feat: read automation function inputs from file
This commit is contained in:
Родитель
ae6fc85ab4
Коммит
558b25b1d1
|
@ -10,7 +10,7 @@ repos:
|
|||
- id: commitizen-branch
|
||||
stages:
|
||||
- push
|
||||
rev: 3.12.0
|
||||
rev: v3.13.0
|
||||
|
||||
- repo: https://github.com/pycqa/isort
|
||||
rev: 5.12.0
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
[tool.poetry]
|
||||
name = "specklepy"
|
||||
version = "2.17.8"
|
||||
version = "2.17.14"
|
||||
description = "The Python SDK for Speckle 2.0"
|
||||
readme = "README.md"
|
||||
authors = ["Speckle Systems <devops@speckle.systems>"]
|
||||
|
|
|
@ -4,14 +4,16 @@ Provides mechanisms to execute any function,
|
|||
that conforms to the AutomateFunction "interface"
|
||||
"""
|
||||
import json
|
||||
import os
|
||||
import sys
|
||||
import traceback
|
||||
from pathlib import Path
|
||||
from typing import Callable, Optional, TypeVar, Union, overload
|
||||
from typing import Callable, Optional, Tuple, TypeVar, Union, overload
|
||||
|
||||
from pydantic import create_model
|
||||
from pydantic.json_schema import GenerateJsonSchema
|
||||
|
||||
from speckle_automate.automation_context import AutomationContext
|
||||
from speckle_automate.schema import AutomateBase, AutomationStatus
|
||||
from speckle_automate.schema import AutomateBase, AutomationRunData, AutomationStatus
|
||||
|
||||
T = TypeVar("T", bound=AutomateBase)
|
||||
|
||||
|
@ -19,6 +21,41 @@ AutomateFunction = Callable[[AutomationContext, T], None]
|
|||
AutomateFunctionWithoutInputs = Callable[[AutomationContext], None]
|
||||
|
||||
|
||||
def _read_input_data(inputs_location: str) -> str:
|
||||
input_path = Path(inputs_location)
|
||||
if not input_path.exists():
|
||||
raise ValueError(f"Cannot find the function inputs file at {input_path}")
|
||||
|
||||
return input_path.read_text()
|
||||
|
||||
|
||||
def _parse_input_data(
|
||||
input_location: str, input_schema: Optional[type[T]]
|
||||
) -> Tuple[AutomationRunData, Optional[T], str]:
|
||||
input_json_string = _read_input_data(input_location)
|
||||
|
||||
class FunctionRunData(AutomateBase):
|
||||
speckle_token: str
|
||||
automation_run_data: AutomationRunData
|
||||
function_inputs: None = None
|
||||
|
||||
parser_model = FunctionRunData
|
||||
|
||||
if input_schema:
|
||||
parser_model = create_model(
|
||||
"FunctionRunDataWithInputs",
|
||||
function_inputs=(input_schema, ...),
|
||||
__base__=FunctionRunData,
|
||||
)
|
||||
|
||||
input_data = parser_model.model_validate_json(input_json_string)
|
||||
return (
|
||||
input_data.automation_run_data,
|
||||
input_data.function_inputs,
|
||||
input_data.speckle_token,
|
||||
)
|
||||
|
||||
|
||||
@overload
|
||||
def execute_automate_function(
|
||||
automate_function: AutomateFunction[T],
|
||||
|
@ -32,6 +69,13 @@ def execute_automate_function(automate_function: AutomateFunctionWithoutInputs)
|
|||
...
|
||||
|
||||
|
||||
class AutomateGenerateJsonSchema(GenerateJsonSchema):
|
||||
def generate(self, schema, mode="validation"):
|
||||
json_schema = super().generate(schema, mode=mode)
|
||||
json_schema["$schema"] = self.schema_dialect
|
||||
return json_schema
|
||||
|
||||
|
||||
def execute_automate_function(
|
||||
automate_function: Union[AutomateFunction[T], AutomateFunctionWithoutInputs],
|
||||
input_schema: Optional[type[T]] = None,
|
||||
|
@ -40,49 +84,44 @@ def execute_automate_function(
|
|||
# first arg is the python file name, we do not need that
|
||||
args = sys.argv[1:]
|
||||
|
||||
if len(args) < 2:
|
||||
raise ValueError("too few arguments specified need minimum 2")
|
||||
|
||||
if len(args) > 4:
|
||||
raise ValueError("too many arguments specified, max supported is 4")
|
||||
if len(args) != 2:
|
||||
raise ValueError("Incorrect number of arguments specified need 2")
|
||||
|
||||
# we rely on a command name convention to decide what to do.
|
||||
# this is here, so that the function authors do not see any of this
|
||||
command = args[0]
|
||||
command, argument = args
|
||||
|
||||
if command == "generate_schema":
|
||||
path = Path(args[1])
|
||||
path = Path(argument)
|
||||
schema = json.dumps(
|
||||
input_schema.model_json_schema(by_alias=True) if input_schema else {}
|
||||
input_schema.model_json_schema(
|
||||
by_alias=True, schema_generator=AutomateGenerateJsonSchema
|
||||
)
|
||||
if input_schema
|
||||
else {}
|
||||
)
|
||||
path.write_text(schema)
|
||||
|
||||
elif command == "run":
|
||||
automation_run_data = args[1]
|
||||
function_inputs = args[2]
|
||||
automation_run_data, function_inputs, speckle_token = _parse_input_data(
|
||||
argument, input_schema
|
||||
)
|
||||
|
||||
speckle_token = os.environ.get("SPECKLE_TOKEN", None)
|
||||
if not speckle_token and len(args) != 4:
|
||||
raise ValueError("Cannot get speckle token from arguments or environment")
|
||||
|
||||
speckle_token = speckle_token if speckle_token else args[3]
|
||||
automation_context = AutomationContext.initialize(
|
||||
automation_run_data, speckle_token
|
||||
)
|
||||
|
||||
inputs = (
|
||||
input_schema.model_validate_json(function_inputs)
|
||||
if input_schema
|
||||
else input_schema
|
||||
)
|
||||
|
||||
if inputs:
|
||||
if function_inputs:
|
||||
automation_context = run_function(
|
||||
automation_context,
|
||||
automate_function, # type: ignore
|
||||
inputs,
|
||||
function_inputs, # type: ignore
|
||||
)
|
||||
|
||||
else:
|
||||
automation_context = AutomationContext.initialize(
|
||||
automation_run_data, speckle_token
|
||||
)
|
||||
automation_context = run_function(
|
||||
automation_context,
|
||||
automate_function, # type: ignore
|
||||
|
|
Загрузка…
Ссылка в новой задаче