xkslang/glslang/MachineIndependent/ShaderLang.cpp

1434 строки
49 KiB
C++

//
//Copyright (C) 2002-2005 3Dlabs Inc. Ltd.
//Copyright (C) 2013 LunarG, Inc.
//
//All rights reserved.
//
//Redistribution and use in source and binary forms, with or without
//modification, are permitted provided that the following conditions
//are met:
//
// Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
//
// Neither the name of 3Dlabs Inc. Ltd. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
//THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
//"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
//LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
//FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
//COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
//INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
//BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
//LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
//CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
//LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
//ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
//POSSIBILITY OF SUCH DAMAGE.
//
//
// Implement the top-level of interface to the compiler/linker,
// as defined in ShaderLang.h
// This is the platform independent interface between an OGL driver
// and the shading language compiler/linker.
//
#include <string.h>
#include <iostream>
#include <sstream>
#include "SymbolTable.h"
#include "ParseHelper.h"
#include "Scan.h"
#include "ScanContext.h"
#include "../Include/ShHandle.h"
#include "../../OGLCompilersDLL/InitializeDll.h"
#include "preprocessor/PpContext.h"
#define SH_EXPORTING
#include "../Public/ShaderLang.h"
#include "reflection.h"
#include "Initialize.h"
namespace { // anonymous namespace for file-local functions and symbols
using namespace glslang;
// Local mapping functions for making arrays of symbol tables....
int MapVersionToIndex(int version)
{
switch (version) {
case 100: return 0;
case 110: return 1;
case 120: return 2;
case 130: return 3;
case 140: return 4;
case 150: return 5;
case 300: return 6;
case 330: return 7;
case 400: return 8;
case 410: return 9;
case 420: return 10;
case 430: return 11;
case 440: return 12;
case 310: return 13;
case 450: return 14;
default: // |
return 0; // |
} // |
} // V
const int VersionCount = 15; // number of case statements above
int MapProfileToIndex(EProfile profile)
{
switch (profile) {
case ENoProfile: return 0;
case ECoreProfile: return 1;
case ECompatibilityProfile: return 2;
case EEsProfile: return 3;
default: // |
return 0; // |
} // |
} // V
const int ProfileCount = 4; // number of case statements above
// only one of these needed for non-ES; ES needs 2 for different precision defaults of built-ins
enum EPrecisionClass {
EPcGeneral,
EPcFragment,
EPcCount
};
// A process-global symbol table per version per profile for built-ins common
// to multiple stages (languages), and a process-global symbol table per version
// per profile per stage for built-ins unique to each stage. They will be sparsely
// populated, so they will only only be generated as needed.
//
// Each has a different set of built-ins, and we want to preserve that from
// compile to compile.
//
TSymbolTable* CommonSymbolTable[VersionCount][ProfileCount][EPcCount] = {};
TSymbolTable* SharedSymbolTables[VersionCount][ProfileCount][EShLangCount] = {};
TPoolAllocator* PerProcessGPA = 0;
//
// Parse and add to the given symbol table the content of the given shader string.
//
bool InitializeSymbolTable(const TString& builtIns, int version, EProfile profile, EShLanguage language, TInfoSink& infoSink,
TSymbolTable& symbolTable)
{
TIntermediate intermediate(language, version, profile);
TParseContext parseContext(symbolTable, intermediate, true, version, profile, language, infoSink);
TPpContext ppContext(parseContext);
TScanContext scanContext(parseContext);
parseContext.setScanContext(&scanContext);
parseContext.setPpContext(&ppContext);
//
// Push the symbol table to give it an initial scope. This
// push should not have a corresponding pop, so that built-ins
// are preserved, and the test for an empty table fails.
//
symbolTable.push();
const char* builtInShaders[2];
size_t builtInLengths[2];
builtInShaders[0] = builtIns.c_str();
builtInLengths[0] = builtIns.size();
TInputScanner input(1, builtInShaders, builtInLengths);
if (! parseContext.parseShaderStrings(ppContext, input) != 0) {
infoSink.info.message(EPrefixInternalError, "Unable to parse built-ins");
printf("Unable to parse built-ins\n%s\n", infoSink.info.c_str());
return false;
}
return true;
}
int CommonIndex(EProfile profile, EShLanguage language)
{
return (profile == EEsProfile && language == EShLangFragment) ? EPcFragment : EPcGeneral;
}
//
// To initialize per-stage shared tables, with the common table already complete.
