SPIRV-Cross/spirv_msl.cpp

1987 строки
55 KiB
C++

/*
* Copyright 2015-2016 The Brenwill Workshop Ltd.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "spirv_msl.hpp"
#include "GLSL.std.450.h"
#include <algorithm>
#include <numeric>
using namespace spv;
using namespace spirv_cross;
using namespace std;
CompilerMSL::CompilerMSL(vector<uint32_t> spirv_)
: CompilerGLSL(move(spirv_))
{
options.vertex.fixup_clipspace = false;
}
string CompilerMSL::compile(MSLConfiguration &msl_cfg, vector<MSLVertexAttr> *p_vtx_attrs,
std::vector<MSLResourceBinding> *p_res_bindings)
{
pad_type_ids_by_pad_len.clear();
msl_config = msl_cfg;
vtx_attrs_by_location.clear();
if (p_vtx_attrs)
for (auto &va : *p_vtx_attrs)
{
va.used_by_shader = false;
vtx_attrs_by_location[va.location] = &va;
}
resource_bindings.clear();
if (p_res_bindings)
{
resource_bindings.reserve(p_res_bindings->size());
for (auto &rb : *p_res_bindings)
{
rb.used_by_shader = false;
resource_bindings.push_back(&rb);
}
}
extract_builtins();
localize_global_variables();
add_interface_structs();
extract_global_variables_from_functions();
// Do not deal with ES-isms like precision, older extensions and such.
options.es = false;
options.version = 120;
backend.float_literal_suffix = false;
backend.uint32_t_literal_suffix = true;
backend.basic_int_type = "int";
backend.basic_uint_type = "uint";
backend.discard_literal = "discard_fragment()";
backend.swizzle_is_function = false;
backend.shared_is_implied = false;
uint32_t pass_count = 0;
do
{
if (pass_count >= 3)
throw CompilerError("Over 3 compilation loops detected. Must be a bug!");
reset();
next_metal_resource_index = MSLResourceBinding(); // Start bindings at zero
// Move constructor for this type is broken on GCC 4.9 ...
buffer = unique_ptr<ostringstream>(new ostringstream());
emit_header();
emit_resources();
emit_function_declarations();
emit_function(get<SPIRFunction>(entry_point), 0);
pass_count++;
} while (force_recompile);
return buffer->str();
}
string CompilerMSL::compile()
{
MSLConfiguration default_msl_cfg;
return compile(default_msl_cfg, nullptr, nullptr);
}
// Adds any builtins used by this shader to the builtin_vars collection
void CompilerMSL::extract_builtins()
{
builtin_vars.clear();
for (auto &id : ids)
{
if (id.get_type() == TypeVariable)
{
auto &var = id.get<SPIRVariable>();
auto &dec = meta[var.self].decoration;
if (dec.builtin)
builtin_vars[dec.builtin_type] = var.self;
}
}
auto &execution = get_entry_point();
if (execution.model == ExecutionModelVertex)
{
if (!(builtin_vars[BuiltInVertexIndex] || builtin_vars[BuiltInVertexId]))
add_builtin(BuiltInVertexIndex);
if (!(builtin_vars[BuiltInInstanceIndex] || builtin_vars[BuiltInInstanceId]))
add_builtin(BuiltInInstanceIndex);
}
}
// Adds an appropriate built-in variable for the specified builtin type.
void CompilerMSL::add_builtin(BuiltIn builtin_type)
{
// Add a new typed variable for this interface structure.
uint32_t next_id = increase_bound_by(2);
uint32_t ib_type_id = next_id++;
auto &ib_type = set<SPIRType>(ib_type_id);
ib_type.basetype = SPIRType::UInt;
ib_type.storage = StorageClassInput;
uint32_t ib_var_id = next_id++;
set<SPIRVariable>(ib_var_id, ib_type_id, StorageClassInput, 0);
set_decoration(ib_var_id, DecorationBuiltIn, builtin_type);
set_name(ib_var_id, builtin_to_glsl(builtin_type));
builtin_vars[builtin_type] = ib_var_id;
}
// Move the Private global variables to the entry function.
// Non-constant variables cannot have global scope in Metal.
void CompilerMSL::localize_global_variables()
{
auto &entry_func = get<SPIRFunction>(entry_point);
auto iter = global_variables.begin();
while (iter != global_variables.end())
{
uint32_t gv_id = *iter;
auto &gbl_var = get<SPIRVariable>(gv_id);
if (gbl_var.storage == StorageClassPrivate)
{
entry_func.add_local_variable(gv_id);
iter = global_variables.erase(iter);
}
else
{
iter++;
}
}
}
// For any global variable accessed directly by a function,
// extract that variable and add it as an argument to that function.
void CompilerMSL::extract_global_variables_from_functions()
{
// Uniforms
std::set<uint32_t> global_var_ids;
for (auto &id : ids)
{
if (id.get_type() == TypeVariable)
{
auto &var = id.get<SPIRVariable>();
if (var.storage == StorageClassInput || var.storage == StorageClassUniform ||
var.storage == StorageClassUniformConstant || var.storage == StorageClassPushConstant)
global_var_ids.insert(var.self);
}
}
std::set<uint32_t> added_arg_ids;
std::set<uint32_t> processed_func_ids;
extract_global_variables_from_function(entry_point, added_arg_ids, global_var_ids, processed_func_ids);
}
// MSL does not support the use of global variables for shader input content.
// For any global variable accessed directly by the specified function, extract that variable,
// add it as an argument to that function, and the arg to the added_arg_ids collection.
void CompilerMSL::extract_global_variables_from_function(uint32_t func_id, std::set<uint32_t> &added_arg_ids,
std::set<uint32_t> &global_var_ids,
std::set<uint32_t> &processed_func_ids)
{
// Avoid processing a function more than once
if (processed_func_ids.find(func_id) != processed_func_ids.end())
return;
processed_func_ids.insert(func_id);
auto &func = get<SPIRFunction>(func_id);
// Recursively establish global args added to functions on which we depend.
for (auto block : func.blocks)
{
auto &b = get<SPIRBlock>(block);
for (auto &i : b.ops)
{
auto ops = stream(i);
auto op = static_cast<Op>(i.op);
switch (op)
{
case OpLoad:
case OpAccessChain:
{
uint32_t base_id = ops[2];
if (global_var_ids.find(base_id) != global_var_ids.end())
added_arg_ids.insert(base_id);
break;
}
case OpFunctionCall:
{
uint32_t inner_func_id = ops[2];
std::set<uint32_t> inner_func_args;
extract_global_variables_from_function(inner_func_id, inner_func_args, global_var_ids,
processed_func_ids);
added_arg_ids.insert(inner_func_args.begin(), inner_func_args.end());
break;
}
default:
break;
}
}
}
// Add the global variables as arguments to the function
if (func_id != entry_point)
{
uint32_t next_id = increase_bound_by(uint32_t(added_arg_ids.size()));
for (uint32_t arg_id : added_arg_ids)
{
uint32_t type_id = get<SPIRVariable>(arg_id).basetype;
func.add_parameter(type_id, next_id);
set<SPIRVariable>(next_id, type_id, StorageClassFunction);
set_name(next_id, get_name(arg_id));
meta[next_id].decoration.qualified_alias = meta[arg_id].decoration.qualified_alias;
next_id++;
}
}
}
// Adds any interface structure variables needed by this shader
void CompilerMSL::add_interface_structs()
{
auto &execution = get_entry_point();
stage_in_var_ids.clear();
qual_pos_var_name = "";
uint32_t var_id;
if (execution.model == ExecutionModelVertex && !vtx_attrs_by_location.empty())
{
std::set<uint32_t> vtx_bindings;
bind_vertex_attributes(vtx_bindings);
for (uint32_t vb : vtx_bindings)
{
var_id = add_interface_struct(StorageClassInput, vb);
if (var_id)
stage_in_var_ids.push_back(var_id);
}
}
else
{
var_id = add_interface_struct(StorageClassInput);
if (var_id)
stage_in_var_ids.push_back(var_id);
}
stage_out_var_id = add_interface_struct(StorageClassOutput);
}
// Iterate through the variables and populates each input vertex attribute variable
// from the binding info provided during compiler construction, matching by location.
