зеркало из https://github.com/stride3d/xkslang.git
905 строки
33 KiB
C++
905 строки
33 KiB
C++
//
|
||
//Copyright (C) 2002-2005 3Dlabs Inc. Ltd.
|
||
//Copyright (C) 2012-2013 LunarG, Inc.
|
||
//
|
||
//All rights reserved.
|
||
//
|
||
//Redistribution and use in source and binary forms, with or without
|
||
//modification, are permitted provided that the following conditions
|
||
//are met:
|
||
//
|
||
// Redistributions of source code must retain the above copyright
|
||
// notice, this list of conditions and the following disclaimer.
|
||
//
|
||
// Redistributions in binary form must reproduce the above
|
||
// copyright notice, this list of conditions and the following
|
||
// disclaimer in the documentation and/or other materials provided
|
||
// with the distribution.
|
||
//
|
||
// Neither the name of 3Dlabs Inc. Ltd. nor the names of its
|
||
// contributors may be used to endorse or promote products derived
|
||
// from this software without specific prior written permission.
|
||
//
|
||
//THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
//"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
//LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
||
//FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
||
//COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||
//INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||
//BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||
//LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||
//CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||
//LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
||
//ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
//POSSIBILITY OF SUCH DAMAGE.
|
||
//
|
||
|
||
#include "localintermediate.h"
|
||
#include <cmath>
|
||
#include <cfloat>
|
||
#include <cstdlib>
|
||
|
||
namespace {
|
||
|
||
using namespace glslang;
|
||
|
||
// Some helper functions
|
||
|
||
bool isNan(double x)
|
||
{
|
||
// tough to find a platform independent library function, do it directly
|
||
int bitPatternL = *(int*)&x;
|
||
int bitPatternH = *((int*)&x + 1);
|
||
return (bitPatternH & 0x7ff80000) == 0x7ff80000 &&
|
||
((bitPatternH & 0xFFFFF) != 0 || bitPatternL != 0);
|
||
}
|
||
|
||
bool isInf(double x)
|
||
{
|
||
// tough to find a platform independent library function, do it directly
|
||
int bitPatternL = *(int*)&x;
|
||
int bitPatternH = *((int*)&x + 1);
|
||
return (bitPatternH & 0x7ff00000) == 0x7ff00000 &&
|
||
(bitPatternH & 0xFFFFF) == 0 && bitPatternL == 0;
|
||
}
|
||
|
||
const double pi = 3.1415926535897932384626433832795;
|
||
|
||
} // end anonymous namespace
|
||
|
||
|
||
namespace glslang {
|
||
|
||
//
|
||
// The fold functions see if an operation on a constant can be done in place,
|
||
// without generating run-time code.
|
||
//
|
||
// Returns the node to keep using, which may or may not be the node passed in.
|
||
//
|
||
// Note: As of version 1.2, all constant operations must be folded. It is
|
||
// not opportunistic, but rather a semantic requirement.
|
||
//
|
||
|
||
//
|
||
// Do folding between a pair of nodes
|
||
//
|
||
// Returns a new node representing the result.
|
||
//
|
||
TIntermTyped* TIntermConstantUnion::fold(TOperator op, const TIntermTyped* constantNode) const
|
||
{
|
||
// For most cases, the return type matches the argument type, so set that
|
||
// up and just code to exceptions below.
|
||
TType returnType;
|
||
returnType.shallowCopy(getType());
|
||
|
||
//
|
||
// A pair of nodes is to be folded together
|
||
//
|
||
|
||
const TIntermConstantUnion *node = constantNode->getAsConstantUnion();
|
||
TConstUnionArray unionArray = getConstArray();
|
||
