* Fix randomization to work with negative weights

* Fix tests to take into account randomization

* Remove experiment prob from settings
This commit is contained in:
Evgeny Pavlov 2020-12-21 14:38:15 -08:00 коммит произвёл GitHub
Родитель f5693b7177
Коммит 754b402601
Не найден ключ, соответствующий данной подписи
Идентификатор ключа GPG: 4AEE18F83AFDEB23
6 изменённых файлов: 30 добавлений и 45 удалений

Просмотреть файл

@ -1,8 +1,5 @@
# Randomized tail selection of addons
The `TAAR_EXPERIMENT_PROB` sets a probability that a user is in an experiment
to get randomized recommendations.
Randomized recommendations does not mean that recommendations are
fully randomized. Weights for each recommendation are normalized to
so that the sum of weights equals 1.0.
@ -10,7 +7,3 @@ so that the sum of weights equals 1.0.
Using `numpy.random.choice` - we then select a non-uniform random
sample from the list of suggestions without replacement. Weights are
used to define a vector of probabilities.
By default - TAAR_EXPERIMENT_PROB is set to 0.0 which in effect
disables the randomization feature.

Просмотреть файл

@ -28,7 +28,7 @@ def reorder_guids(guid_weight_tuples, size=None):
if guid_weight_tuples is None or len(guid_weight_tuples) == 0:
return []
weight_list = [weight for (guid, weight) in guid_weight_tuples]
weights = np.array([weight for (guid, weight) in guid_weight_tuples])
guids = [guid for (guid, weight) in guid_weight_tuples]
guid_map = dict(zip(guids, guid_weight_tuples))
@ -36,8 +36,9 @@ def reorder_guids(guid_weight_tuples, size=None):
size = len(guids)
# Normalize the weights so that they're probabilities
total_weight = sum(weight_list)
probabilities = [w * 1.0 / total_weight for w in weight_list]
# Scale first, weights can be negative (for example, collaborative filtering similarity scores)
scaled_weights = weights - np.min(weights) + np.finfo(float).eps
probabilities = scaled_weights / np.sum(scaled_weights)
choices = np.random.choice(guids, size=size, replace=False, p=probabilities)
return [guid_map[guid] for guid in choices]

Просмотреть файл

@ -6,16 +6,13 @@ from taar.recommenders.ensemble_recommender import (
EnsembleRecommender,
is_test_client,
)
from taar.recommenders.randomizer import in_experiment, reorder_guids
from taar.recommenders.randomizer import reorder_guids
from taar.recommenders.debug import log_timer_info
from srgutil.interfaces import IMozLogging
from taar.recommenders.redis_cache import TAARCache
from taar.settings import TAAR_EXPERIMENT_PROB
import markus
metrics = markus.get_metrics("taar")
@ -60,8 +57,6 @@ class RecommendationManager:
self._redis_cache = TAARCache.get_instance(self._ctx)
self._experiment_prob = ctx.get("TAAR_EXPERIMENT_PROB", TAAR_EXPERIMENT_PROB)
@metrics.timer_decorator("profile_recommendation")
def recommend(self, client_id, limit, extra_data={}):
"""Return recommendations for the given client.
@ -79,8 +74,6 @@ class RecommendationManager:
with log_timer_info("redis read", self.logger):
extra_data["cache"] = self._redis_cache.cache_context()
results = None
if is_test_client(client_id):
# Just create a stub client_info blob
client_info = {
@ -96,8 +89,6 @@ class RecommendationManager:
)
return []
if in_experiment(client_id, self._experiment_prob):
if results is None:
# Fetch back all possible whitelisted addons for this
# client
extra_data["guid_randomization"] = True
@ -107,10 +98,5 @@ class RecommendationManager:
)
results = reorder_guids(results, limit)
else:
if results is None:
results = self._ensemble_recommender.recommend(
client_info, limit, extra_data
)
return results

Просмотреть файл

@ -45,8 +45,6 @@ TAAR_SIMILARITY_LRCURVES_KEY = config(
"TAAR_SIMILARITY_LRCURVES_KEY", default="test_similarity_lrcurves_key"
)
TAAR_EXPERIMENT_PROB = config("TAAR_EXPERIMENT_PROB", default=0.0)
# TAAR-lite configuration below

Просмотреть файл

@ -26,20 +26,23 @@ def test_reorder_guids():
np.random.seed(seed=42)
guid_weight_tuples = [
("guid1", 0.01),
("guid0", -0.60),
("guid1", -0.30),
("guid2", 0.09),
("guid3", 0.30),
("guid4", 0.60),
("guid4", 2.5),
]
# Run this 100 times to get the average ordering
results = []
limit = 4
for i in range(100):
results.append(reorder_guids(guid_weight_tuples))
results.append(reorder_guids(guid_weight_tuples, size=limit))
best_result = []
for i in range(4):
for i in range(limit):
best_result.append(most_frequent([row[i] for row in results])[0])
assert best_result == ["guid4", "guid3", "guid2", "guid1"]

Просмотреть файл

@ -17,6 +17,7 @@ from .mocks import MockRecommenderFactory
import operator
from functools import reduce
import numpy as np
from markus import TIMING
from markus.testing import MetricsMock
@ -116,19 +117,22 @@ def test_none_profile_returns_empty_list(test_ctx):
def test_simple_recommendation(test_ctx):
with mock_install_mock_curated_data(test_ctx):
# Fix the random seed so that we get stable results between test
# runs
np.random.seed(seed=42)
with mock_install_mock_curated_data(test_ctx):
EXPECTED_RESULTS = [
("ghi", 3430.0),
("def", 3320.0),
("ijk", 3200.0),
("hij", 3100.0),
("lmn", 420.0),
("klm", 409.99999999999994),
("hij", 3100.0),
("ijk", 3200.0),
("ghi", 3430.0),
("lmn", 420.0),
("jkl", 400.0),
("abc", 23.0),
("fgh", 22.0),
("efg", 21.0),
("efg", 21.0)
]
with MetricsMock() as mm: