance)
|
|
self.bpe_codes = dict([(code,i) for (i,code) in reversed(list(enumerate(self.bpe_codes)))])
|
|
|
|
self.bpe_codes_reverse = dict([(pair[0] + pair[1], pair) for pair,i in self.bpe_codes.items()])
|
|
|
|
self.separator = separator
|
|
|
|
self.vocab = vocab
|
|
|
|
self.glossaries = glossaries if glossaries else []
|
|
|
|
self.glossaries_regex = re.compile('^({})$'.format('|'.join(glossaries))) if glossaries else None
|
|
|
|
self.cache = {}
|
|
|
|
def process_line(self, line, dropout=0):
|
|
"""segment line, dealing with leading and trailing whitespace"""
|
|
|
|
out = ""
|
|
|
|
leading_whitespace = len(line)-len(line.lstrip('\r\n '))
|
|
if leading_whitespace:
|
|
out += line[:leading_whitespace]
|
|
|
|
out += self.segment(line, dropout)
|
|
|
|
trailing_whitespace = len(line)-len(line.rstrip('\r\n '))
|
|
if trailing_whitespace and trailing_whitespace != len(line):
|
|
out += line[-trailing_whitespace:]
|
|
|
|
return out
|
|
|
|
def segment(self, sentence, dropout=0):
|
|
"""segment single sentence (whitespace-tokenized string) with BPE encoding"""
|
|
segments = self.segment_tokens(sentence.strip('\r\n ').split(' '), dropout)
|
|
return ' '.join(segments)
|
|
|
|
def segment_tokens(self, tokens, dropout=0):
|
|
"""segment a sequence of tokens with BPE encoding"""
|
|
output = []
|
|
for word in tokens:
|
|
# eliminate double spaces
|
|
if not word:
|
|
continue
|
|
new_word = [out for segment in self._isolate_glossaries(word)
|
|
for out in encode(segment,
|
|
self.bpe_codes,
|
|
self.bpe_codes_reverse,
|
|
self.vocab,
|
|
self.separator,
|
|
self.version,
|
|
self.cache,
|
|
self.glossaries_regex,
|
|
dropout)]
|
|
|
|
for item in new_word[:-1]:
|
|
output.append(item + self.separator)
|
|
output.append(new_word[-1])
|
|
|
|
return output
|
|
|
|
def _isolate_glossaries(self, word):
|
|
word_segments = [word]
|
|
for gloss in self.glossaries:
|
|
word_segments = [out_segments for segment in word_segments
|
|
for out_segments in isolate_glossary(segment, gloss)]
|
|
return word_segments
|
|
|
|
def create_parser(subparsers=None):
|
|
|
|
if subparsers:
|
|
parser = subparsers.add_parser('apply-bpe',
|
|
formatter_class=argparse.RawDescriptionHelpFormatter,
|
|
description="learn BPE-based word segmentation")
|
|
else:
|
|
parser = argparse.ArgumentParser(
|
|
formatter_class=argparse.RawDescriptionHelpFormatter,
|
|
description="learn BPE-based word segmentation")
|
|
|
|
parser.add_argument(
|
|
'--input', '-i', type=argparse.FileType('r'), default=sys.stdin,
|
|
metavar='PATH',
|
|
help="Input file (default: standard input).")
|
|
parser.add_argument(
|
|
'--codes', '-c', type=argparse.FileType('r'), metavar='PATH',
|
|
required=True,
|
|
help="File with BPE codes (created by learn_bpe.py).")
|
|
parser.add_argument(
|
|
'--merges', '-m', type=int, default=-1,
|
|
metavar='INT',
|
|
help="Use this many BPE operations (<= number of learned symbols)"+
|
|
"default: Apply all the learned merge operations")
|
|
parser.add_argument(
|
|
'--output', '-o', type=argparse.FileType('w'), default=sys.stdout,
|
|
metavar='PATH',
|
|
help="Output file (default: standard output)")
|
|
parser.add_argument(
|
|
'--separator', '-s', type=str, default='@@', metavar='STR',
|
|
help="Separator between non-final subword units (default: '%(default)s'))")
|
|
parser.add_argument(
|
|
'--vocabulary', type=argparse.FileType('r'), default=None,
|
|
metavar="PATH",
|
|
help="Vocabulary file (built with get_vocab.py). If provided, this script reverts any merge operations that produce an OOV.")
