зеркало из https://github.com/stride3d/freetype.git
[base] Small optimization of BBox calculation.
* src/base/ftbbox.c (BBox_Cubic_Check): Use FT_MSB function in scaling algorithm.
This commit is contained in:
Родитель
c574d72ca8
Коммит
ab02d9e8e7
|
@ -1,3 +1,10 @@
|
|||
2013-01-28 Alexei Podtelezhnikov <apodtele@gmail.com>
|
||||
|
||||
[base] Small optimization of BBox calculation.
|
||||
|
||||
* src/base/ftbbox.c (BBox_Cubic_Check): Use FT_MSB function in
|
||||
scaling algorithm.
|
||||
|
||||
2013-01-26 Infinality <infinality@infinality.net>
|
||||
|
||||
[truetype] Minor formatting fix.
|
||||
|
|
|
@ -358,13 +358,15 @@
|
|||
return;
|
||||
}
|
||||
|
||||
/* There are some split points. Find them. */
|
||||
/* There are some split points. Find them. */
|
||||
/* We already made sure that a, b, and c below cannot be all zero. */
|
||||
{
|
||||
FT_Pos a = y4 - 3*y3 + 3*y2 - y1;
|
||||
FT_Pos b = y3 - 2*y2 + y1;
|
||||
FT_Pos c = y2 - y1;
|
||||
FT_Pos d;
|
||||
FT_Fixed t;
|
||||
FT_Int shift;
|
||||
|
||||
|
||||
/* We need to solve `ax^2+2bx+c' here, without floating points! */
|
||||
|
@ -375,90 +377,38 @@
|
|||
/* These values must fit into a single 16.16 value. */
|
||||
/* */
|
||||
/* We normalize a, b, and c to `8.16' fixed-point values to ensure */
|
||||
/* that its product is held in a `16.16' value. */
|
||||
/* that its product is held in a `16.16' value. Necessarily, */
|
||||
/* we need to shift `a', `b', and `c' so that the most significant */
|
||||
/* bit of their absolute values is at _most_ at position 23. */
|
||||
/* */
|
||||
/* This also means that we are using 24 bits of precision to compute */
|
||||
/* the zeros, independently of the range of the original polynomial */
|
||||
/* coefficients. */
|
||||
/* */
|
||||
/* This algorithm should ensure reasonably accurate values for the */
|
||||
/* zeros. Note that they are only expressed with 16 bits when */
|
||||
/* computing the extrema (the zeros need to be in 0..1 exclusive */
|
||||
/* to be considered part of the arc). */
|
||||
|
||||
shift = FT_MSB( FT_ABS( a ) | FT_ABS( b ) | FT_ABS( c ) );
|
||||
|
||||
if ( shift > 23 )
|
||||
{
|
||||
FT_ULong t1, t2;
|
||||
int shift = 0;
|
||||
shift -= 23;
|
||||
|
||||
/* this loses some bits of precision, but we use 24 of them */
|
||||
/* for the computation anyway */
|
||||
a >>= shift;
|
||||
b >>= shift;
|
||||
c >>= shift;
|
||||
}
|
||||
else
|
||||
{
|
||||
shift = 23 - shift;
|
||||
|
||||
/* The following computation is based on the fact that for */
|
||||
/* any value `y', if `n' is the position of the most */
|
||||
/* significant bit of `abs(y)' (starting from 0 for the */
|
||||
/* least significant bit), then `y' is in the range */
|
||||
/* */
|
||||
/* -2^n..2^n-1 */
|
||||
/* */
|
||||
/* We want to shift `a', `b', and `c' concurrently in order */
|
||||
/* to ensure that they all fit in 8.16 values, which maps */
|
||||
/* to the integer range `-2^23..2^23-1'. */
|
||||
/* */
|
||||
/* Necessarily, we need to shift `a', `b', and `c' so that */
|
||||
/* the most significant bit of its absolute values is at */
|
||||
/* _most_ at position 23. */
|
||||
/* */
|
||||
/* We begin by computing `t1' as the bitwise `OR' of the */
|
||||
/* absolute values of `a', `b', `c'. */
|
||||
|
||||
t1 = (FT_ULong)FT_ABS( a );
|
||||
t2 = (FT_ULong)FT_ABS( b );
|
||||
t1 |= t2;
|
||||
t2 = (FT_ULong)FT_ABS( c );
|
||||
t1 |= t2;
|
||||
|
||||
/* Now we can be sure that the most significant bit of `t1' */
|
||||
/* is the most significant bit of either `a', `b', or `c', */
|
||||
/* depending on the greatest integer range of the particular */
|
||||
/* variable. */
|
||||
/* */
|
||||
/* Next, we compute the `shift', by shifting `t1' as many */
|
||||
/* times as necessary to move its MSB to position 23. This */
|
||||
/* corresponds to a value of `t1' that is in the range */
|
||||
/* 0x40_0000..0x7F_FFFF. */
|
||||
/* */
|
||||
/* Finally, we shift `a', `b', and `c' by the same amount. */
|
||||
/* This ensures that all values are now in the range */
|
||||
/* -2^23..2^23, i.e., they are now expressed as 8.16 */
|
||||
/* fixed-float numbers. This also means that we are using */
|
||||
/* 24 bits of precision to compute the zeros, independently */
|
||||
/* of the range of the original polynomial coefficients. */
|
||||
/* */
|
||||
/* This algorithm should ensure reasonably accurate values */
|
||||
/* for the zeros. Note that they are only expressed with */
|
||||
/* 16 bits when computing the extrema (the zeros need to */
|
||||
/* be in 0..1 exclusive to be considered part of the arc). */
|
||||
|
||||
if ( t1 == 0 ) /* all coefficients are 0! */
|
||||
return;
|
||||
|
||||
if ( t1 > 0x7FFFFFUL )
|
||||
{
|
||||
do
|
||||
{
|
||||
shift++;
|
||||
t1 >>= 1;
|
||||
|
||||
} while ( t1 > 0x7FFFFFUL );
|
||||
|
||||
/* this loses some bits of precision, but we use 24 of them */
|
||||
/* for the computation anyway */
|
||||
a >>= shift;
|
||||
b >>= shift;
|
||||
c >>= shift;
|
||||
}
|
||||
else if ( t1 < 0x400000UL )
|
||||
{
|
||||
do
|
||||
{
|
||||
shift++;
|
||||
t1 <<= 1;
|
||||
|
||||
} while ( t1 < 0x400000UL );
|
||||
|
||||
a <<= shift;
|
||||
b <<= shift;
|
||||
c <<= shift;
|
||||
}
|
||||
a <<= shift;
|
||||
b <<= shift;
|
||||
c <<= shift;
|
||||
}
|
||||
|
||||
/* handle a == 0 */
|
||||
|
|
Загрузка…
Ссылка в новой задаче