void CompilerMSL::bind_vertex_attributes(std::set<uint32_t> &bindings)
{
auto &execution = get_entry_point();
if (execution.model == ExecutionModelVertex)
{
for (auto &id : ids)
{
if (id.get_type() == TypeVariable)
{
auto &var = id.get<SPIRVariable>();
auto &type = get<SPIRType>(var.basetype);
if (var.storage == StorageClassInput && interface_variable_exists_in_entry_point(var.self) &&
!is_hidden_variable(var) && type.pointer)
{
auto &dec = meta[var.self].decoration;
MSLVertexAttr *p_va = vtx_attrs_by_location[dec.location];
if (p_va)
{
dec.binding = p_va->msl_buffer;
dec.offset = p_va->msl_offset;
dec.array_stride = p_va->msl_stride;
dec.per_instance = p_va->per_instance;
// Mark the vertex attributes that were used.
p_va->used_by_shader = true;
bindings.insert(p_va->msl_buffer);
}
}
}
}
}
}
// Add an the interface structure for the type of storage. For vertex inputs, each
// binding must have its own structure, and a structure is created for vtx_binding.
// For non-vertex input, and all outputs, the vtx_binding argument is ignored.
// Returns the ID of the newly added variable, or zero if no variable was added.
uint32_t CompilerMSL::add_interface_struct(StorageClass storage, uint32_t vtx_binding)
{
auto &execution = get_entry_point();
bool incl_builtins = (storage == StorageClassOutput);
bool match_binding = (execution.model == ExecutionModelVertex) && (storage == StorageClassInput);
// Accumulate the variables that should appear in the interface struct
vector<SPIRVariable *> vars;
for (auto &id : ids)
{
if (id.get_type() == TypeVariable)
{
auto &var = id.get<SPIRVariable>();
auto &type = get<SPIRType>(var.basetype);
auto &dec = meta[var.self].decoration;
if (var.storage == storage && interface_variable_exists_in_entry_point(var.self) &&
!is_hidden_variable(var, incl_builtins) && (!match_binding || (vtx_binding == dec.binding)) &&
type.pointer)
{
vars.push_back(&var);
}
}
}
if (vars.empty())
{
return 0;
} // Leave if no variables qualify
// Add a new typed variable for this interface structure.
// The initializer expression is allocated here, but populated when the function
// declaraion is emitted, because it is cleared after each compilation pass.
uint32_t next_id = increase_bound_by(3);
uint32_t ib_type_id = next_id++;
auto &ib_type = set<SPIRType>(ib_type_id);
ib_type.basetype = SPIRType::Struct;
ib_type.storage = storage;
set_decoration(ib_type.self, DecorationBlock);
uint32_t ib_var_id = next_id++;
auto &var = set<SPIRVariable>(ib_var_id, ib_type_id, storage, 0);
var.initializer = next_id++;
// Set the binding of the variable and mark if packed (used only with vertex inputs)
auto &var_dec = meta[ib_var_id].decoration;
var_dec.binding = vtx_binding;
ib_type.is_packed = (execution.model == ExecutionModelVertex && storage == StorageClassInput &&
var_dec.binding != msl_config.vtx_attr_stage_in_binding);
string ib_var_ref;
if (storage == StorageClassInput)
ib_var_ref = ib_type.is_packed ? stage_in_var_name + convert_to_string(vtx_binding) : stage_in_var_name;
if (storage == StorageClassOutput)
{
ib_var_ref = stage_out_var_name;
// Add the output interface struct as a local variable to the entry function,
// and force the entry function to return the output interface struct from
// any blocks that perform a function return.
auto &entry_func = get<SPIRFunction>(entry_point);
entry_func.add_local_variable(ib_var_id);
for (auto &blk_id : entry_func.blocks)
{
auto &blk = get<SPIRBlock>(blk_id);
if (blk.terminator == SPIRBlock::Return)
blk.return_value = ib_var_id;
}
}
set_name(ib_type_id, get_entry_point_name() + "_" + ib_var_ref);
set_name(ib_var_id, ib_var_ref);
size_t struct_size = 0;
bool first_elem = true;
for (auto p_var : vars)
{
// For packed vertex attributes, copy the attribute characteristics to the parent
// structure (all components have same vertex attribute characteristics except offset),
// and add a reference to the vertex index builtin to the parent struct variable name.
if (ib_type.is_packed && first_elem)
{
auto &elem_dec = meta[p_var->self].decoration;
var_dec.binding = elem_dec.binding;
var_dec.array_stride = elem_dec.array_stride;
var_dec.per_instance = elem_dec.per_instance;
ib_var_ref += "[" + get_vtx_idx_var_name(var_dec.per_instance) + "]";
first_elem = false;
}
auto &type = get<SPIRType>(p_var->basetype);
if (type.basetype == SPIRType::Struct)
{
// Flatten the struct members into the interface struct
uint32_t i = 0;
for (auto &member : type.member_types)
{
// If needed, add a padding member to the struct to align to the next member's offset.
uint32_t mbr_offset = get_member_decoration(type.self, i, DecorationOffset);
struct_size = pad_to_offset(ib_type, (var_dec.offset + mbr_offset), uint32_t(struct_size));
// Add a reference to the member to the interface struct.
auto &membertype = get<SPIRType>(member);
uint32_t ib_mbr_idx = uint32_t(ib_type.member_types.size());
ib_type.member_types.push_back(membertype.self);
// Give the member a name, and assign it an offset within the struct.
string mbr_name = ensure_member_name(to_qualified_member_name(type, i));
set_member_name(ib_type.self, ib_mbr_idx, mbr_name);
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationOffset, uint32_t(struct_size));
struct_size = get_declared_struct_size(ib_type);
// Update the original variable reference to include the structure reference
string qual_var_name = ib_var_ref + "." + mbr_name;
set_member_qualified_name(type.self, i, qual_var_name);
// Copy the variable location from the original variable to the member
uint32_t locn = get_member_decoration(type.self, i, DecorationLocation);
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
// Mark the member as builtin if needed
BuiltIn builtin;
if (is_member_builtin(type, i, &builtin))
{
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationBuiltIn, builtin);
if (builtin == BuiltInPosition)
qual_pos_var_name = qual_var_name;
}
i++;
}
}
else
{
// If needed, add a padding member to the struct to align to the next member's offset.
struct_size = pad_to_offset(ib_type, var_dec.offset, uint32_t(struct_size));
// Add a reference to the variable type to the interface struct.