TConstUnionArray rightUnionArray = node->getConstArray();
|
||
|
||
// Figure out the size of the result
|
||
int newComps;
|
||
int constComps;
|
||
switch(op) {
|
||
case EOpMatrixTimesMatrix:
|
||
newComps = getMatrixRows() * node->getMatrixCols();
|
||
break;
|
||
case EOpMatrixTimesVector:
|
||
newComps = getMatrixRows();
|
||
break;
|
||
case EOpVectorTimesMatrix:
|
||
newComps = node->getMatrixCols();
|
||
break;
|
||
default:
|
||
newComps = getType().computeNumComponents();
|
||
constComps = constantNode->getType().computeNumComponents();
|
||
if (constComps == 1 && newComps > 1) {
|
||
// for a case like vec4 f = vec4(2,3,4,5) + 1.2;
|
||
TConstUnionArray smearedArray(newComps, node->getConstArray()[0]);
|
||
rightUnionArray = smearedArray;
|
||
} else if (constComps > 1 && newComps == 1) {
|
||
// for a case like vec4 f = 1.2 + vec4(2,3,4,5);
|
||
newComps = constComps;
|
||
rightUnionArray = node->getConstArray();
|
||
TConstUnionArray smearedArray(newComps, getConstArray()[0]);
|
||
unionArray = smearedArray;
|
||
returnType.shallowCopy(node->getType());
|
||
}
|
||
break;
|
||
}
|
||
|
||
TConstUnionArray newConstArray(newComps);
|
||
TType constBool(EbtBool, EvqConst);
|
||
|
||
switch(op) {
|
||
case EOpAdd:
|
||
for (int i = 0; i < newComps; i++)
|
||
newConstArray[i] = unionArray[i] + rightUnionArray[i];
|
||
break;
|
||
case EOpSub:
|
||
for (int i = 0; i < newComps; i++)
|
||
newConstArray[i] = unionArray[i] - rightUnionArray[i];
|
||
break;
|
||
|
||
case EOpMul:
|
||
case EOpVectorTimesScalar:
|
||
case EOpMatrixTimesScalar:
|
||
for (int i = 0; i < newComps; i++)
|
||
newConstArray[i] = unionArray[i] * rightUnionArray[i];
|
||
break;
|
||
case EOpMatrixTimesMatrix:
|
||
for (int row = 0; row < getMatrixRows(); row++) {
|
||
for (int column = 0; column < node->getMatrixCols(); column++) {
|
||
double sum = 0.0f;
|
||
for (int i = 0; i < node->getMatrixRows(); i++)
|
||
sum += unionArray[i * getMatrixRows() + row].getDConst() * rightUnionArray[column * node->getMatrixRows() + i].getDConst();
|
||
newConstArray[column * getMatrixRows() + row].setDConst(sum);
|
||
}
|
||
}
|
||
returnType.shallowCopy(TType(getType().getBasicType(), EvqConst, 0, getMatrixRows(), node->getMatrixCols()));
|
||
break;
|
||
case EOpDiv:
|
||
for (int i = 0; i < newComps; i++) {
|
||
switch (getType().getBasicType()) {
|
||
case EbtDouble:
|
||
case EbtFloat:
|
||
newConstArray[i].setDConst(unionArray[i].getDConst() / rightUnionArray[i].getDConst());
|
||
break;
|
||
|
||
case EbtInt:
|
||
if (rightUnionArray[i] == 0)
|
||
newConstArray[i].setIConst(0x7FFFFFFF);
|
||
else if (rightUnionArray[i].getIConst() == -1 && unionArray[i].getIConst() == 0x80000000)
|
||
newConstArray[i].setIConst(0x80000000);
|
||
else
|
||
newConstArray[i].setIConst(unionArray[i].getIConst() / rightUnionArray[i].getIConst());
|
||
break;
|
||
|
||
case EbtUint:
|
||
if (rightUnionArray[i] == 0) {
|
||
newConstArray[i].setUConst(0xFFFFFFFF);
|
||
} else
|
||
newConstArray[i].setUConst(unionArray[i].getUConst() / rightUnionArray[i].getUConst());
|
||
break;
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
break;
|
||
|
||
case EOpMatrixTimesVector:
|
||
for (int i = 0; i < getMatrixRows(); i++) {
|
||
double sum = 0.0f;
|
||
for (int j = 0; j < node->getVectorSize(); j++) {
|
||
sum += unionArray[j*getMatrixRows() + i].getDConst() * rightUnionArray[j].getDConst();
|
||
}
|
||
newConstArray[i].setDConst(sum);
|
||
}
|
||
|
||
returnType.shallowCopy(TType(getBasicType(), EvqConst, getMatrixRows()));
|
||
break;
|
||
|
||
case EOpVectorTimesMatrix:
|
||
for (int i = 0; i < node->getMatrixCols(); i++) {
|
||
double sum = 0.0f;
|
||
for (int j = 0; j < getVectorSize(); j++)
|
||