//
void InitializeStageSymbolTable(TBuiltIns& builtIns, int version, EProfile profile, EShLanguage language, TInfoSink& infoSink, TSymbolTable** commonTable, TSymbolTable** symbolTables)
{
(*symbolTables[language]).adoptLevels(*commonTable[CommonIndex(profile, language)]);
InitializeSymbolTable(builtIns.getStageString(language), version, profile, language, infoSink, *symbolTables[language]);
IdentifyBuiltIns(version, profile, language, *symbolTables[language]);
if (profile == EEsProfile && version >= 300)
(*symbolTables[language]).setNoBuiltInRedeclarations();
if (version == 110)
(*symbolTables[language]).setSeparateNameSpaces();
}
//
// Initialize the full set of shareable symbol tables;
// The common (cross-stage) and those shareable per-stage.
//
bool InitializeSymbolTables(TInfoSink& infoSink, TSymbolTable** commonTable, TSymbolTable** symbolTables, int version, EProfile profile)
{
TBuiltIns builtIns;
builtIns.initialize(version, profile);
// do the common tables
InitializeSymbolTable(builtIns.getCommonString(), version, profile, EShLangVertex, infoSink, *commonTable[EPcGeneral]);
if (profile == EEsProfile)
InitializeSymbolTable(builtIns.getCommonString(), version, profile, EShLangFragment, infoSink, *commonTable[EPcFragment]);
// do the per-stage tables
// always have vertex and fragment
InitializeStageSymbolTable(builtIns, version, profile, EShLangVertex, infoSink, commonTable, symbolTables);
InitializeStageSymbolTable(builtIns, version, profile, EShLangFragment, infoSink, commonTable, symbolTables);
// check for tessellation
if ((profile != EEsProfile && version >= 150) ||
(profile == EEsProfile && version >= 310)) {
InitializeStageSymbolTable(builtIns, version, profile, EShLangTessControl, infoSink, commonTable, symbolTables);
InitializeStageSymbolTable(builtIns, version, profile, EShLangTessEvaluation, infoSink, commonTable, symbolTables);
}
// check for geometry
if ((profile != EEsProfile && version >= 150) ||
(profile == EEsProfile && version >= 310))
InitializeStageSymbolTable(builtIns, version, profile, EShLangGeometry, infoSink, commonTable, symbolTables);
// check for compute
if ((profile != EEsProfile && version >= 430) ||
(profile == EEsProfile && version >= 310))
InitializeStageSymbolTable(builtIns, version, profile, EShLangCompute, infoSink, commonTable, symbolTables);
return true;
}
bool AddContextSpecificSymbols(const TBuiltInResource* resources, TInfoSink& infoSink, TSymbolTable& symbolTable, int version, EProfile profile, EShLanguage language)
{
TBuiltIns builtIns;
builtIns.initialize(*resources, version, profile, language);
InitializeSymbolTable(builtIns.getCommonString(), version, profile, language, infoSink, symbolTable);
IdentifyBuiltIns(version, profile, language, symbolTable, *resources);
return true;
}
//
// To do this on the fly, we want to leave the current state of our thread's
// pool allocator intact, so:
// - Switch to a new pool for parsing the built-ins
// - Do the parsing, which builds the symbol table, using the new pool
// - Switch to the process-global pool to save a copy the resulting symbol table
// - Free up the new pool used to parse the built-ins
// - Switch back to the original thread's pool
//
// This only gets done the first time any thread needs a particular symbol table
// (lazy evaluation).
//
void SetupBuiltinSymbolTable(int version, EProfile profile)
{
TInfoSink infoSink;
// Make sure only one thread tries to do this at a time
glslang::GetGlobalLock();
// See if it's already been done for this version/profile combination
int versionIndex = MapVersionToIndex(version);
int profileIndex = MapProfileToIndex(profile);
if (CommonSymbolTable[versionIndex][profileIndex][EPcGeneral]) {
glslang::ReleaseGlobalLock();
return;
}
// Switch to a new pool
TPoolAllocator& previousAllocator = GetThreadPoolAllocator();
TPoolAllocator* builtInPoolAllocator = new TPoolAllocator();
SetThreadPoolAllocator(*builtInPoolAllocator);
// Dynamically allocate the local symbol tables so we can control when they are deallocated WRT when the pool is popped.