uint32_t ib_mbr_idx = uint32_t(ib_type.member_types.size());
ib_type.member_types.push_back(type.self);
// Give the member a name, and assign it an offset within the struct.
string mbr_name = ensure_member_name(to_name(p_var->self));
set_member_name(ib_type.self, ib_mbr_idx, mbr_name);
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationOffset, uint32_t(struct_size));
struct_size = get_declared_struct_size(ib_type);
// Update the original variable reference to include the structure reference
string qual_var_name = ib_var_ref + "." + mbr_name;
meta[p_var->self].decoration.qualified_alias = qual_var_name;
// Copy the variable location from the original variable to the member
auto &dec = meta[p_var->self].decoration;
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, dec.location);
// Mark the member as builtin if needed
if (is_builtin_variable(*p_var))
{
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationBuiltIn, dec.builtin_type);
if (dec.builtin_type == BuiltInPosition)
qual_pos_var_name = qual_var_name;
}
}
}
if (!ib_type.is_packed)
{
// Sort the members of the interface structure, unless this is packed input
MemberSorterByLocation memberSorter(ib_type, meta[ib_type.self]);
memberSorter.sort();
}
return ib_var_id;
}
// Emits the file header info
void CompilerMSL::emit_header()
{
for (auto &header : header_lines)
statement(header);
statement("#include <metal_stdlib>");
statement("#include <simd/simd.h>");
statement("");
statement("using namespace metal;");
statement("");
}
void CompilerMSL::emit_resources()
{
// Output all basic struct types which are not Block or BufferBlock as these are declared inplace
// when such variables are instantiated.
for (auto &id : ids)
{
if (id.get_type() == TypeType)
{
auto &type = id.get<SPIRType>();
if (type.basetype == SPIRType::Struct && type.array.empty() && !type.pointer &&
(meta[type.self].decoration.decoration_flags &
((1ull << DecorationBlock) | (1ull << DecorationBufferBlock))) == 0)
{
emit_struct(type);
}
}
}
// Output Uniform buffers and constants
for (auto &id : ids)
{
if (id.get_type() == TypeVariable)
{
auto &var = id.get<SPIRVariable>();
auto &type = get<SPIRType>(var.basetype);
if (var.storage != StorageClassFunction && type.pointer &&
(type.storage == StorageClassUniform || type.storage == StorageClassUniformConstant ||
type.storage == StorageClassPushConstant) &&
!is_hidden_variable(var) && (meta[type.self].decoration.decoration_flags &
((1ull << DecorationBlock) | (1ull << DecorationBufferBlock))))
{
emit_struct(type);
}
}
}
// Output interface blocks.
for (uint32_t var_id : stage_in_var_ids)
emit_interface_block(var_id);
emit_interface_block(stage_out_var_id);
// TODO: Consolidate and output loose uniforms into an input struct
}
// Override for MSL-specific syntax instructions
void CompilerMSL::emit_instruction(const Instruction &instruction)
{
#define BOP(op) emit_binary_op(ops[0], ops[1], ops[2], ops[3], #op)
#define BOP_CAST(op, type) \
emit_binary_op_cast(ops[0], ops[1], ops[2], ops[3], #op, type, opcode_is_sign_invariant(opcode))
#define UOP(op) emit_unary_op(ops[0], ops[1], ops[2], #op)
#define QFOP(op) emit_quaternary_func_op(ops[0], ops[1], ops[2], ops[3], ops[4], ops[5], #op)
#define TFOP(op) emit_trinary_func_op(ops[0], ops[1], ops[2], ops[3], ops[4], #op)
#define BFOP(op) emit_binary_func_op(ops[0], ops[1], ops[2], ops[3], #op)
#define BFOP_CAST(op, type) \
emit_binary_func_op_cast(ops[0], ops[1], ops[2], ops[3], #op, type, opcode_is_sign_invariant(opcode))
#define BFOP(op) emit_binary_func_op(ops[0], ops[1], ops[2], ops[3], #op)
#define UFOP(op) emit_unary_func_op(ops[0], ops[1], ops[2], #op)
auto ops = stream(instruction);
auto opcode = static_cast<Op>(instruction.op);
switch (opcode)
{
// Comparisons
case OpIEqual:
case OpLogicalEqual:
case OpFOrdEqual:
BOP(==);
break;
case OpINotEqual:
case OpLogicalNotEqual:
case OpFOrdNotEqual:
BOP(!=);
break;
case OpUGreaterThan:
case OpSGreaterThan:
case OpFOrdGreaterThan:
BOP(>);
break;
case OpUGreaterThanEqual:
case OpSGreaterThanEqual:
case OpFOrdGreaterThanEqual:
BOP(>=);
break;
case OpULessThan:
case OpSLessThan:
case OpFOrdLessThan:
BOP(<);
break;
case OpULessThanEqual:
case OpSLessThanEqual:
case OpFOrdLessThanEqual:
BOP(<=);
break;
// Derivatives
case OpDPdx:
UFOP(dfdx);
break;
case OpDPdy:
UFOP(dfdy);
break;
case OpImageQuerySize:
{
auto &type = expression_type(ops[2]);
uint32_t result_type = ops[0];
uint32_t id = ops[1];
if (type.basetype == SPIRType::Image)
{
string img_exp = to_expression(ops[2]);
auto &img_type = type.image;
switch (img_type.dim)
{
case Dim1D:
if (img_type.arrayed)
emit_op(result_type, id, join("uint2(", img_exp, ".get_width(), ", img_exp, ".get_array_size())"),
false, false);
else
emit_op(result_type, id, join(img_exp, ".get_width()"), true, false);
break;
case Dim2D:
case DimCube:
if (img_type.arrayed)
emit_op(result_type, id, join("uint3(", img_exp, ".get_width(), ", img_exp, ".get_height(), ",
img_exp, ".get_array_size())"),
false, false);
else
emit_op(result_type, id, join("uint2(", img_exp, ".get_width(), ", img_exp, ".get_height())"),
false, false);
break;
case Dim3D:
emit_op(result_type, id,
join("uint3(", img_exp, ".get_width(), ", img_exp, ".get_height(), ", img_exp, ".get_depth())"),
false, false);
break;
default:
break;
}
}
else
throw CompilerError("Invalid type for OpImageQuerySize.");
break;
}
default:
CompilerGLSL::emit_instruction(instruction);
break;
}
}
// Override for MSL-specific extension syntax instructions
void CompilerMSL::emit_glsl_op(uint32_t result_type, uint32_t id, uint32_t eop, const uint32_t *args, uint32_t count)
{
GLSLstd450 op = static_cast<GLSLstd450>(eop);
switch (op)
{
case GLSLstd450Atan2:
emit_binary_func_op(result_type, id, args[0], args[1], "atan2");
break;
default:
CompilerGLSL::emit_glsl_op(result_type, id, eop, args, count);
break;
}
}
// Emit a structure declaration for the specified interface variable.
void CompilerMSL::emit_interface_block(uint32_t ib_var_id)
{
if (ib_var_id)
{
auto &ib_var = get<SPIRVariable>(ib_var_id);
auto &ib_type = get<SPIRType>(ib_var.basetype);
emit_struct(ib_type);
}
}
// Output a declaration statement for each function.
void CompilerMSL::emit_function_declarations()
{
for (auto &id : ids)
if (id.get_type() == TypeFunction)
{
auto &func = id.get<SPIRFunction>();
if (func.self != entry_point)
emit_function_prototype(func, true);
}
statement("");
}
void CompilerMSL::emit_function_prototype(SPIRFunction &func, uint64_t)
{
emit_function_prototype(func, false);
}
// Emits the declaration signature of the specified function.