sum += unionArray[j].getDConst() * rightUnionArray[i*node->getMatrixRows() + j].getDConst();
|
||
newConstArray[i].setDConst(sum);
|
||
}
|
||
|
||
returnType.shallowCopy(TType(getBasicType(), EvqConst, node->getMatrixCols()));
|
||
break;
|
||
|
||
case EOpMod:
|
||
for (int i = 0; i < newComps; i++) {
|
||
if (rightUnionArray[i] == 0)
|
||
newConstArray[i] = unionArray[i];
|
||
else
|
||
newConstArray[i] = unionArray[i] % rightUnionArray[i];
|
||
}
|
||
break;
|
||
|
||
case EOpRightShift:
|
||
for (int i = 0; i < newComps; i++)
|
||
newConstArray[i] = unionArray[i] >> rightUnionArray[i];
|
||
break;
|
||
|
||
case EOpLeftShift:
|
||
for (int i = 0; i < newComps; i++)
|
||
newConstArray[i] = unionArray[i] << rightUnionArray[i];
|
||
break;
|
||
|
||
case EOpAnd:
|
||
for (int i = 0; i < newComps; i++)
|
||
newConstArray[i] = unionArray[i] & rightUnionArray[i];
|
||
break;
|
||
case EOpInclusiveOr:
|
||
for (int i = 0; i < newComps; i++)
|
||
newConstArray[i] = unionArray[i] | rightUnionArray[i];
|
||
break;
|
||
case EOpExclusiveOr:
|
||
for (int i = 0; i < newComps; i++)
|
||
newConstArray[i] = unionArray[i] ^ rightUnionArray[i];
|
||
break;
|
||
|
||
case EOpLogicalAnd: // this code is written for possible future use, will not get executed currently
|
||
for (int i = 0; i < newComps; i++)
|
||
newConstArray[i] = unionArray[i] && rightUnionArray[i];
|
||
break;
|
||
|
||
case EOpLogicalOr: // this code is written for possible future use, will not get executed currently
|
||
for (int i = 0; i < newComps; i++)
|
||
newConstArray[i] = unionArray[i] || rightUnionArray[i];
|
||
break;
|
||
|
||
case EOpLogicalXor:
|
||
for (int i = 0; i < newComps; i++) {
|
||
switch (getType().getBasicType()) {
|
||
case EbtBool: newConstArray[i].setBConst((unionArray[i] == rightUnionArray[i]) ? false : true); break;
|
||
default: assert(false && "Default missing");
|
||
}
|
||
}
|
||
break;
|
||
|
||
case EOpLessThan:
|
||
newConstArray[0].setBConst(unionArray[0] < rightUnionArray[0]);
|
||
returnType.shallowCopy(constBool);
|
||
break;
|
||
case EOpGreaterThan:
|
||
newConstArray[0].setBConst(unionArray[0] > rightUnionArray[0]);
|
||
returnType.shallowCopy(constBool);
|
||
break;
|
||
case EOpLessThanEqual:
|
||
newConstArray[0].setBConst(! (unionArray[0] > rightUnionArray[0]));
|
||
returnType.shallowCopy(constBool);
|
||
break;
|
||
case EOpGreaterThanEqual:
|
||
newConstArray[0].setBConst(! (unionArray[0] < rightUnionArray[0]));
|
||
returnType.shallowCopy(constBool);
|
||
break;
|
||
case EOpEqual:
|
||
newConstArray[0].setBConst(node->getConstArray() == unionArray);
|
||
returnType.shallowCopy(constBool);
|
||
break;
|
||
case EOpNotEqual:
|
||
newConstArray[0].setBConst(node->getConstArray() != unionArray);
|
||
returnType.shallowCopy(constBool);
|
||
break;
|
||
|
||
default:
|
||
return 0;
|
||
}
|
||
|
||
TIntermConstantUnion *newNode = new TIntermConstantUnion(newConstArray, returnType);
|
||
newNode->setLoc(getLoc());
|
||
|
||
return newNode;
|
||
}
|
||
|
||
//
|
||
// Do single unary node folding
|
||
//
|
||
// Returns a new node representing the result.
|
||
//
|
||
TIntermTyped* TIntermConstantUnion::fold(TOperator op, const TType& returnType) const
|
||
{
|
||
// First, size the result, which is mostly the same as the argument's size,
|
||
// but not always, and classify what is componentwise.
|
||
// Also, eliminate cases that can't be compile-time constant.
|
||
int resultSize;
|
||
bool componentWise = true;
|
||
|
||
int objectSize = getType().computeNumComponents();
|
||
switch (op) {
|
||
case EOpDeterminant:
|
||
case EOpAny:
|
||
case EOpAll:
|
||
case EOpLength:
|
||
componentWise = false;
|
||
resultSize = 1;
|
||
break;
|
||
|
||