TSymbolTable* commonTable[EPcCount];
TSymbolTable* stageTables[EShLangCount];
for (int precClass = 0; precClass < EPcCount; ++precClass)
commonTable[precClass] = new TSymbolTable;
for (int stage = 0; stage < EShLangCount; ++stage)
stageTables[stage] = new TSymbolTable;
// Generate the local symbol tables using the new pool
InitializeSymbolTables(infoSink, commonTable, stageTables, version, profile);
// Switch to the process-global pool
SetThreadPoolAllocator(*PerProcessGPA);
// Copy the local symbol tables from the new pool to the global tables using the process-global pool
for (int precClass = 0; precClass < EPcCount; ++precClass) {
if (! commonTable[precClass]->isEmpty()) {
CommonSymbolTable[versionIndex][profileIndex][precClass] = new TSymbolTable;
CommonSymbolTable[versionIndex][profileIndex][precClass]->copyTable(*commonTable[precClass]);
CommonSymbolTable[versionIndex][profileIndex][precClass]->readOnly();
}
}
for (int stage = 0; stage < EShLangCount; ++stage) {
if (! stageTables[stage]->isEmpty()) {
SharedSymbolTables[versionIndex][profileIndex][stage] = new TSymbolTable;
SharedSymbolTables[versionIndex][profileIndex][stage]->adoptLevels(*CommonSymbolTable[versionIndex][profileIndex][CommonIndex(profile, (EShLanguage)stage)]);
SharedSymbolTables[versionIndex][profileIndex][stage]->copyTable(*stageTables[stage]);
SharedSymbolTables[versionIndex][profileIndex][stage]->readOnly();
}
}
// Clean up the local tables before deleting the pool they used.
for (int precClass = 0; precClass < EPcCount; ++precClass)
delete commonTable[precClass];
for (int stage = 0; stage < EShLangCount; ++stage)
delete stageTables[stage];
delete builtInPoolAllocator;
SetThreadPoolAllocator(previousAllocator);
glslang::ReleaseGlobalLock();
}
bool DeduceVersionProfile(TInfoSink& infoSink, EShLanguage stage, bool versionNotFirst, int defaultVersion, int& version, EProfile& profile)
{
const int FirstProfileVersion = 150;
bool correct = true;
// Get a good version...
if (version == 0) {
version = defaultVersion;
// infoSink.info.message(EPrefixWarning, "#version: statement missing; use #version on first line of shader");
}
// Get a good profile...
if (profile == ENoProfile) {
if (version == 300 || version == 310) {
correct = false;
infoSink.info.message(EPrefixError, "#version: versions 300 and 310 require specifying the 'es' profile");
profile = EEsProfile;
} else if (version == 100)
profile = EEsProfile;
else if (version >= FirstProfileVersion)
profile = ECoreProfile;
else
profile = ENoProfile;
} else {
// a profile was provided...
if (version < 150) {
correct = false;
infoSink.info.message(EPrefixError, "#version: versions before 150 do not allow a profile token");
if (version == 100)
profile = EEsProfile;
else
profile = ENoProfile;
} else if (version == 300 || version == 310) {
if (profile != EEsProfile) {
correct = false;
infoSink.info.message(EPrefixError, "#version: versions 300 and 310 support only the es profile");
}
profile = EEsProfile;
} else {
if (profile == EEsProfile) {
correct = false;
infoSink.info.message(EPrefixError, "#version: only version 300 and 310 support the es profile");
if (version >= FirstProfileVersion)
profile = ECoreProfile;
else
profile = ENoProfile;
}
// else: typical desktop case... e.g., "#version 410 core"
}
}
// Correct for stage type...
