2012-12-13 01:15:54 +04:00
|
|
|
//
|
|
|
|
//Copyright (C) 2002-2005 3Dlabs Inc. Ltd.
|
2013-02-06 23:46:32 +04:00
|
|
|
//Copyright (C) 2012-2013 LunarG, Inc.
|
|
|
|
//
|
2012-12-13 01:15:54 +04:00
|
|
|
//All rights reserved.
|
|
|
|
//
|
|
|
|
//Redistribution and use in source and binary forms, with or without
|
|
|
|
//modification, are permitted provided that the following conditions
|
|
|
|
//are met:
|
|
|
|
//
|
|
|
|
// Redistributions of source code must retain the above copyright
|
|
|
|
// notice, this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// Redistributions in binary form must reproduce the above
|
|
|
|
// copyright notice, this list of conditions and the following
|
|
|
|
// disclaimer in the documentation and/or other materials provided
|
|
|
|
// with the distribution.
|
|
|
|
//
|
|
|
|
// Neither the name of 3Dlabs Inc. Ltd. nor the names of its
|
|
|
|
// contributors may be used to endorse or promote products derived
|
|
|
|
// from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
//THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
//"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
|
//LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
|
|
//FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
|
|
//COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
|
|
//INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
|
|
//BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
|
|
//LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
|
|
//CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
|
|
//LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
|
|
//ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
|
|
//POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
//
|
|
|
|
|
|
|
|
#ifndef _POOLALLOC_INCLUDED_
|
|
|
|
#define _POOLALLOC_INCLUDED_
|
|
|
|
|
|
|
|
#ifdef _DEBUG
|
|
|
|
# define GUARD_BLOCKS // define to enable guard block sanity checking
|
|
|
|
#endif
|
|
|
|
|
|
|
|
//
|
|
|
|
// This header defines an allocator that can be used to efficiently
|
|
|
|
// allocate a large number of small requests for heap memory, with the
|
|
|
|
// intention that they are not individually deallocated, but rather
|
|
|
|
// collectively deallocated at one time.
|
|
|
|
//
|
|
|
|
// This simultaneously
|
|
|
|
//
|
|
|
|
// * Makes each individual allocation much more efficient; the
|
|
|
|
// typical allocation is trivial.
|
|
|
|
// * Completely avoids the cost of doing individual deallocation.
|
|
|
|
// * Saves the trouble of tracking down and plugging a large class of leaks.
|
|
|
|
//
|
|
|
|
// Individual classes can use this allocator by supplying their own
|
|
|
|
// new and delete methods.
|
|
|
|
//
|
|
|
|
// STL containers can use this allocator by using the pool_allocator
|
|
|
|
// class as the allocator (second) template argument.
|
|
|
|
//
|
|
|
|
|
|
|
|
#include <stddef.h>
|
2013-03-09 03:14:42 +04:00
|
|
|
#include <string.h>
|
2012-12-13 01:15:54 +04:00
|
|
|
#include <vector>
|
|
|
|
|
2013-08-29 04:39:25 +04:00
|
|
|
namespace glslang {
|
|
|
|
|
2012-12-13 01:15:54 +04:00
|
|
|
// If we are using guard blocks, we must track each indivual
|
|
|
|
// allocation. If we aren't using guard blocks, these
|
|
|
|
// never get instantiated, so won't have any impact.
|
|
|
|
//
|
|
|
|
|
|
|
|
class TAllocation {
|
|
|
|
public:
|
|
|
|
TAllocation(size_t size, unsigned char* mem, TAllocation* prev = 0) :
|
|
|
|
size(size), mem(mem), prevAlloc(prev) {
|
|
|
|
// Allocations are bracketed:
|
|
|
|
// [allocationHeader][initialGuardBlock][userData][finalGuardBlock]
|
|
|
|
// This would be cleaner with if (guardBlockSize)..., but that
|
|
|
|
// makes the compiler print warnings about 0 length memsets,
|
|
|
|
// even with the if() protecting them.