case EOpEmitStreamVertex:
|
||
case EOpEndStreamPrimitive:
|
||
// These don't actually fold
|
||
return 0;
|
||
|
||
case EOpPackSnorm2x16:
|
||
case EOpPackUnorm2x16:
|
||
case EOpPackHalf2x16:
|
||
componentWise = false;
|
||
resultSize = 1;
|
||
break;
|
||
|
||
case EOpUnpackSnorm2x16:
|
||
case EOpUnpackUnorm2x16:
|
||
case EOpUnpackHalf2x16:
|
||
componentWise = false;
|
||
resultSize = 2;
|
||
break;
|
||
|
||
case EOpNormalize:
|
||
componentWise = false;
|
||
resultSize = objectSize;
|
||
break;
|
||
|
||
default:
|
||
resultSize = objectSize;
|
||
break;
|
||
}
|
||
|
||
// Set up for processing
|
||
TConstUnionArray newConstArray(resultSize);
|
||
const TConstUnionArray& unionArray = getConstArray();
|
||
|
||
// Process non-component-wise operations
|
||
switch (op) {
|
||
case EOpLength:
|
||
case EOpNormalize:
|
||
{
|
||
double sum = 0;
|
||
for (int i = 0; i < objectSize; i++)
|
||
sum += unionArray[i].getDConst() * unionArray[i].getDConst();
|
||
double length = sqrt(sum);
|
||
if (op == EOpLength)
|
||
newConstArray[0].setDConst(length);
|
||
else {
|
||
for (int i = 0; i < objectSize; i++)
|
||
newConstArray[i].setDConst(unionArray[i].getDConst() / length);
|
||
}
|
||
break;
|
||
}
|
||
|
||
// TODO: 3.0 Functionality: unary constant folding: the rest of the ops have to be fleshed out
|
||
|
||
case EOpPackSnorm2x16:
|
||
case EOpPackUnorm2x16:
|
||
case EOpPackHalf2x16:
|
||
|
||
case EOpUnpackSnorm2x16:
|
||
case EOpUnpackUnorm2x16:
|
||
case EOpUnpackHalf2x16:
|
||
|
||
case EOpDeterminant:
|
||
case EOpMatrixInverse:
|
||
case EOpTranspose:
|
||
|
||
case EOpAny:
|
||
case EOpAll:
|
||
return 0;
|
||
|
||
default:
|
||
assert(componentWise);
|
||
break;
|
||
}
|
||
|
||
// Turn off the componentwise loop
|
||
if (! componentWise)
|
||
objectSize = 0;
|
||
|
||
// Process component-wise operations
|
||
for (int i = 0; i < objectSize; i++) {
|
||
switch (op) {
|
||
case EOpNegative:
|
||
switch (getType().getBasicType()) {
|
||
case EbtDouble:
|
||
case EbtFloat: newConstArray[i].setDConst(-unionArray[i].getDConst()); break;
|
||
case EbtInt: newConstArray[i].setIConst(-unionArray[i].getIConst()); break;
|
||
case EbtUint: newConstArray[i].setUConst(static_cast<unsigned int>(-static_cast<int>(unionArray[i].getUConst()))); break;
|
||
default:
|
||
return 0;
|
||
}
|
||
break;
|
||
case EOpLogicalNot:
|
||
case EOpVectorLogicalNot:
|
||
switch (getType().getBasicType()) {
|
||
case EbtBool: newConstArray[i].setBConst(!unionArray[i].getBConst()); break;
|
||
default:
|
||
return 0;
|
||
}
|
||
break;
|
||
case EOpBitwiseNot:
|
||
newConstArray[i] = ~unionArray[i];
|
||
break;
|
||
case EOpRadians:
|
||
newConstArray[i].setDConst(unionArray[i].getDConst() * pi / 180.0);
|
||
break;
|
||
case EOpDegrees:
|
||
newConstArray[i].setDConst(unionArray[i].getDConst() * 180.0 / pi);
|
||
break;
|
||
case EOpSin:
|
||
newConstArray[i].setDConst(sin(unionArray[i].getDConst()));
|
||
break;
|
||
case EOpCos:
|
||
newConstArray[i].setDConst(cos(unionArray[i].getDConst()));
|
||
break;
|
||
case EOpTan:
|
||
newConstArray[i].setDConst(tan(unionArray[i].getDConst()));
|
||
break;
|
||
case EOpAsin:
|
||
newConstArray[i].setDConst(asin(unionArray[i].getDConst()));
|
||
break;
|
||
case EOpAcos:
|
||
newConstArray[i].setDConst(acos(unionArray[i].getDConst()));
|
||
break;
|
||
case EOpAtan:
|
||
newConstArray[i].setDConst(atan(unionArray[i].getDConst()));
|
||
break;
|
||
|
||
case EOpDPdx:
|
||
case EOpDPdy:
|
||
case EOpFwidth:
|
||
case EOpDPdxFine:
|
||
case EOpDPdyFine:
|
||
case EOpFwidthFine:
|
||
case EOpDPdxCoarse:
|
||
case EOpDPdyCoarse:
|
||
case EOpFwidthCoarse:
|
||
// The derivatives are all mandated to create a constant 0.