switch (stage) {
case EShLangGeometry:
if ((profile == EEsProfile && version < 310) ||
(profile != EEsProfile && version < 150)) {
correct = false;
infoSink.info.message(EPrefixError, "#version: geometry shaders require es profile with version 310 or non-es profile with version 150 or above");
version = (profile == EEsProfile) ? 310 : 150;
if (profile == EEsProfile || profile == ENoProfile)
profile = ECoreProfile;
}
break;
case EShLangTessControl:
case EShLangTessEvaluation:
if ((profile == EEsProfile && version < 310) ||
(profile != EEsProfile && version < 150)) {
correct = false;
infoSink.info.message(EPrefixError, "#version: tessellation shaders require es profile with version 310 or non-es profile with version 150 or above");
version = (profile == EEsProfile) ? 310 : 400; // 150 supports the extension, correction is to 400 which does not
if (profile == EEsProfile || profile == ENoProfile)
profile = ECoreProfile;
}
break;
case EShLangCompute:
if ((profile == EEsProfile && version < 310) ||
(profile != EEsProfile && version < 420)) {
correct = false;
infoSink.info.message(EPrefixError, "#version: compute shaders require es profile with version 310 or above, or non-es profile with version 420 or above");
version = profile == EEsProfile ? 310 : 430; // 420 supports the extension, correction is to 430 which does not
profile = ECoreProfile;
}
break;
default:
break;
}
if (profile == EEsProfile && version >= 300 && versionNotFirst) {
correct = false;
infoSink.info.message(EPrefixError, "#version: statement must appear first in es-profile shader; before comments or newlines");
}
// A metacheck on the condition of the compiler itself...
switch (version) {
// ES versions
case 100:
case 300:
// versions are complete
break;
// Desktop versions
case 110:
case 120:
case 130:
case 140:
case 150:
case 330:
// versions are complete
break;
case 310:
case 400:
case 410:
case 420:
case 430:
case 440:
case 450:
infoSink.info << "Warning, version " << version << " is not yet complete; most version-specific features are present, but some are missing.\n";
break;
default:
infoSink.info << "Warning, version " << version << " is unknown.\n";
break;
}
return correct;
}
// This is the common setup and cleanup code for PreprocessDeferred and
// CompileDeferred.
// It takes any callable with a signature of
// bool (TParseContext& parseContext, TPpContext& ppContext,
// TInputScanner& input, bool versionWillBeError,
// TSymbolTable& , TIntermediate& ,
// EShOptimizationLevel , EShMessages );
// Which returns false if a failure was detected and true otherwise.
//
template<typename ProcessingContext>
bool ProcessDeferred(
TCompiler* compiler,
const char* const shaderStrings[],
const int numStrings,
const int* inputLengths,
const char* customPreamble,
const EShOptimizationLevel optLevel,
const TBuiltInResource* resources,
int defaultVersion, // use 100 for ES environment, 110 for desktop
EProfile defaultProfile,
// set version/profile to defaultVersion/defaultProfile regardless of the #version
// directive in the source code
bool forceDefaultVersionAndProfile,
bool forwardCompatible, // give errors for use of deprecated features
EShMessages messages, // warnings/errors/AST; things to print out
TIntermediate& intermediate, // returned tree, etc.
ProcessingContext& processingContext,
bool requireNonempty
)
{
if (! InitThread())
return false;
// This must be undone (.pop()) by the caller, after it finishes consuming the created tree.
GetThreadPoolAllocator().push();
if (numStrings == 0)
return true;
// Move to length-based strings, rather than null-terminated strings.
// Also, add strings to include the preamble and to ensure the shader is not null,
// which lets the grammar accept what was a null (post preprocessing) shader.
//
// Shader will look like
// string 0: system preamble
// string 1: custom preamble
// string 2...numStrings+1: user's shader
// string numStrings+2: "int;"
const int numPre = 2;
const int numPost = requireNonempty? 1 : 0;
size_t* lengths = new size_t[numStrings + numPre + numPost];
const char** strings = new const char*[numStrings + numPre + numPost];
for (int s = 0; s < numStrings; ++s) {
strings[s + numPre] = shaderStrings[s];
if (inputLengths == 0 || inputLengths[s] < 0)
lengths[s + numPre] = strlen(shaderStrings[s]);
else
lengths[s + numPre] = inputLengths[s];
}
// First, without using the preprocessor or parser, find the #version, so we know what
// symbol tables, processing rules, etc. to set up. This does not need the extra strings
// outlined above, just the user shader.