|
|
|
|
# ifdef GUARD_BLOCKS
|
|
|
|
memset(preGuard(), guardBlockBeginVal, guardBlockSize);
|
|
|
|
memset(data(), userDataFill, size);
|
|
|
|
memset(postGuard(), guardBlockEndVal, guardBlockSize);
|
|
|
|
# endif
|
|
|
|
}
|
|
|
|
|
|
|
|
void check() const {
|
|
|
|
checkGuardBlock(preGuard(), guardBlockBeginVal, "before");
|
|
|
|
checkGuardBlock(postGuard(), guardBlockEndVal, "after");
|
|
|
|
}
|
|
|
|
|
|
|
|
void checkAllocList() const;
|
|
|
|
|
2016-04-03 03:17:13 +03:00
|
|
|
// Return total size needed to accommodate user buffer of 'size',
|
2012-12-13 01:15:54 +04:00
|
|
|
// plus our tracking data.
|
|
|
|
inline static size_t allocationSize(size_t size) {
|
|
|
|
return size + 2 * guardBlockSize + headerSize();
|
|
|
|
}
|
|
|
|
|
|
|
|
// Offset from surrounding buffer to get to user data buffer.
|
|
|
|
inline static unsigned char* offsetAllocation(unsigned char* m) {
|
|
|
|
return m + guardBlockSize + headerSize();
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
2013-02-12 02:36:01 +04:00
|
|
|
void checkGuardBlock(unsigned char* blockMem, unsigned char val, const char* locText) const;
|
2012-12-13 01:15:54 +04:00
|
|
|
|
|
|
|
// Find offsets to pre and post guard blocks, and user data buffer
|
|
|
|
unsigned char* preGuard() const { return mem + headerSize(); }
|
|
|
|
unsigned char* data() const { return preGuard() + guardBlockSize; }
|
|
|
|
unsigned char* postGuard() const { return data() + size; }
|
|
|
|
|
|
|
|
size_t size; // size of the user data area
|
|
|
|
unsigned char* mem; // beginning of our allocation (pts to header)
|
|
|
|
TAllocation* prevAlloc; // prior allocation in the chain
|
|
|
|
|
|
|
|
const static unsigned char guardBlockBeginVal;
|
|
|
|
const static unsigned char guardBlockEndVal;
|
|
|
|
const static unsigned char userDataFill;
|
|
|
|
|
|
|
|
const static size_t guardBlockSize;
|
|
|
|
# ifdef GUARD_BLOCKS
|
|
|
|
inline static size_t headerSize() { return sizeof(TAllocation); }
|
|
|
|
# else
|
|
|
|
inline static size_t headerSize() { return 0; }
|
|
|
|
# endif
|
|
|
|
};
|
|
|
|
|
|
|
|
//
|
|
|
|
// There are several stacks. One is to track the pushing and popping
|
|
|
|
// of the user, and not yet implemented. The others are simply a
|
|
|
|
// repositories of free pages or used pages.
|
|
|
|
//
|
|
|
|
// Page stacks are linked together with a simple header at the beginning
|
|
|
|
// of each allocation obtained from the underlying OS. Multi-page allocations
|
|
|
|
// are returned to the OS. Individual page allocations are kept for future
|
|
|
|
// re-use.
|
|
|
|
//
|
|
|
|
// The "page size" used is not, nor must it match, the underlying OS
|
|
|
|
// page size. But, having it be about that size or equal to a set of
|
|
|
|
// pages is likely most optimal.
|
|
|
|
//
|
|
|
|
class TPoolAllocator {
|
|
|
|
public:
|
2013-07-31 22:44:13 +04:00
|
|
|
TPoolAllocator(int growthIncrement = 8*1024, int allocationAlignment = 16);
|
2012-12-13 01:15:54 +04:00
|
|
|
|
|
|
|
//
|
|
|
|
// Don't call the destructor just to free up the memory, call pop()
|
|
|
|
//
|
|
|
|
~TPoolAllocator();
|
|
|
|
|
|
|
|
//
|
|
|
|
// Call push() to establish a new place to pop memory too. Does not
|
|
|
|
// have to be called to get things started.
|
|
|
|
//
|
|
|
|
void push();
|
|
|
|
|
|
|
|
//
|
|
|
|
// Call pop() to free all memory allocated since the last call to push(),
|
|
|
|
// or if no last call to push, frees all memory since first allocation.
|
|
|
|
//
|
|
|
|
void pop();
|
|
|
|
|
|
|
|
//
|
|
|
|
// Call popAll() to free all memory allocated.
|
|
|
|
//
|
|
|
|
void popAll();
|
|
|
|
|
|
|
|
//
|
|
|
|
// Call allocate() to actually acquire memory. Returns 0 if no memory
|
|
|
|
// available, otherwise a properly aligned pointer to 'numBytes' of memory.