|
||
newConstArray[i].setDConst(0.0);
|
||
break;
|
||
|
||
case EOpExp:
|
||
newConstArray[i].setDConst(exp(unionArray[i].getDConst()));
|
||
break;
|
||
case EOpLog:
|
||
newConstArray[i].setDConst(log(unionArray[i].getDConst()));
|
||
break;
|
||
case EOpExp2:
|
||
{
|
||
const double inv_log2_e = 0.69314718055994530941723212145818;
|
||
newConstArray[i].setDConst(exp(unionArray[i].getDConst() * inv_log2_e));
|
||
break;
|
||
}
|
||
case EOpLog2:
|
||
{
|
||
const double log2_e = 1.4426950408889634073599246810019;
|
||
newConstArray[i].setDConst(log2_e * log(unionArray[i].getDConst()));
|
||
break;
|
||
}
|
||
case EOpSqrt:
|
||
newConstArray[i].setDConst(sqrt(unionArray[i].getDConst()));
|
||
break;
|
||
case EOpInverseSqrt:
|
||
newConstArray[i].setDConst(1.0 / sqrt(unionArray[i].getDConst()));
|
||
break;
|
||
|
||
case EOpAbs:
|
||
if (unionArray[i].getType() == EbtDouble)
|
||
newConstArray[i].setDConst(fabs(unionArray[i].getDConst()));
|
||
else if (unionArray[i].getType() == EbtInt)
|
||
newConstArray[i].setIConst(abs(unionArray[i].getIConst()));
|
||
else
|
||
newConstArray[i] = unionArray[i];
|
||
break;
|
||
case EOpSign:
|
||
#define SIGN(X) (X == 0 ? 0 : (X < 0 ? -1 : 1))
|
||
if (unionArray[i].getType() == EbtDouble)
|
||
newConstArray[i].setDConst(SIGN(unionArray[i].getDConst()));
|
||
else
|
||
newConstArray[i].setIConst(SIGN(unionArray[i].getIConst()));
|
||
break;
|
||
case EOpFloor:
|
||
newConstArray[i].setDConst(floor(unionArray[i].getDConst()));
|
||
break;
|
||
case EOpTrunc:
|
||
if (unionArray[i].getDConst() > 0)
|
||
newConstArray[i].setDConst(floor(unionArray[i].getDConst()));
|
||
else
|
||
newConstArray[i].setDConst(ceil(unionArray[i].getDConst()));
|
||
break;
|
||
case EOpRound:
|
||
newConstArray[i].setDConst(floor(0.5 + unionArray[i].getDConst()));
|
||
break;
|
||
case EOpRoundEven:
|
||
{
|
||
double flr = floor(unionArray[i].getDConst());
|
||
bool even = flr / 2.0 == floor(flr / 2.0);
|
||
double rounded = even ? ceil(unionArray[i].getDConst() - 0.5) : floor(unionArray[i].getDConst() + 0.5);
|
||
newConstArray[i].setDConst(rounded);
|
||
break;
|
||
}
|
||
case EOpCeil:
|
||
newConstArray[i].setDConst(ceil(unionArray[i].getDConst()));
|
||
break;
|
||
case EOpFract:
|
||
{
|
||
double x = unionArray[i].getDConst();
|
||
newConstArray[i].setDConst(x - floor(x));
|
||
break;
|
||
}
|
||
|
||
case EOpIsNan:
|
||
{
|
||
newConstArray[i].setBConst(isNan(unionArray[i].getDConst()));
|
||
break;
|
||
}
|
||
case EOpIsInf:
|
||
{
|
||
newConstArray[i].setBConst(isInf(unionArray[i].getDConst()));
|
||
break;
|
||
}
|
||
|
||
// TODO: 3.0 Functionality: unary constant folding: the rest of the ops have to be fleshed out
|
||
|
||
case EOpSinh:
|
||
case EOpCosh:
|
||
case EOpTanh:
|
||
case EOpAsinh:
|
||
case EOpAcosh:
|
||
case EOpAtanh:
|
||
|
||
case EOpFloatBitsToInt:
|
||
case EOpFloatBitsToUint:
|
||
case EOpIntBitsToFloat:
|
||
case EOpUintBitsToFloat:
|
||
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
TIntermConstantUnion *newNode = new TIntermConstantUnion(newConstArray, returnType);
|
||
newNode->getWritableType().getQualifier().storage = EvqConst;
|
||
newNode->setLoc(getLoc());
|
||
|
||
return newNode;
|
||
}
|
||
|
||
//
|
||
// Do constant folding for an aggregate node that has all its children
|
||
// as constants and an operator that requires constant folding.
|
||
//
|
||
TIntermTyped* TIntermediate::fold(TIntermAggregate* aggrNode)
|
||
{
|
||
if (! areAllChildConst(aggrNode))
|
||
return aggrNode;
|
||
|
||
if (aggrNode->isConstructor())
|
||
return foldConstructor(aggrNode);
|
||
|
||
TIntermSequence& children = aggrNode->getSequence();
|
||
|
||
// First, see if this is an operation to constant fold, kick out if not,
|
||
// see what size the result is if so.