int version;
EProfile profile;
glslang::TInputScanner userInput(numStrings, &strings[numPre], &lengths[numPre]); // no preamble
bool versionNotFirstToken;
bool versionNotFirst = userInput.scanVersion(version, profile, versionNotFirstToken);
bool versionNotFound = version == 0;
if (forceDefaultVersionAndProfile) {
if (! (messages & EShMsgSuppressWarnings) && ! versionNotFound &&
(version != defaultVersion || profile != defaultProfile)) {
compiler->infoSink.info << "Warning, (version, profile) forced to be ("
<< defaultVersion << ", " << ProfileName(defaultProfile)
<< "), while in source code it is ("
<< version << ", " << ProfileName(profile) << ")\n";
}
if (versionNotFound) {
versionNotFirstToken = false;
versionNotFirst = false;
versionNotFound = false;
}
version = defaultVersion;
profile = defaultProfile;
}
bool goodVersion = DeduceVersionProfile(compiler->infoSink, compiler->getLanguage(), versionNotFirst, defaultVersion, version, profile);
bool versionWillBeError = (versionNotFound || (profile == EEsProfile && version >= 300 && versionNotFirst));
bool warnVersionNotFirst = false;
if (! versionWillBeError && versionNotFirstToken) {
if (messages & EShMsgRelaxedErrors)
warnVersionNotFirst = true;
else
versionWillBeError = true;
}
intermediate.setVersion(version);
intermediate.setProfile(profile);
SetupBuiltinSymbolTable(version, profile);
TSymbolTable* cachedTable = SharedSymbolTables[MapVersionToIndex(version)]
[MapProfileToIndex(profile)]
[compiler->getLanguage()];
// Dynamically allocate the symbol table so we can control when it is deallocated WRT the pool.
TSymbolTable* symbolTableMemory = new TSymbolTable;
TSymbolTable& symbolTable = *symbolTableMemory;
if (cachedTable)
symbolTable.adoptLevels(*cachedTable);
// Add built-in symbols that are potentially context dependent;
// they get popped again further down.
AddContextSpecificSymbols(resources, compiler->infoSink, symbolTable, version, profile, compiler->getLanguage());
//
// Now we can process the full shader under proper symbols and rules.
//
TParseContext parseContext(symbolTable, intermediate, false, version, profile, compiler->getLanguage(), compiler->infoSink, forwardCompatible, messages);
glslang::TScanContext scanContext(parseContext);
TPpContext ppContext(parseContext);
parseContext.setScanContext(&scanContext);
parseContext.setPpContext(&ppContext);
parseContext.setLimits(*resources);
if (! goodVersion)
parseContext.addError();
if (warnVersionNotFirst) {
TSourceLoc loc;
loc.init();
parseContext.warn(loc, "Illegal to have non-comment, non-whitespace tokens before #version", "#version", "");
}
parseContext.initializeExtensionBehavior();
// Fill in the strings as outlined above.
strings[0] = parseContext.getPreamble();
lengths[0] = strlen(strings[0]);
strings[1] = customPreamble;
lengths[1] = strlen(strings[1]);
assert(2 == numPre);
if (requireNonempty) {
strings[numStrings + numPre] = "\n int;";
lengths[numStrings + numPre] = strlen(strings[numStrings + numPre]);
}
TInputScanner fullInput(numStrings + numPre + numPost, strings, lengths, numPre, numPost);
// Push a new symbol allocation scope that will get used for the shader's globals.
symbolTable.push();
bool success = processingContext(parseContext, ppContext, fullInput,
versionWillBeError, symbolTable,
intermediate, optLevel, messages);
// Clean up the symbol table. The AST is self-sufficient now.
delete symbolTableMemory;
delete [] lengths;
delete [] strings;
return success;
}
// DoPreprocessing is a valid ProcessingContext template argument,
// which only performs the preprocessing step of compilation.
// It places the result in the "string" argument to its constructor.
struct DoPreprocessing {
explicit DoPreprocessing(std::string* string): outputString(string) {}
bool operator()(TParseContext& parseContext, TPpContext& ppContext,
TInputScanner& input, bool versionWillBeError,
TSymbolTable& , TIntermediate& ,
EShOptimizationLevel , EShMessages )
{
// This is a list of tokens that do not require a space before or after.
static const std::string unNeededSpaceTokens = ";()[]";
static const std::string noSpaceBeforeTokens = ",";
glslang::TPpToken token;
std::stringstream outputStream;
int lastLine = -1; // lastLine is the line number of the last token
// processed. It is tracked in order for new-lines to be inserted when
// a token appears on a new line.
