feat: read automation function inputs from file

This commit is contained in:
Gergő Jedlicska 2023-12-11 17:30:08 +01:00
Родитель ae6fc85ab4
Коммит 558b25b1d1
Не найден ключ, соответствующий данной подписи
Идентификатор ключа GPG: 868C59E4F75C7534
3 изменённых файлов: 72 добавлений и 33 удалений

Просмотреть файл

@ -6,11 +6,11 @@ repos:
- repo: https://github.com/commitizen-tools/commitizen
hooks:
- id: commitizen
- id: commitizen-branch
stages:
- push
rev: 3.12.0
- id: commitizen
- id: commitizen-branch
stages:
- push
rev: v3.13.0
- repo: https://github.com/pycqa/isort
rev: 5.12.0

Просмотреть файл

@ -1,6 +1,6 @@
[tool.poetry]
name = "specklepy"
version = "2.17.8"
version = "2.17.14"
description = "The Python SDK for Speckle 2.0"
readme = "README.md"
authors = ["Speckle Systems <devops@speckle.systems>"]
@ -18,7 +18,7 @@ packages = [
python = ">=3.8.0, <4.0"
pydantic = "^2.0"
appdirs = "^1.4.4"
gql = {extras = ["requests", "websockets"], version = "^3.3.0"}
gql = { extras = ["requests", "websockets"], version = "^3.3.0" }
ujson = "^5.3.0"
Deprecated = "^1.2.13"
stringcase = "^1.2.0"

Просмотреть файл

@ -4,14 +4,16 @@ Provides mechanisms to execute any function,
that conforms to the AutomateFunction "interface"
"""
import json
import os
import sys
import traceback
from pathlib import Path
from typing import Callable, Optional, TypeVar, Union, overload
from typing import Callable, Optional, Tuple, TypeVar, Union, overload
from pydantic import create_model
from pydantic.json_schema import GenerateJsonSchema
from speckle_automate.automation_context import AutomationContext
from speckle_automate.schema import AutomateBase, AutomationStatus
from speckle_automate.schema import AutomateBase, AutomationRunData, AutomationStatus
T = TypeVar("T", bound=AutomateBase)
@ -19,6 +21,41 @@ AutomateFunction = Callable[[AutomationContext, T], None]
AutomateFunctionWithoutInputs = Callable[[AutomationContext], None]
def _read_input_data(inputs_location: str) -> str:
input_path = Path(inputs_location)
if not input_path.exists():
raise ValueError(f"Cannot find the function inputs file at {input_path}")
return input_path.read_text()
def _parse_input_data(
input_location: str, input_schema: Optional[type[T]]
) -> Tuple[AutomationRunData, Optional[T], str]:
input_json_string = _read_input_data(input_location)
class FunctionRunData(AutomateBase):
speckle_token: str
automation_run_data: AutomationRunData
function_inputs: None = None
parser_model = FunctionRunData
if input_schema:
parser_model = create_model(
"FunctionRunDataWithInputs",
function_inputs=(input_schema, ...),
__base__=FunctionRunData,
)
input_data = parser_model.model_validate_json(input_json_string)
return (
input_data.automation_run_data,
input_data.function_inputs,
input_data.speckle_token,
)
@overload
def execute_automate_function(
automate_function: AutomateFunction[T],
@ -32,6 +69,13 @@ def execute_automate_function(automate_function: AutomateFunctionWithoutInputs)
...
class AutomateGenerateJsonSchema(GenerateJsonSchema):
def generate(self, schema, mode="validation"):
json_schema = super().generate(schema, mode=mode)
json_schema["$schema"] = self.schema_dialect
return json_schema
def execute_automate_function(
automate_function: Union[AutomateFunction[T], AutomateFunctionWithoutInputs],
input_schema: Optional[type[T]] = None,
@ -40,49 +84,44 @@ def execute_automate_function(
# first arg is the python file name, we do not need that
args = sys.argv[1:]
if len(args) < 2:
raise ValueError("too few arguments specified need minimum 2")
if len(args) > 4:
raise ValueError("too many arguments specified, max supported is 4")
if len(args) != 2:
raise ValueError("Incorrect number of arguments specified need 2")
# we rely on a command name convention to decide what to do.
# this is here, so that the function authors do not see any of this
command = args[0]
command, argument = args
if command == "generate_schema":
path = Path(args[1])
path = Path(argument)
schema = json.dumps(
input_schema.model_json_schema(by_alias=True) if input_schema else {}
input_schema.model_json_schema(
by_alias=True, schema_generator=AutomateGenerateJsonSchema
)
if input_schema
else {}
)
path.write_text(schema)
elif command == "run":
automation_run_data = args[1]
function_inputs = args[2]
automation_run_data, function_inputs, speckle_token = _parse_input_data(
argument, input_schema
)
speckle_token = os.environ.get("SPECKLE_TOKEN", None)
if not speckle_token and len(args) != 4:
raise ValueError("Cannot get speckle token from arguments or environment")
speckle_token = speckle_token if speckle_token else args[3]
automation_context = AutomationContext.initialize(
automation_run_data, speckle_token
)
inputs = (
input_schema.model_validate_json(function_inputs)
if input_schema
else input_schema
)
if inputs:
if function_inputs:
automation_context = run_function(
automation_context,
automate_function, # type: ignore
inputs,
function_inputs, # type: ignore
)
else:
automation_context = AutomationContext.initialize(
automation_run_data, speckle_token
)
automation_context = run_function(
automation_context,
automate_function, # type: ignore