|
||
|
||
bool componentwise = false; // will also say componentwise if a scalar argument gets repeated to make per-component results
|
||
int objectSize;
|
||
switch (aggrNode->getOp()) {
|
||
case EOpAtan:
|
||
case EOpPow:
|
||
case EOpMin:
|
||
case EOpMax:
|
||
case EOpMix:
|
||
case EOpClamp:
|
||
case EOpLessThan:
|
||
case EOpGreaterThan:
|
||
case EOpLessThanEqual:
|
||
case EOpGreaterThanEqual:
|
||
case EOpVectorEqual:
|
||
case EOpVectorNotEqual:
|
||
componentwise = true;
|
||
objectSize = children[0]->getAsConstantUnion()->getType().computeNumComponents();
|
||
break;
|
||
case EOpCross:
|
||
case EOpReflect:
|
||
case EOpRefract:
|
||
case EOpFaceForward:
|
||
objectSize = children[0]->getAsConstantUnion()->getType().computeNumComponents();
|
||
break;
|
||
case EOpDistance:
|
||
case EOpDot:
|
||
objectSize = 1;
|
||
break;
|
||
case EOpOuterProduct:
|
||
objectSize = children[0]->getAsTyped()->getType().getVectorSize() *
|
||
children[1]->getAsTyped()->getType().getVectorSize();
|
||
break;
|
||
case EOpStep:
|
||
componentwise = true;
|
||
objectSize = std::max(children[0]->getAsTyped()->getType().getVectorSize(),
|
||
children[1]->getAsTyped()->getType().getVectorSize());
|
||
break;
|
||
case EOpSmoothStep:
|
||
componentwise = true;
|
||
objectSize = std::max(children[0]->getAsTyped()->getType().getVectorSize(),
|
||
children[2]->getAsTyped()->getType().getVectorSize());
|
||
break;
|
||
default:
|
||
return aggrNode;
|
||
}
|
||
TConstUnionArray newConstArray(objectSize);
|
||
|
||
TVector<TConstUnionArray> childConstUnions;
|
||
for (unsigned int arg = 0; arg < children.size(); ++arg)
|
||
childConstUnions.push_back(children[arg]->getAsConstantUnion()->getConstArray());
|
||
|
||
// Second, do the actual folding
|
||
|
||
bool isFloatingPoint = children[0]->getAsTyped()->getBasicType() == EbtFloat ||
|
||
children[0]->getAsTyped()->getBasicType() == EbtDouble;
|
||
bool isSigned = children[0]->getAsTyped()->getBasicType() == EbtInt;
|
||
if (componentwise) {
|
||
for (int comp = 0; comp < objectSize; comp++) {
|
||
|
||
// some arguments are scalars instead of matching vectors; simulate a smear
|
||
int arg0comp = std::min(comp, children[0]->getAsTyped()->getType().getVectorSize() - 1);
|
||
int arg1comp = 0;
|
||
if (children.size() > 1)
|
||
arg1comp = std::min(comp, children[1]->getAsTyped()->getType().getVectorSize() - 1);
|
||
int arg2comp = 0;
|
||
if (children.size() > 2)
|
||
arg2comp = std::min(comp, children[2]->getAsTyped()->getType().getVectorSize() - 1);
|
||
|
||
switch (aggrNode->getOp()) {
|
||
case EOpAtan:
|
||
newConstArray[comp].setDConst(atan2(childConstUnions[0][arg0comp].getDConst(), childConstUnions[1][arg1comp].getDConst()));
|
||
break;
|
||
case EOpPow:
|
||
newConstArray[comp].setDConst(pow(childConstUnions[0][arg0comp].getDConst(), childConstUnions[1][arg1comp].getDConst()));
|
||
break;
|
||
case EOpMin:
|
||
if (isFloatingPoint)
|
||
newConstArray[comp].setDConst(std::min(childConstUnions[0][arg0comp].getDConst(), childConstUnions[1][arg1comp].getDConst()));
|
||
else if (isSigned)
|
||
newConstArray[comp].setIConst(std::min(childConstUnions[0][arg0comp].getIConst(), childConstUnions[1][arg1comp].getIConst()));
|
||
else
|
||
newConstArray[comp].setUConst(std::min(childConstUnions[0][arg0comp].getUConst(), childConstUnions[1][arg1comp].getUConst()));
|
||
break;
|
||
case EOpMax:
|
||
if (isFloatingPoint)
|
||
newConstArray[comp].setDConst(std::max(childConstUnions[0][arg0comp].getDConst(), childConstUnions[1][arg1comp].getDConst()));
|
||
else if (isSigned)
|
||
newConstArray[comp].setIConst(std::max(childConstUnions[0][arg0comp].getIConst(), childConstUnions[1][arg1comp].getIConst()));
|
||
else
|
||
newConstArray[comp].setUConst(std::max(childConstUnions[0][arg0comp].getUConst(), childConstUnions[1][arg1comp].getUConst()));
|
||
break;
|
||
case EOpClamp:
|
||
if (isFloatingPoint)
|
||
newConstArray[comp].setDConst(std::min(std::max(childConstUnions[0][arg0comp].getDConst(), childConstUnions[1][arg1comp].getDConst()),
|
||
childConstUnions[2][arg2comp].getDConst()));
|
||
else if (isSigned)
|
||