|
|
|
|
//
|
|
|
|
void* allocate(size_t numBytes);
|
|
|
|
|
|
|
|
//
|
|
|
|
// There is no deallocate. The point of this class is that
|
|
|
|
// deallocation can be skipped by the user of it, as the model
|
|
|
|
// of use is to simultaneously deallocate everything at once
|
|
|
|
// by calling pop(), and to not have to solve memory leak problems.
|
|
|
|
//
|
|
|
|
|
|
|
|
protected:
|
|
|
|
friend struct tHeader;
|
|
|
|
|
|
|
|
struct tHeader {
|
|
|
|
tHeader(tHeader* nextPage, size_t pageCount) :
|
|
|
|
#ifdef GUARD_BLOCKS
|
|
|
|
lastAllocation(0),
|
|
|
|
#endif
|
|
|
|
nextPage(nextPage), pageCount(pageCount) { }
|
|
|
|
|
|
|
|
~tHeader() {
|
|
|
|
#ifdef GUARD_BLOCKS
|
|
|
|
if (lastAllocation)
|
|
|
|
lastAllocation->checkAllocList();
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef GUARD_BLOCKS
|
|
|
|
TAllocation* lastAllocation;
|
|
|
|
#endif
|
2013-06-24 22:24:23 +04:00
|
|
|
tHeader* nextPage;
|
|
|
|
size_t pageCount;
|
2012-12-13 01:15:54 +04:00
|
|
|
};
|
|
|
|
|
|
|
|
struct tAllocState {
|
|
|
|
size_t offset;
|
|
|
|
tHeader* page;
|
|
|
|
};
|
|
|
|
typedef std::vector<tAllocState> tAllocStack;
|
|
|
|
|
|
|
|
// Track allocations if and only if we're using guard blocks
|
2015-05-15 20:30:55 +03:00
|
|
|
#ifndef GUARD_BLOCKS
|
|
|
|
void* initializeAllocation(tHeader*, unsigned char* memory, size_t) {
|
|
|
|
#else
|
2012-12-13 01:15:54 +04:00
|
|
|
void* initializeAllocation(tHeader* block, unsigned char* memory, size_t numBytes) {
|
|
|
|
new(memory) TAllocation(numBytes, memory, block->lastAllocation);
|
|
|
|
block->lastAllocation = reinterpret_cast<TAllocation*>(memory);
|
2015-05-15 20:30:55 +03:00
|
|
|
#endif
|
2012-12-13 01:15:54 +04:00
|
|
|
|
|
|
|
// This is optimized entirely away if GUARD_BLOCKS is not defined.
|
|
|
|
return TAllocation::offsetAllocation(memory);
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t pageSize; // granularity of allocation from the OS
|
|
|
|
size_t alignment; // all returned allocations will be aligned at
|
|
|
|
// this granularity, which will be a power of 2
|
|
|
|
size_t alignmentMask;
|
|
|
|
size_t headerSkip; // amount of memory to skip to make room for the
|
|
|
|
// header (basically, size of header, rounded
|
|
|
|
// up to make it aligned
|
|
|
|
size_t currentPageOffset; // next offset in top of inUseList to allocate from
|
|
|
|
tHeader* freeList; // list of popped memory
|
|
|
|
tHeader* inUseList; // list of all memory currently being used
|
|
|
|
tAllocStack stack; // stack of where to allocate from, to partition pool
|
|
|
|
|
|
|
|
int numCalls; // just an interesting statistic
|
|
|
|
size_t totalBytes; // just an interesting statistic
|
|
|
|
private:
|
2016-04-03 03:17:13 +03:00
|
|
|
TPoolAllocator& operator=(const TPoolAllocator&); // don't allow assignment operator
|
|
|
|
TPoolAllocator(const TPoolAllocator&); // don't allow default copy constructor
|
2012-12-13 01:15:54 +04:00
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
//
|
|
|
|
// There could potentially be many pools with pops happening at
|
|
|
|
// different times. But a simple use is to have a global pop
|
|
|
|
// with everyone using the same global allocator.