// If this is the entry point function, Metal-specific return value and function arguments are added.
void CompilerMSL::emit_function_prototype(SPIRFunction &func, bool is_decl)
{
local_variable_names = resource_names;
string decl;
processing_entry_point = (func.self == entry_point);
auto &type = get<SPIRType>(func.return_type);
decl += func_type_decl(type);
decl += " ";
decl += clean_func_name(to_name(func.self));
decl += "(";
if (processing_entry_point)
{
decl += entry_point_args(!func.arguments.empty());
// If entry point function has a output interface struct, set its initializer.
// This is done at this late stage because the initialization expression is
// cleared after each compilation pass.
if (stage_out_var_id)
{
auto &so_var = get<SPIRVariable>(stage_out_var_id);
auto &so_type = get<SPIRType>(so_var.basetype);
set<SPIRExpression>(so_var.initializer, "{}", so_type.self, true);
}
}
for (auto &arg : func.arguments)
{
add_local_variable_name(arg.id);
bool is_uniform_struct = false;
auto *var = maybe_get<SPIRVariable>(arg.id);
if (var)
{
var->parameter = &arg; // Hold a pointer to the parameter so we can invalidate the readonly field if needed.
// Check if this arg is one of the synthetic uniform args
// created to handle uniform access inside the function
auto &var_type = get<SPIRType>(var->basetype);
is_uniform_struct =
((var_type.basetype == SPIRType::Struct) &&
(var_type.storage == StorageClassUniform || var_type.storage == StorageClassUniformConstant ||
var_type.storage == StorageClassPushConstant));
}
decl += (is_uniform_struct ? "constant " : "thread ");
decl += argument_decl(arg);
// Manufacture automatic sampler arg for SampledImage texture
auto &arg_type = get<SPIRType>(arg.type);
if (arg_type.basetype == SPIRType::SampledImage)
decl += ", thread const sampler& " + to_sampler_expression(arg.id);
if (&arg != &func.arguments.back())
decl += ", ";
}
decl += ")";
statement(decl, (is_decl ? ";" : ""));
}
// Emit a texture operation
void CompilerMSL::emit_texture_op(const Instruction &i)
{
auto ops = stream(i);
auto op = static_cast<Op>(i.op);
uint32_t length = i.length;
if (i.offset + length > spirv.size())
throw CompilerError("Compiler::compile() opcode out of range.");
uint32_t result_type = ops[0];
uint32_t id = ops[1];
uint32_t img = ops[2];
uint32_t coord = ops[3];
uint32_t comp = 0;
bool gather = false;
bool fetch = false;
const uint32_t *opt = nullptr;
switch (op)
{
case OpImageSampleDrefImplicitLod:
case OpImageSampleDrefExplicitLod:
opt = &ops[5];
length -= 5;
break;
case OpImageSampleProjDrefImplicitLod:
case OpImageSampleProjDrefExplicitLod:
opt = &ops[5];
length -= 5;
break;
case OpImageDrefGather:
opt = &ops[5];
gather = true;
length -= 5;
break;
case OpImageGather:
comp = ops[4];
opt = &ops[5];
gather = true;
length -= 5;
break;
case OpImageFetch:
fetch = true;
opt = &ops[4];
length -= 4;
break;
case OpImageSampleImplicitLod:
case OpImageSampleExplicitLod:
case OpImageSampleProjImplicitLod:
case OpImageSampleProjExplicitLod:
default:
opt = &ops[4];
length -= 4;
break;
}
uint32_t bias = 0;
uint32_t lod = 0;
uint32_t grad_x = 0;
uint32_t grad_y = 0;
uint32_t coffset = 0;
uint32_t offset = 0;
uint32_t coffsets = 0;
uint32_t sample = 0;
uint32_t flags = 0;
if (length)
{
flags = *opt;
opt++;
length--;
}
auto test = [&](uint32_t &v, uint32_t flag) {
if (length && (flags & flag))
{
v = *opt++;
length--;
}
};
test(bias, ImageOperandsBiasMask);
test(lod, ImageOperandsLodMask);
test(grad_x, ImageOperandsGradMask);
test(grad_y, ImageOperandsGradMask);
test(coffset, ImageOperandsConstOffsetMask);
test(offset, ImageOperandsOffsetMask);
test(coffsets, ImageOperandsConstOffsetsMask);
test(sample, ImageOperandsSampleMask);
auto &img_type = expression_type(img).image;
// Texture reference
string expr = to_expression(img);
// Texture function and sampler
if (fetch)
{
expr += ".read(";
}
else
{
expr += std::string(".") + (gather ? "gather" : "sample") + "(" + to_sampler_expression(img) + ", ";
}
// Add texture coordinates
bool forward = should_forward(coord);
auto coord_expr = to_expression(coord);
string tex_coords = coord_expr;
string array_coord;
switch (img_type.dim)
{
case spv::DimBuffer:
break;
case Dim1D:
if (img_type.arrayed)
{
tex_coords = coord_expr + ".x";
array_coord = coord_expr + ".y";
remove_duplicate_swizzle(tex_coords);
remove_duplicate_swizzle(array_coord);
}
else
{
tex_coords = coord_expr + ".x";
}
break;
case Dim2D:
if (msl_config.flip_frag_y)
{
string coord_x = coord_expr + ".x";
remove_duplicate_swizzle(coord_x);
string coord_y = coord_expr + ".y";
remove_duplicate_swizzle(coord_y);
tex_coords = "float2(" + coord_x + ", (1.0 - " + coord_y + "))";
}
else
{
tex_coords = coord_expr + ".xy";
remove_duplicate_swizzle(tex_coords);
}
if (img_type.arrayed)
{
array_coord = coord_expr + ".z";
remove_duplicate_swizzle(array_coord);
}
break;
case Dim3D:
case DimCube:
if (msl_config.flip_frag_y)
{
string coord_x = coord_expr + ".x";
remove_duplicate_swizzle(coord_x);
string coord_y = coord_expr + ".y";
remove_duplicate_swizzle(coord_y);
string coord_z = coord_expr + ".z";
remove_duplicate_swizzle(coord_z);
tex_coords = "float3(" + coord_x + ", (1.0 - " + coord_y + "), " + coord_z + ")";
}
else
{
tex_coords = coord_expr + ".xyz";
remove_duplicate_swizzle(tex_coords);
}
if (img_type.arrayed)
{
array_coord = coord_expr + ".w";
remove_duplicate_swizzle(array_coord);
}
break;
default:
break;
}
expr += tex_coords;
// Add texture array index
if (!array_coord.empty())
expr += ", " + array_coord;
// LOD Options
if (bias)
{
forward = forward && should_forward(bias);
expr += ", bias(" + to_expression(bias) + ")";
}
if (lod)
{
forward = forward && should_forward(lod);
if (fetch)
{
expr += ", " + to_expression(lod);
}
else
{
expr += ", level(" + to_expression(lod) + ")";
}
}
if (grad_x || grad_y)
{
forward = forward && should_forward(grad_x);
forward = forward && should_forward(grad_y);
string grad_opt;
switch (img_type.dim)
{
case Dim2D:
grad_opt = "2d";
break;
case Dim3D:
grad_opt = "3d";
break;
case DimCube:
grad_opt = "cube";
break;
default:
grad_opt = "unsupported_gradient_dimension";
break;
}
expr += ", gradient" + grad_opt + "(" + to_expression(grad_x) + ", " + to_expression(grad_y) + ")";
}
// Add offsets
string offset_expr;
if (coffset)
{
forward = forward && should_forward(coffset);
offset_expr = to_expression(coffset);
}
else if (offset)
{
forward = forward && should_forward(offset);
offset_expr = to_expression(offset);
}
if (!offset_expr.empty())
{
switch (img_type.dim)
{
case Dim2D:
if (msl_config.flip_frag_y)
{
string coord_x = offset_expr + ".x";
remove_duplicate_swizzle(coord_x);
string coord_y = offset_expr + ".y";
remove_duplicate_swizzle(coord_y);
offset_expr = "float2(" + coord_x + ", (1.0 - " + coord_y + "))";
}
else
{
offset_expr = offset_expr + ".xy";
remove_duplicate_swizzle(offset_expr);
}
expr += ", " + offset_expr;
break;
case Dim3D:
if (msl_config.flip_frag_y)
{
string coord_x = offset_expr + ".x";
remove_duplicate_swizzle(coord_x);
string coord_y = offset_expr + ".y";
remove_duplicate_swizzle(coord_y);
string coord_z = offset_expr + ".z";
remove_duplicate_swizzle(coord_z);
offset_expr = "float3(" + coord_x + ", (1.0 - " + coord_y + "), " + coord_z + ")";
}
else
{
offset_expr = offset_expr + ".xyz";
remove_duplicate_swizzle(offset_expr);
}
expr += ", " + offset_expr;
break;
default:
break;
}
}
if (comp)
{
forward = forward && should_forward(comp);
expr += ", " + to_expression(comp);
}
expr += ")";
emit_op(result_type, id, expr, forward, false);
}
// Establish sampled image as expression object and assign the sampler to it.