newConstArray[comp].setIConst(std::min(std::max(childConstUnions[0][arg0comp].getIConst(), childConstUnions[1][arg1comp].getIConst()),
|
||
childConstUnions[2][arg2comp].getIConst()));
|
||
else
|
||
newConstArray[comp].setUConst(std::min(std::max(childConstUnions[0][arg0comp].getUConst(), childConstUnions[1][arg1comp].getUConst()),
|
||
childConstUnions[2][arg2comp].getUConst()));
|
||
break;
|
||
case EOpLessThan:
|
||
newConstArray[comp].setBConst(childConstUnions[0][arg0comp] < childConstUnions[1][arg1comp]);
|
||
break;
|
||
case EOpGreaterThan:
|
||
newConstArray[comp].setBConst(childConstUnions[0][arg0comp] > childConstUnions[1][arg1comp]);
|
||
break;
|
||
case EOpLessThanEqual:
|
||
newConstArray[comp].setBConst(! (childConstUnions[0][arg0comp] > childConstUnions[1][arg1comp]));
|
||
break;
|
||
case EOpGreaterThanEqual:
|
||
newConstArray[comp].setBConst(! (childConstUnions[0][arg0comp] < childConstUnions[1][arg1comp]));
|
||
break;
|
||
case EOpVectorEqual:
|
||
newConstArray[comp].setBConst(childConstUnions[0][arg0comp] == childConstUnions[1][arg1comp]);
|
||
break;
|
||
case EOpVectorNotEqual:
|
||
newConstArray[comp].setBConst(childConstUnions[0][arg0comp] != childConstUnions[1][arg1comp]);
|
||
break;
|
||
case EOpMix:
|
||
if (children[2]->getAsTyped()->getBasicType() == EbtBool)
|
||
newConstArray[comp].setDConst(childConstUnions[2][arg2comp].getBConst() ? childConstUnions[1][arg1comp].getDConst() :
|
||
childConstUnions[0][arg0comp].getDConst());
|
||
else
|
||
newConstArray[comp].setDConst(childConstUnions[0][arg0comp].getDConst() * (1.0 - childConstUnions[2][arg2comp].getDConst()) +
|
||
childConstUnions[1][arg1comp].getDConst() * childConstUnions[2][arg2comp].getDConst());
|
||
break;
|
||
case EOpStep:
|
||
newConstArray[comp].setDConst(childConstUnions[1][arg1comp].getDConst() < childConstUnions[0][arg0comp].getDConst() ? 0.0 : 1.0);
|
||
break;
|
||
case EOpSmoothStep:
|
||
{
|
||
double t = (childConstUnions[2][arg2comp].getDConst() - childConstUnions[0][arg0comp].getDConst()) /
|
||
(childConstUnions[1][arg1comp].getDConst() - childConstUnions[0][arg0comp].getDConst());
|
||
if (t < 0.0)
|
||
t = 0.0;
|
||
if (t > 1.0)
|
||
t = 1.0;
|
||
newConstArray[comp].setDConst(t * t * (3.0 - 2.0 * t));
|
||
break;
|
||
}
|
||
default:
|
||
return aggrNode;
|
||
}
|
||
}
|
||
} else {
|
||
// Non-componentwise...
|
||
|
||
int numComps = children[0]->getAsConstantUnion()->getType().computeNumComponents();
|
||
double dot;
|
||
|
||
switch (aggrNode->getOp()) {
|
||
case EOpDistance:
|
||
{
|
||
double sum = 0.0;
|
||
for (int comp = 0; comp < numComps; ++comp) {
|
||
double diff = childConstUnions[1][comp].getDConst() - childConstUnions[0][comp].getDConst();
|
||
sum += diff * diff;
|
||
}
|
||
newConstArray[0].setDConst(sqrt(sum));
|
||
break;
|
||
}
|
||
case EOpDot:
|
||
newConstArray[0].setDConst(childConstUnions[0].dot(childConstUnions[1]));
|
||
break;
|
||
case EOpCross:
|
||
newConstArray[0] = childConstUnions[0][1] * childConstUnions[1][2] - childConstUnions[0][2] * childConstUnions[1][1];
|
||
newConstArray[1] = childConstUnions[0][2] * childConstUnions[1][0] - childConstUnions[0][0] * childConstUnions[1][2];
|
||
newConstArray[2] = childConstUnions[0][0] * childConstUnions[1][1] - childConstUnions[0][1] * childConstUnions[1][0];
|
||
break;
|
||
case EOpFaceForward:
|
||
// If dot(Nref, I) < 0 return N, otherwise return <20>N: Arguments are (N, I, Nref).
|
||
dot = childConstUnions[1].dot(childConstUnions[2]);
|
||
for (int comp = 0; comp < numComps; ++comp) {
|
||
if (dot < 0.0)
|
||
newConstArray[comp] = childConstUnions[0][comp];
|
||
else
|
||
newConstArray[comp].setDConst(-childConstUnions[0][comp].getDConst());
|
||
}
|
||
break;
|
||
case EOpReflect:
|
||
// I <20> 2 * dot(N, I) * N: Arguments are (I, N).
|
||
dot = childConstUnions[0].dot(childConstUnions[1]);
|
||
dot *= 2.0;
|
||
for (int comp = 0; comp < numComps; ++comp)
|
||
newConstArray[comp].setDConst(childConstUnions[0][comp].getDConst() - dot * childConstUnions[1][comp].getDConst());
|
||
break;
|
||
case EOpRefract:
|
||
{
|
||
// Arguments are (I, N, eta).