|
|
|
|
//
|
|
|
|
typedef TPoolAllocator* PoolAllocatorPointer;
|
2013-07-31 22:44:13 +04:00
|
|
|
extern TPoolAllocator& GetThreadPoolAllocator();
|
2012-12-13 01:15:54 +04:00
|
|
|
|
2013-11-01 21:41:52 +04:00
|
|
|
struct TThreadMemoryPools
|
2012-12-13 01:15:54 +04:00
|
|
|
{
|
2013-11-01 21:41:52 +04:00
|
|
|
TPoolAllocator* threadPoolAllocator;
|
2012-12-13 01:15:54 +04:00
|
|
|
};
|
|
|
|
|
2013-07-31 22:44:13 +04:00
|
|
|
void SetThreadPoolAllocator(TPoolAllocator& poolAllocator);
|
2012-12-13 01:15:54 +04:00
|
|
|
|
|
|
|
//
|
|
|
|
// This STL compatible allocator is intended to be used as the allocator
|
|
|
|
// parameter to templatized STL containers, like vector and map.
|
|
|
|
//
|
|
|
|
// It will use the pools for allocation, and not
|
|
|
|
// do any deallocation, but will still do destruction.
|
|
|
|
//
|
|
|
|
template<class T>
|
|
|
|
class pool_allocator {
|
|
|
|
public:
|
|
|
|
typedef size_t size_type;
|
|
|
|
typedef ptrdiff_t difference_type;
|
|
|
|
typedef T *pointer;
|
|
|
|
typedef const T *const_pointer;
|
|
|
|
typedef T& reference;
|
|
|
|
typedef const T& const_reference;
|
|
|
|
typedef T value_type;
|
|
|
|
template<class Other>
|
|
|
|
struct rebind {
|
|
|
|
typedef pool_allocator<Other> other;
|
|
|
|
};
|
|
|
|
pointer address(reference x) const { return &x; }
|
|
|
|
const_pointer address(const_reference x) const { return &x; }
|
|
|
|
|
2013-07-31 22:44:13 +04:00
|
|
|
pool_allocator() : allocator(GetThreadPoolAllocator()) { }
|
2012-12-13 01:15:54 +04:00
|
|
|
pool_allocator(TPoolAllocator& a) : allocator(a) { }
|
|
|
|
pool_allocator(const pool_allocator<T>& p) : allocator(p.allocator) { }
|
|
|
|
|
|
|
|
template<class Other>
|
|
|
|
pool_allocator(const pool_allocator<Other>& p) : allocator(p.getAllocator()) { }
|
|
|
|
|
|
|
|
pointer allocate(size_type n) {
|
|
|
|
return reinterpret_cast<pointer>(getAllocator().allocate(n * sizeof(T))); }
|
|
|
|
pointer allocate(size_type n, const void*) {
|
|
|
|
return reinterpret_cast<pointer>(getAllocator().allocate(n * sizeof(T))); }
|
|
|
|
|
|
|
|
void deallocate(void*, size_type) { }
|
|
|
|
void deallocate(pointer, size_type) { }
|
|
|
|
|
|
|
|
pointer _Charalloc(size_t n) {
|
|
|
|
return reinterpret_cast<pointer>(getAllocator().allocate(n)); }
|
|
|
|
|
|
|
|
void construct(pointer p, const T& val) { new ((void *)p) T(val); }
|
|
|
|
void destroy(pointer p) { p->T::~T(); }
|
|
|
|
|
|
|
|
bool operator==(const pool_allocator& rhs) const { return &getAllocator() == &rhs.getAllocator(); }
|
|
|
|
bool operator!=(const pool_allocator& rhs) const { return &getAllocator() != &rhs.getAllocator(); }
|
|
|
|
|
|
|
|
size_type max_size() const { return static_cast<size_type>(-1) / sizeof(T); }
|
|
|
|
size_type max_size(int size) const { return static_cast<size_type>(-1) / size; }
|
|
|
|
|
|
|
|
void setAllocator(TPoolAllocator* a) { allocator = *a; }
|
|
|
|
TPoolAllocator& getAllocator() const { return allocator; }
|
|
|
|
|
|
|
|
protected:
|
2015-05-15 20:30:55 +03:00
|
|
|
pool_allocator& operator=(const pool_allocator&) { return *this; }
|
2012-12-13 01:15:54 +04:00
|
|
|
TPoolAllocator& allocator;
|
|
|
|
};
|
|
|
|
|
2013-08-29 04:39:25 +04:00
|
|
|
} // end namespace glslang
|
|
|
|
|
2012-12-13 01:15:54 +04:00
|
|
|
#endif // _POOLALLOC_INCLUDED_
|