void CompilerMSL::emit_sampled_image_op(uint32_t result_type, uint32_t result_id, uint32_t image_id, uint32_t samp_id)
{
set<SPIRExpression>(result_id, to_expression(image_id), result_type, true);
meta[result_id].sampler = samp_id;
}
// Returns a string representation of the ID, usable as a function arg.
// Manufacture automatic sampler arg for SampledImage texture.
string CompilerMSL::to_func_call_arg(uint32_t id)
{
string arg_str = CompilerGLSL::to_func_call_arg(id);
// Manufacture automatic sampler arg for SampledImage texture.
auto &var = get<SPIRVariable>(id);
auto &type = get<SPIRType>(var.basetype);
if (type.basetype == SPIRType::SampledImage)
arg_str += ", " + to_sampler_expression(id);
return arg_str;
}
// If the ID represents a sampled image that has been assigned a sampler already,
// generate an expression for the sampler, otherwise generate a fake sampler name
// by appending a suffix to the expression constructed from the ID.
string CompilerMSL::to_sampler_expression(uint32_t id)
{
uint32_t samp_id = meta[id].sampler;
return samp_id ? to_expression(samp_id) : to_expression(id) + sampler_name_suffix;
}
// Called automatically at the end of the entry point function
void CompilerMSL::emit_fixup()
{
auto &execution = get_entry_point();
if ((execution.model == ExecutionModelVertex) && stage_out_var_id && !qual_pos_var_name.empty())
{
if (options.vertex.fixup_clipspace)
{
const char *suffix = backend.float_literal_suffix ? "f" : "";
statement(qual_pos_var_name, ".z = 2.0", suffix, " * ", qual_pos_var_name, ".z - ", qual_pos_var_name,
".w;", " // Adjust clip-space for Metal");
}
if (msl_config.flip_vert_y)
statement(qual_pos_var_name, ".y = -(", qual_pos_var_name, ".y);", " // Invert Y-axis for Metal");
}
}
// Returns a declaration for a structure member.
string CompilerMSL::member_decl(const SPIRType &type, const SPIRType &membertype, uint32_t index)
{
bool should_pack = type.is_packed && is_vector(membertype);
return join((should_pack ? "packed_" : ""), type_to_glsl(membertype), " ", to_member_name(type, index),
type_to_array_glsl(membertype), member_attribute_qualifier(type, index));
}
// Return a MSL qualifier for the specified function attribute member
string CompilerMSL::member_attribute_qualifier(const SPIRType &type, uint32_t index)
{
auto &execution = get_entry_point();
BuiltIn builtin;
bool is_builtin = is_member_builtin(type, index, &builtin);
// Vertex function inputs
if (execution.model == ExecutionModelVertex && type.storage == StorageClassInput)
{
if (is_builtin)
{
switch (builtin)
{
case BuiltInVertexId:
case BuiltInVertexIndex:
case BuiltInInstanceId:
case BuiltInInstanceIndex:
return string(" [[") + builtin_qualifier(builtin) + "]]";
default:
return "";
}
}
uint32_t locn = get_ordered_member_location(type.self, index);
return string(" [[attribute(") + convert_to_string(locn) + ")]]";
}
// Vertex function outputs
if (execution.model == ExecutionModelVertex && type.storage == StorageClassOutput)
{
if (is_builtin)
{
switch (builtin)
{
case BuiltInClipDistance:
return " /* [[clip_distance]] built-in not yet supported under Metal. */";
case BuiltInPointSize: // Must output only if really rendering points
return msl_config.is_rendering_points ? (string(" [[") + builtin_qualifier(builtin) + "]]") : "";
case BuiltInPosition:
case BuiltInLayer:
return string(" [[") + builtin_qualifier(builtin) + "]]";
default:
return "";
}
}
uint32_t locn = get_ordered_member_location(type.self, index);
return string(" [[user(locn") + convert_to_string(locn) + ")]]";
}
// Fragment function inputs
if (execution.model == ExecutionModelFragment && type.storage == StorageClassInput)
{
if (is_builtin)
{
switch (builtin)
{
case BuiltInFrontFacing:
case BuiltInPointCoord:
case BuiltInFragCoord:
case BuiltInSampleId:
case BuiltInSampleMask:
case BuiltInLayer:
return string(" [[") + builtin_qualifier(builtin) + "]]";
default:
return "";
}
}
uint32_t locn = get_ordered_member_location(type.self, index);
return string(" [[user(locn") + convert_to_string(locn) + ")]]";
}
// Fragment function outputs
if (execution.model == ExecutionModelFragment && type.storage == StorageClassOutput)
{
if (is_builtin)
{
switch (builtin)
{
case BuiltInSampleMask:
case BuiltInFragDepth:
return string(" [[") + builtin_qualifier(builtin) + "]]";
default:
return "";
}
}
uint32_t locn = get_ordered_member_location(type.self, index);
return string(" [[color(") + convert_to_string(locn) + ")]]";
}
return "";
}
// Returns the location decoration of the member with the specified index in the specified
// type, or the value of the member index if the location has not been specified.
// This function assumes the members are ordered in their location order.