|
|
parser.add_argument(
|
|
'--vocabulary-threshold', type=int, default=None,
|
|
metavar="INT",
|
|
help="Vocabulary threshold. If vocabulary is provided, any word with frequency < threshold will be treated as OOV")
|
|
parser.add_argument(
|
|
'--dropout', type=float, default=0,
|
|
metavar="P",
|
|
help="Dropout BPE merge operations with probability P (Provilkov et al., 2019). Use this on training data only.")
|
|
parser.add_argument(
|
|
'--glossaries', type=str, nargs='+', default=None,
|
|
metavar="STR",
|
|
help="Glossaries. Words matching any of the words/regex provided in glossaries will not be affected "+
|
|
"by the BPE (i.e. they will neither be broken into subwords, nor concatenated with other subwords. "+
|
|
"Can be provided as a list of words/regex after the --glossaries argument. Enclose each regex in quotes.")
|
|
|
|
return parser
|
|
|
|
def encode(orig, bpe_codes, bpe_codes_reverse, vocab, separator, version, cache, glossaries_regex=None, dropout=0):
|
|
"""Encode word based on list of BPE merge operations, which are applied consecutively
|
|
"""
|
|
|
|
if not dropout and orig in cache:
|
|
return cache[orig]
|
|
|
|
if glossaries_regex and glossaries_regex.match(orig):
|
|
cache[orig] = (orig,)
|
|
return (orig,)
|
|
|
|
if len(orig) == 1:
|
|
return orig
|
|
|
|
if version == (0, 1):
|
|
word = list(orig) + ['</w>']
|
|
elif version == (0, 2): # more consistent handling of word-final segments
|
|
word = list(orig[:-1]) + [orig[-1] + '</w>']
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
while len(word) > 1:
|
|
|
|
# get list of symbol pairs; optionally apply dropout
|
|
pairs = [(bpe_codes[pair],i,pair) for (i,pair) in enumerate(zip(word, word[1:])) if (not dropout or random.random() > dropout) and pair in bpe_codes]
|
|
|
|
if not pairs:
|
|
break
|
|
|
|
#get first merge operation in list of BPE codes
|
|
bigram = min(pairs)[2]
|
|
|
|
# find start position of all pairs that we want to merge
|
|
positions = [i for (rank,i,pair) in pairs if pair == bigram]
|
|
|
|
i = 0
|
|
new_word = []
|
|
bigram = ''.join(bigram)
|
|
for j in positions:
|
|
# merges are invalid if they start before current position. This can happen if there are overlapping pairs: (x x x -> xx x)
|
|
if j < i:
|
|
continue
|
|
new_word.extend(word[i:j]) # all symbols before merged pair
|
|
new_word.append(bigram) # merged pair
|
|
i = j+2 # continue after merged pair
|
|
new_word.extend(word[i:]) # add all symbols until end of word
|
|
word = new_word
|
|
|
|
# don't print end-of-word symbols
|
|
if word[-1] == '</w>':
|
|
word = word[:-1]
|
|
elif word[-1].endswith('</w>'):
|
|
word[-1] = word[-1][:-4]
|
|
|
|
word = tuple(word)
|
|
if vocab:
|
|
word = check_vocab_and_split(word, bpe_codes_reverse, vocab, separator)
|
|
|
|
cache[orig] = word
|
|
return word
|
|
|
|
def recursive_split(segment, bpe_codes, vocab, separator, final=False):
|
|
"""Recursively split segment into smaller units (by reversing BPE merges)
|
|
until all units are either in-vocabulary, or cannot be split futher."""
|
|
|
|
try:
|
|
if final:
|
|
left, right = bpe_codes[segment + '</w>']
|
|
right = right[:-4]
|
|
else:
|
|
left, right = bpe_codes[segment]
|
|
except:
|
|
#sys.stderr.write('cannot split {0} further.\n'.format(segment))
|
|
yield segment
|
|
return
|
|
|
|
if left + separator in vocab:
|
|
yield left
|
|
else:
|
|
for item in recursive_split(left, bpe_codes, vocab, separator, False):
|
|
yield item
|
|
|
|
if (final and right in vocab) or (not final and right + separator in vocab):
|
|
yield right
|
|
else:
|
|
for item in recursive_split(right, bpe_codes, vocab, separator, final):
|
|
yield item
|
|
|
|
def check_vocab_and_split(orig, bpe_codes, vocab, separator):
|
|
"""Check for each segment in word if it is in-vocabulary,
|
|
and segment OOV segments into smaller units by reversing the BPE merge operations"""
|
|
|
|
out = []
|
|
|
|
for segment in orig[:-1]:
|
|
if segment + separator in vocab:
|
|
out.append(segment)
|
|
else:
|
|
#sys.stderr.write('OOV: {0}\n'.format(segment))
|
|
for item in recursive_split(segment, bpe_codes, vocab, separator, False):
|
|
out.append(item)
|
|
|
|
segment = orig[-1]
|
|
if segment in vocab:
|
|
out.append(segment)
|
|
else:
|
|
#sys.stderr.write('OOV: {0}\n'.format(segment))
|
|
for item in recursive_split(segment, bpe_codes, vocab, separator, True):
|
|
out.append(item)
|
|
|
|
return out
|
|
|
|
|
|
def read_vocabulary(vocab_file, threshold):
|
|
"""read vocabulary file produced by get_vocab.py, and filter according to frequency threshold.