|
||
// k = 1.0 - eta * eta * (1.0 - dot(N, I) * dot(N, I))
|
||
// if (k < 0.0)
|
||
// return dvec(0.0)
|
||
// else
|
||
// return eta * I - (eta * dot(N, I) + sqrt(k)) * N
|
||
dot = childConstUnions[0].dot(childConstUnions[1]);
|
||
double eta = childConstUnions[2][0].getDConst();
|
||
double k = 1.0 - eta * eta * (1.0 - dot * dot);
|
||
if (k < 0.0) {
|
||
for (int comp = 0; comp < numComps; ++comp)
|
||
newConstArray[comp].setDConst(0.0);
|
||
} else {
|
||
for (int comp = 0; comp < numComps; ++comp)
|
||
newConstArray[comp].setDConst(eta * childConstUnions[0][comp].getDConst() - (eta * dot + sqrt(k)) * childConstUnions[1][comp].getDConst());
|
||
}
|
||
break;
|
||
}
|
||
case EOpOuterProduct:
|
||
{
|
||
int numRows = numComps;
|
||
int numCols = children[1]->getAsConstantUnion()->getType().computeNumComponents();
|
||
for (int row = 0; row < numRows; ++row)
|
||
for (int col = 0; col < numCols; ++col)
|
||
newConstArray[col * numRows + row] = childConstUnions[0][row] * childConstUnions[1][col];
|
||
break;
|
||
}
|
||
default:
|
||
return aggrNode;
|
||
}
|
||
}
|
||
|
||
TIntermConstantUnion *newNode = new TIntermConstantUnion(newConstArray, aggrNode->getType());
|
||
newNode->getWritableType().getQualifier().storage = EvqConst;
|
||
newNode->setLoc(aggrNode->getLoc());
|
||
|
||
return newNode;
|
||
}
|
||
|
||
bool TIntermediate::areAllChildConst(TIntermAggregate* aggrNode)
|
||
{
|
||
bool allConstant = true;
|
||
|
||
// check if all the child nodes are constants so that they can be inserted into
|
||
// the parent node
|
||
if (aggrNode) {
|
||
TIntermSequence& childSequenceVector = aggrNode->getSequence();
|
||
for (TIntermSequence::iterator p = childSequenceVector.begin();
|
||
p != childSequenceVector.end(); p++) {
|
||
if (!(*p)->getAsTyped()->getAsConstantUnion())
|
||
return false;
|
||
}
|
||
}
|
||
|
||
return allConstant;
|
||
}
|
||
|
||
TIntermTyped* TIntermediate::foldConstructor(TIntermAggregate* aggrNode)
|
||
{
|
||
bool error = false;
|
||
|
||
TConstUnionArray unionArray(aggrNode->getType().computeNumComponents());
|
||
if (aggrNode->getSequence().size() == 1)
|
||
error = parseConstTree(aggrNode, unionArray, aggrNode->getOp(), aggrNode->getType(), true);
|
||
else
|
||
error = parseConstTree(aggrNode, unionArray, aggrNode->getOp(), aggrNode->getType());
|
||
|
||
if (error)
|
||
return aggrNode;
|
||
|
||
return addConstantUnion(unionArray, aggrNode->getType(), aggrNode->getLoc());
|
||
}
|
||
|
||
//
|
||
// Constant folding of a bracket (array-style) dereference or struct-like dot
|
||
// dereference. Can handle any thing except a multi-character swizzle, though
|
||
// all swizzles may go to foldSwizzle().
|
||
//
|
||
TIntermTyped* TIntermediate::foldDereference(TIntermTyped* node, int index, TSourceLoc loc)
|
||
{
|
||
TType dereferencedType(node->getType(), index);
|
||
dereferencedType.getQualifier().storage = EvqConst;
|
||
TIntermTyped* result = 0;
|
||
int size = dereferencedType.computeNumComponents();
|
||
|
||
int start;
|
||
if (node->isStruct()) {
|
||
start = 0;
|
||
for (int i = 0; i < index; ++i)
|
||
start += (*node->getType().getStruct())[i].type->computeNumComponents();
|
||
} else
|
||
start = size * index;
|
||
|
||
result = addConstantUnion(TConstUnionArray(node->getAsConstantUnion()->getConstArray(), start, size), node->getType(), loc);
|
||
|
||
if (result == 0)
|
||
result = node;
|
||
else
|
||
result->setType(dereferencedType);
|
||
|
||
return result;
|
||
}
|
||
|
||
//
|
||
// Make a constant vector node or constant scalar node, representing a given
|
||
// constant vector and constant swizzle into it.
|
||
//
|
||
TIntermTyped* TIntermediate::foldSwizzle(TIntermTyped* node, TVectorFields& fields, TSourceLoc loc)
|
||
{
|
||
const TConstUnionArray& unionArray = node->getAsConstantUnion()->getConstArray();
|
||
TConstUnionArray constArray(fields.num);
|
||
|
||
for (int i = 0; i < fields.num; i++)
|
||
constArray[i] = unionArray[fields.offsets[i]];
|
||
|
||
TIntermTyped* result = addConstantUnion(constArray, node->getType(), loc);
|
||
|
||
if (result == 0)
|
||
result = node;
|
||
else
|
||
result->setType(TType(node->getBasicType(), EvqConst, fields.num));
|
||
|
||
return result;
|
||
}
|
||
|
||
} // end namespace glslang
|