// This can be ensured using the MemberSorterByLocation class.
uint32_t CompilerMSL::get_ordered_member_location(uint32_t type_id, uint32_t index)
{
return max(get_member_decoration(type_id, index, DecorationLocation), index);
}
string CompilerMSL::constant_expression(const SPIRConstant &c)
{
if (!c.subconstants.empty())
{
// Handles Arrays and structures.
string res = "{";
for (auto &elem : c.subconstants)
{
res += constant_expression(get<SPIRConstant>(elem));
if (&elem != &c.subconstants.back())
res += ", ";
}
res += "}";
return res;
}
else if (c.columns() == 1)
{
return constant_expression_vector(c, 0);
}
else
{
string res = type_to_glsl(get<SPIRType>(c.constant_type)) + "(";
for (uint32_t col = 0; col < c.columns(); col++)
{
res += constant_expression_vector(c, col);
if (col + 1 < c.columns())
res += ", ";
}
res += ")";
return res;
}
}
// Returns the type declaration for a function, including the
// entry type if the current function is the entry point function
string CompilerMSL::func_type_decl(SPIRType &type)
{
auto &execution = get_entry_point();
// The regular function return type. If not processing the entry point function, that's all we need
string return_type = type_to_glsl(type);
if (!processing_entry_point)
return return_type;
// If an outgoing interface block has been defined, override the entry point return type
if (stage_out_var_id)
{
auto &so_var = get<SPIRVariable>(stage_out_var_id);
auto &so_type = get<SPIRType>(so_var.basetype);
return_type = type_to_glsl(so_type);
}
// Prepend a entry type, based on the execution model
string entry_type;
switch (execution.model)
{
case ExecutionModelVertex:
entry_type = "vertex";
break;
case ExecutionModelFragment:
entry_type = (execution.flags & (1ull << ExecutionModeEarlyFragmentTests)) ?
"fragment [[ early_fragment_tests ]]" :
"fragment";
break;
case ExecutionModelGLCompute:
case ExecutionModelKernel:
entry_type = "kernel";
break;
default:
entry_type = "unknown";
break;
}
return entry_type + " " + return_type;
}
// Ensures the function name is not "main", which is illegal in MSL
string CompilerMSL::clean_func_name(string func_name)
{
static std::string _clean_msl_main_func_name = "mmain";
return (func_name == "main") ? _clean_msl_main_func_name : func_name;
}
// Returns a string containing a comma-delimited list of args for the entry point function
string CompilerMSL::entry_point_args(bool append_comma)
{
auto &execution = get_entry_point();
string ep_args;
// Stage-in structures
for (uint32_t var_id : stage_in_var_ids)
{
auto &var = get<SPIRVariable>(var_id);
auto &type = get<SPIRType>(var.basetype);
auto &dec = meta[var.self].decoration;
bool use_stage_in =
(execution.model != ExecutionModelVertex || dec.binding == msl_config.vtx_attr_stage_in_binding);
if (!ep_args.empty())
ep_args += ", ";
if (use_stage_in)
ep_args += type_to_glsl(type) + " " + to_name(var.self) + " [[stage_in]]";
else
ep_args += "device " + type_to_glsl(type) + "* " + to_name(var.self) + " [[buffer(" +
convert_to_string(dec.binding) + ")]]";
}
// Uniforms
for (auto &id : ids)
{
if (id.get_type() == TypeVariable)
{
auto &var = id.get<SPIRVariable>();
auto &type = get<SPIRType>(var.basetype);
if (is_hidden_variable(var, true))
continue;
if (var.storage == StorageClassUniform || var.storage == StorageClassUniformConstant ||
var.storage == StorageClassPushConstant)
{
switch (type.basetype)
{
case SPIRType::Struct:
if (!ep_args.empty())
ep_args += ", ";
ep_args += "constant " + type_to_glsl(type) + "& " + to_name(var.self);
ep_args += " [[buffer(" + convert_to_string(get_metal_resource_index(var, type.basetype)) + ")]]";
break;
case SPIRType::Sampler:
if (!ep_args.empty())
ep_args += ", ";
ep_args += type_to_glsl(type) + " " + to_name(var.self);
ep_args += " [[sampler(" + convert_to_string(get_metal_resource_index(var, type.basetype)) + ")]]";
break;
case SPIRType::Image:
if (!ep_args.empty())
ep_args += ", ";
ep_args += type_to_glsl(type) + " " + to_name(var.self);
ep_args += " [[texture(" + convert_to_string(get_metal_resource_index(var, type.basetype)) + ")]]";
break;
case SPIRType::SampledImage:
if (!ep_args.empty())
ep_args += ", ";
ep_args += type_to_glsl(type) + " " + to_name(var.self);
ep_args +=
" [[texture(" + convert_to_string(get_metal_resource_index(var, SPIRType::Image)) + ")]]";
if (type.image.dim != DimBuffer)
{
ep_args += ", sampler " + to_sampler_expression(var.self);
ep_args +=
" [[sampler(" + convert_to_string(get_metal_resource_index(var, SPIRType::Sampler)) + ")]]";
}
break;
default:
break;
}
}
if (var.storage == StorageClassInput && is_builtin_variable(var))
{
if (!ep_args.empty())
ep_args += ", ";
BuiltIn bi_type = meta[var.self].decoration.builtin_type;
ep_args += builtin_type_decl(bi_type) + " " + to_expression(var.self);
ep_args += " [[" + builtin_qualifier(bi_type) + "]]";
}
}
}
if (!ep_args.empty() && append_comma)
ep_args += ", ";
return ep_args;
}
// Returns the Metal index of the resource of the specified type as used by the specified variable.
uint32_t CompilerMSL::get_metal_resource_index(SPIRVariable &var, SPIRType::BaseType basetype)
{
auto &execution = get_entry_point();
auto &var_dec = meta[var.self].decoration;
uint32_t var_desc_set = (var.storage == StorageClassPushConstant) ? kPushConstDescSet : var_dec.set;
uint32_t var_binding = (var.storage == StorageClassPushConstant) ? kPushConstBinding : var_dec.binding;
// If a matching binding has been specified, find and use it
for (auto p_res_bind : resource_bindings)
{
if (p_res_bind->stage == execution.model && p_res_bind->desc_set == var_desc_set &&
p_res_bind->binding == var_binding)
{
p_res_bind->used_by_shader = true;
switch (basetype)
{
case SPIRType::Struct:
return p_res_bind->msl_buffer;
case SPIRType::Image:
return p_res_bind->msl_texture;
case SPIRType::Sampler:
return p_res_bind->msl_sampler;
default:
return 0;
}
}
}
// If a binding has not been specified, revert to incrementing resource indices
switch (basetype)
{
case SPIRType::Struct:
return next_metal_resource_index.msl_buffer++;
case SPIRType::Image:
return next_metal_resource_index.msl_texture++;
case SPIRType::Sampler:
return next_metal_resource_index.msl_sampler++;
default:
return 0;
}
}
// Returns the name of the entry point of this shader
string CompilerMSL::get_entry_point_name()
{
return clean_func_name(to_name(entry_point));
}
// Returns the name of either the vertex index or instance index builtin
string CompilerMSL::get_vtx_idx_var_name(bool per_instance)
{
BuiltIn builtin;
uint32_t var_id;
// Try modern builtin name first
builtin = per_instance ? BuiltInInstanceIndex : BuiltInVertexIndex;
var_id = builtin_vars[builtin];
if (var_id)
return to_expression(var_id);
// Try legacy builtin name second
builtin = per_instance ? BuiltInInstanceId : BuiltInVertexId;
var_id = builtin_vars[builtin];
if (var_id)
return to_expression(var_id);
return "missing_vtx_idx_var";
}
// If the struct is packed, and the offset is greater than the current size of the struct,
// appends a padding member to the struct, and returns the offset to use for the next member,
// which is the offset provided. If the struct is not packed, or the offset is not greater
// than the struct size, no padding is added, and the struct size is returned.