|
|
"""
|
|
|
|
vocabulary = set()
|
|
|
|
for line in vocab_file:
|
|
word, freq = line.strip('\r\n ').split(' ')
|
|
freq = int(freq)
|
|
if threshold == None or freq >= threshold:
|
|
vocabulary.add(word)
|
|
|
|
return vocabulary
|
|
|
|
def isolate_glossary(word, glossary):
|
|
"""
|
|
Isolate a glossary present inside a word.
|
|
|
|
Returns a list of subwords. In which all 'glossary' glossaries are isolated
|
|
|
|
For example, if 'USA' is the glossary and '1934USABUSA' the word, the return value is:
|
|
['1934', 'USA', 'B', 'USA']
|
|
"""
|
|
# regex equivalent of (if word == glossary or glossary not in word)
|
|
if re.match('^'+glossary+'$', word) or not re.search(glossary, word):
|
|
return [word]
|
|
else:
|
|
segments = re.split(r'({})'.format(glossary), word)
|
|
segments, ending = segments[:-1], segments[-1]
|
|
segments = list(filter(None, segments)) # Remove empty strings in regex group.
|
|
return segments + [ending.strip('\r\n ')] if ending != '' else segments
|
|
|
|
if __name__ == '__main__':
|
|
|
|
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
|
|
newdir = os.path.join(currentdir, 'subword_nmt')
|
|
if os.path.isdir(newdir):
|
|
warnings.simplefilter('default')
|
|
warnings.warn(
|
|
"this script's location has moved to {0}. This symbolic link will be removed in a future version. Please point to the new location, or install the package and use the command 'subword-nmt'".format(newdir),
|
|
DeprecationWarning
|
|
)
|
|
|
|
# python 2/3 compatibility
|
|
if sys.version_info < (3, 0):
|
|
sys.stderr = codecs.getwriter('UTF-8')(sys.stderr)
|
|
sys.stdout = codecs.getwriter('UTF-8')(sys.stdout)
|
|
sys.stdin = codecs.getreader('UTF-8')(sys.stdin)
|
|
else:
|
|
sys.stdin = io.TextIOWrapper(sys.stdin.buffer, encoding='utf-8')
|
|
sys.stderr = io.TextIOWrapper(sys.stderr.buffer, encoding='utf-8')
|
|
sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf-8', write_through=True, line_buffering=True)
|
|
|
|
parser = create_parser()
|
|
args = parser.parse_args()
|
|
|
|
# read/write files as UTF-8
|
|
args.codes = codecs.open(args.codes.name, encoding='utf-8')
|
|
if args.input.name != '<stdin>':
|
|
args.input = codecs.open(args.input.name, encoding='utf-8')
|
|
if args.output.name != '<stdout>':
|
|
args.output = codecs.open(args.output.name, 'w', encoding='utf-8')
|
|
if args.vocabulary:
|
|
args.vocabulary = codecs.open(args.vocabulary.name, encoding='utf-8')
|
|
|
|
if args.vocabulary:
|
|
vocabulary = read_vocabulary(args.vocabulary, args.vocabulary_threshold)
|
|
else:
|
|
vocabulary = None
|
|
|
|
if sys.version_info < (3, 0):
|
|
args.separator = args.separator.decode('UTF-8')
|
|
if args.glossaries:
|
|
args.glossaries = [g.decode('UTF-8') for g in args.glossaries]
|
|
|
|
|
|
bpe = BPE(args.codes, args.merges, args.separator, vocabulary, args.glossaries)
|
|
|
|
for line in args.input:
|
|
args.output.write(bpe.process_line(line, args.dropout))
|