uint32_t CompilerMSL::pad_to_offset(SPIRType &struct_type, uint32_t offset, uint32_t struct_size)
{
if (!(struct_type.is_packed && offset > struct_size))
return struct_size;
auto &pad_type = get_pad_type(offset - struct_size);
uint32_t mbr_idx = uint32_t(struct_type.member_types.size());
struct_type.member_types.push_back(pad_type.self);
set_member_name(struct_type.self, mbr_idx, ("pad" + convert_to_string(mbr_idx)));
set_member_decoration(struct_type.self, mbr_idx, DecorationOffset, struct_size);
return offset;
}
// Returns a char array type suitable for use as a padding member in a packed struct
SPIRType &CompilerMSL::get_pad_type(uint32_t pad_len)
{
uint32_t pad_type_id = pad_type_ids_by_pad_len[pad_len];
if (pad_type_id != 0)
return get<SPIRType>(pad_type_id);
pad_type_id = increase_bound_by(1);
auto &ib_type = set<SPIRType>(pad_type_id);
ib_type.storage = StorageClassGeneric;
ib_type.basetype = SPIRType::Char;
ib_type.width = 8;
ib_type.array.push_back(pad_len);
ib_type.array_size_literal.push_back(true);
set_decoration(ib_type.self, DecorationArrayStride, pad_len);
pad_type_ids_by_pad_len[pad_len] = pad_type_id;
return ib_type;
}
string CompilerMSL::argument_decl(const SPIRFunction::Parameter &arg)
{
auto &type = expression_type(arg.id);
bool constref = !type.pointer || arg.write_count == 0;
auto &var = get<SPIRVariable>(arg.id);
return join(constref ? "const " : "", type_to_glsl(type), "& ", to_name(var.self), type_to_array_glsl(type));
}
// If we're currently in the entry point function, and the object
// has a qualified name, use it, otherwise use the standard name.
string CompilerMSL::to_name(uint32_t id, bool allow_alias)
{
if (current_function && (current_function->self == entry_point))
{
string qual_name = meta.at(id).decoration.qualified_alias;
if (!qual_name.empty())
return qual_name;
}
return Compiler::to_name(id, allow_alias);
}
// Returns a name that combines the name of the struct with the name of the member, except for Builtins
string CompilerMSL::to_qualified_member_name(const SPIRType &type, uint32_t index)
{
//Start with existing member name
string mbr_name = to_member_name(type, index);
// Don't qualify Builtin names because they are unique and are treated as such when building expressions
if (is_member_builtin(type, index, nullptr))
return mbr_name;
// Strip any underscore prefix from member name
size_t startPos = mbr_name.find_first_not_of("_");
mbr_name = (startPos != std::string::npos) ? mbr_name.substr(startPos) : "";
return join(to_name(type.self), "_", mbr_name);
}
// Ensures that the specified struct member name is permanently usable by prepending
// an alpha char if the first chars are _ and a digit, which indicate a transient name.
string CompilerMSL::ensure_member_name(string mbr_name)
{
if (mbr_name.size() >= 2 && mbr_name[0] == '_' && isdigit(mbr_name[1]))
return join("m", mbr_name);
else
return mbr_name;
}
// Returns an MSL string describing the SPIR-V type
string CompilerMSL::type_to_glsl(const SPIRType &type)
{
// Ignore the pointer type since GLSL doesn't have pointers.
switch (type.basetype)
{
case SPIRType::Struct:
// Need OpName lookup here to get a "sensible" name for a struct.
return to_name(type.self);
case SPIRType::Image:
case SPIRType::SampledImage:
return image_type_glsl(type);
case SPIRType::Sampler:
// Not really used.
return "sampler";
case SPIRType::Void:
return "void";
default:
break;
}
if (is_scalar(type)) // Scalar builtin
{
switch (type.basetype)
{
case SPIRType::Boolean:
return "bool";
case SPIRType::Char:
return "char";
case SPIRType::Int:
return (type.width == 16 ? "short" : "int");
case SPIRType::UInt:
return (type.width == 16 ? "ushort" : "uint");
case SPIRType::AtomicCounter:
return "atomic_uint";
case SPIRType::Float:
return (type.width == 16 ? "half" : "float");
default:
return "unknown_type";
}
}
else if (is_vector(type)) // Vector builtin
{
switch (type.basetype)
{
case SPIRType::Boolean:
return join("bool", type.vecsize);
case SPIRType::Char:
return join("char", type.vecsize);
;
case SPIRType::Int:
return join((type.width == 16 ? "short" : "int"), type.vecsize);
case SPIRType::UInt:
return join((type.width == 16 ? "ushort" : "uint"), type.vecsize);
case SPIRType::Float:
return join((type.width == 16 ? "half" : "float"), type.vecsize);
default:
return "unknown_type";
}
}
else
{
switch (type.basetype)
{
case SPIRType::Boolean:
case SPIRType::Int:
case SPIRType::UInt:
case SPIRType::Float:
return join((type.width == 16 ? "half" : "float"), type.columns, "x", type.vecsize);
default:
return "unknown_type";
}
}
}
// Returns an MSL string describing the SPIR-V image type
string CompilerMSL::image_type_glsl(const SPIRType &type)
{
string img_type_name;
auto &img_type = type.image;
if (img_type.depth)
{
switch (img_type.dim)
{
case spv::Dim2D:
img_type_name += (img_type.ms ? "depth2d_ms" : (img_type.arrayed ? "depth2d_array" : "depth2d"));
break;
case spv::DimCube:
img_type_name += (img_type.arrayed ? "depthcube_array" : "depthcube");
break;
default:
img_type_name += "unknown_depth_texture_type";
break;
}
}
else
{
switch (img_type.dim)
{
case spv::Dim1D:
img_type_name += (img_type.arrayed ? "texture1d_array" : "texture1d");
break;
case spv::DimBuffer:
case spv::Dim2D:
img_type_name += (img_type.ms ? "texture2d_ms" : (img_type.arrayed ? "texture2d_array" : "texture2d"));
break;
case spv::Dim3D:
img_type_name += "texture3D";
break;
case spv::DimCube:
img_type_name += (img_type.arrayed ? "texturecube_array" : "texturecube");
break;
default:
img_type_name += "unknown_texture_type";
break;
}
}
// Append the pixel type
auto &img_pix_type = get<SPIRType>(img_type.type);
img_type_name += "<" + type_to_glsl(img_pix_type) + ">";
return img_type_name;
}
// Returns an MSL string identifying the name of a SPIR-V builtin
string CompilerMSL::builtin_to_glsl(BuiltIn builtin)
{
switch (builtin)
{
case BuiltInPosition:
return qual_pos_var_name.empty() ? (stage_out_var_name + ".gl_Position") : qual_pos_var_name;
case BuiltInPointSize:
return (stage_out_var_name + ".gl_PointSize");
case BuiltInVertexId:
return "gl_VertexID";
case BuiltInInstanceId:
return "gl_InstanceID";
case BuiltInVertexIndex:
return "gl_VertexIndex";
case BuiltInInstanceIndex:
return "gl_InstanceIndex";
case BuiltInPrimitiveId:
return "gl_PrimitiveID";
case BuiltInInvocationId:
return "gl_InvocationID";
case BuiltInLayer:
return "gl_Layer";
case BuiltInTessLevelOuter:
return "gl_TessLevelOuter";
case BuiltInTessLevelInner:
return "gl_TessLevelInner";
case BuiltInTessCoord:
return "gl_TessCoord";
case BuiltInFragCoord:
return "gl_FragCoord";
case BuiltInPointCoord:
return "gl_PointCoord";
case BuiltInFrontFacing:
return "gl_FrontFacing";
case BuiltInFragDepth:
return "gl_FragDepth";
case BuiltInNumWorkgroups:
return "gl_NumWorkGroups";
case BuiltInWorkgroupSize:
return "gl_WorkGroupSize";
case BuiltInWorkgroupId:
return "gl_WorkGroupID";
case BuiltInLocalInvocationId:
return "gl_LocalInvocationID";
case BuiltInGlobalInvocationId:
return "gl_GlobalInvocationID";
case BuiltInLocalInvocationIndex:
return "gl_LocalInvocationIndex";
default:
return "gl_???";
}
}
// Returns an MSL string attribute qualifer for a SPIR-V builtin
string CompilerMSL::builtin_qualifier(BuiltIn builtin)
{
auto &execution = get_entry_point();
switch (builtin)
{
// Vertex function in
case BuiltInVertexId:
return "vertex_id";
case BuiltInVertexIndex:
return "vertex_id";
case BuiltInInstanceId:
return "instance_id";
case BuiltInInstanceIndex:
return "instance_id";
// Vertex function out
case BuiltInClipDistance:
return "clip_distance";
case BuiltInPointSize:
return "point_size";
case BuiltInPosition:
return "position";
case BuiltInLayer:
return "render_target_array_index";
// Fragment function in
case BuiltInFrontFacing:
return "front_facing";
case BuiltInPointCoord:
return "point_coord";
case BuiltInFragCoord:
return "position";
case BuiltInSampleId:
return "sample_id";
case BuiltInSampleMask:
return "sample_mask";
// Fragment function out
case BuiltInFragDepth:
{
if (execution.flags & (1ull << ExecutionModeDepthGreater))
return "depth(greater)";
if (execution.flags & (1ull << ExecutionModeDepthLess))
return "depth(less)";
if (execution.flags & (1ull << ExecutionModeDepthUnchanged))
return "depth(any)";
}
default:
return "unsupported-built-in";
}
}
// Returns an MSL string type declaration for a SPIR-V builtin
string CompilerMSL::builtin_type_decl(BuiltIn builtin)
{
switch (builtin)
{
// Vertex function in
case BuiltInVertexId:
return "uint";
case BuiltInVertexIndex:
return "uint";
case BuiltInInstanceId:
return "uint";
case BuiltInInstanceIndex:
return "uint";
// Vertex function out
case BuiltInClipDistance:
return "float";
case BuiltInPointSize:
return "float";
case BuiltInPosition:
return "float4";
// Fragment function in
case BuiltInFrontFacing:
return "bool";
case BuiltInPointCoord:
return "float2";
case BuiltInFragCoord:
return "float4";
case BuiltInSampleId:
return "uint";
case BuiltInSampleMask:
return "uint";
default:
return "unsupported-built-in-type";
}
}
// Returns the effective size of a buffer block struct member.
size_t CompilerMSL::get_declared_struct_member_size(const SPIRType &struct_type, uint32_t index) const
{
auto &type = get<SPIRType>(struct_type.member_types[index]);
auto dec_mask = get_member_decoration_mask(struct_type.self, index);
return get_declared_type_size(type, dec_mask);
}
// Returns the effective size of a variable type.
size_t CompilerMSL::get_declared_type_size(const SPIRType &type) const
{
return get_declared_type_size(type, get_decoration_mask(type.self));
}
// Returns the effective size of a variable type or member type,
// taking into consideration the specified mask of decorations.
size_t CompilerMSL::get_declared_type_size(const SPIRType &type, uint64_t dec_mask) const
{
if (type.basetype == SPIRType::Struct)
return get_declared_struct_size(type);
switch (type.basetype)
{
case SPIRType::Unknown:
case SPIRType::Void:
case SPIRType::AtomicCounter:
case SPIRType::Image:
case SPIRType::SampledImage:
case SPIRType::Sampler:
throw CompilerError("Querying size of object with opaque size.");
default:
break;
}
size_t component_size = type.width / 8;
unsigned vecsize = type.vecsize;
unsigned columns = type.columns;
if (type.array.empty())
{
// Vectors.
if (columns == 1)
return vecsize * component_size;
else
{
// Per SPIR-V spec, matrices must be tightly packed and aligned up for vec3 accesses.
if ((dec_mask & (1ull << DecorationRowMajor)) && columns == 3)
columns = 4;
else if ((dec_mask & (1ull << DecorationColMajor)) && vecsize == 3)
vecsize = 4;
return vecsize * columns * component_size;
}
}
else
{
// For arrays, we can use ArrayStride to get an easy check.
// ArrayStride is part of the array type not OpMemberDecorate.
auto &dec = meta[type.self].decoration;
if (dec.decoration_flags & (1ull << DecorationArrayStride))
return dec.array_stride * to_array_size_literal(type, uint32_t(type.array.size()) - 1);
else
{
throw CompilerError("Type does not have ArrayStride set.");
}
}
}
// Sort both type and meta member content based on builtin status (put builtins at end), then by location.
void MemberSorterByLocation::sort()
{
// Create a temporary array of consecutive member indices and sort it base on
// how the members should be reordered, based on builtin and location meta info.
size_t mbr_cnt = type.member_types.size();
vector<uint32_t> mbr_idxs(mbr_cnt);
iota(mbr_idxs.begin(), mbr_idxs.end(), 0); // Fill with consecutive indices
std::sort(mbr_idxs.begin(), mbr_idxs.end(), *this); // Sort member indices based on member locations
// Move type and meta member info to the order defined by the sorted member indices.
// This is done by creating temporary copies of both member types and meta, and then
// copying back to the original content at the sorted indices.
auto mbr_types_cpy = type.member_types;
auto mbr_meta_cpy = meta.members;
for (uint32_t mbr_idx = 0; mbr_idx < mbr_cnt; mbr_idx++)
{
type.member_types[mbr_idx] = mbr_types_cpy[mbr_idxs[mbr_idx]];
meta.members[mbr_idx] = mbr_meta_cpy[mbr_idxs[mbr_idx]];
}
}
// Sort first by builtin status (put builtins at end), then by location.
bool MemberSorterByLocation::operator()(uint32_t mbr_idx1, uint32_t mbr_idx2)
{
auto &mbr_meta1 = meta.members[mbr_idx1];
auto &mbr_meta2 = meta.members[mbr_idx2];
if (mbr_meta1.builtin != mbr_meta2.builtin)
return mbr_meta2.builtin;
else
return mbr_meta1.location < mbr_meta2.location;
}