int lastToken = -1;
parseContext.setScanner(&input);
ppContext.setInput(input, versionWillBeError);
// Inserts newlines and incremnets lastLine until
// lastLine >= line.
auto adjustLine = [&lastLine, &outputStream](int line) {
int tokenLine = line - 1;
while(lastLine < tokenLine) {
if (lastLine >= 0) {
outputStream << std::endl;
}
++lastLine;
}
};
parseContext.setExtensionCallback([&adjustLine, &outputStream](
int line, const char* extension, const char* behavior) {
adjustLine(line);
outputStream << "#extension " << extension << " : " << behavior;
});
parseContext.setLineCallback([&adjustLine, &lastLine, &outputStream, &parseContext](
int curLineNo, int newLineNo, bool hasSource, int sourceNum) {
// SourceNum is the number of the source-string that is being parsed.
adjustLine(curLineNo);
outputStream << "#line " << newLineNo;
if (hasSource) {
outputStream << " " << sourceNum;
}
if (parseContext.lineDirectiveShouldSetNextLine()) {
// newLineNo is the new line number for the line following the #line
// directive. So the new line number for the current line is
newLineNo -= 1;
}
outputStream << std::endl;
// Line number starts from 1. And we are at the next line of the #line
// directive now. So lastLine (from 0) should be (newLineNo - 1) + 1.
lastLine = newLineNo;
});
parseContext.setVersionCallback(
[&adjustLine, &outputStream](int line, int version, const char* str) {
adjustLine(line);
outputStream << "#version " << version;
if (str) {
outputStream << " " << str;
}
});
parseContext.setPragmaCallback([&adjustLine, &outputStream](
int line, const glslang::TVector<glslang::TString>& ops) {
adjustLine(line);
outputStream << "#pragma ";
for(size_t i = 0; i < ops.size(); ++i) {
outputStream << ops[i];
}
});
parseContext.setErrorCallback([&adjustLine, &outputStream](
int line, const char* errorMessage) {
adjustLine(line);
outputStream << "#error " << errorMessage;
});
while (const char* tok = ppContext.tokenize(&token)) {
int tokenLine = token.loc.line - 1; // start at 0;
bool newLine = false;
while (lastLine < tokenLine) {
if (lastLine > -1) {
outputStream << std::endl;
newLine = true;
}
++lastLine;
if (lastLine == tokenLine) {
// Don't emit whitespace onto empty lines.
// Copy any whitespace characters at the start of a line
// from the input to the output.
for(int i = 0; i < token.loc.column - 1; ++i) {
outputStream << " ";
}
}
}
// Output a space in between tokens, but not at the start of a line,
// and also not around special tokens. This helps with readability
// and consistency.
if (!newLine &&
lastToken != -1 &&
(unNeededSpaceTokens.find((char)token.token) == std::string::npos) &&
(unNeededSpaceTokens.find((char)lastToken) == std::string::npos) &&
(noSpaceBeforeTokens.find((char)token.token) == std::string::npos)) {
outputStream << " ";
}
lastToken = token.token;
outputStream << tok;
}
outputStream << std::endl;
*outputString = outputStream.str();
bool success = true;
if (parseContext.getNumErrors() > 0) {
success = false;
parseContext.infoSink.info.prefix(EPrefixError);
parseContext.infoSink.info << parseContext.getNumErrors() << " compilation errors. No code generated.\n\n";
}
return success;
}
std::string* outputString;
};
// DoFullParse is a valid ProcessingConext template argument for fully
// parsing the shader. It populates the "intermediate" with the AST.
struct DoFullParse{
bool operator()(TParseContext& parseContext, TPpContext& ppContext,
TInputScanner& fullInput, bool versionWillBeError,
TSymbolTable& symbolTable, TIntermediate& intermediate,
EShOptimizationLevel optLevel, EShMessages messages)
{
bool success = true;
// Parse the full shader.
if (! parseContext.parseShaderStrings(ppContext, fullInput, versionWillBeError))
success = false;
intermediate.addSymbolLinkageNodes(parseContext.linkage, parseContext.language, symbolTable);
if (success && intermediate.getTreeRoot()) {
if (optLevel == EShOptNoGeneration)
parseContext.infoSink.info.message(EPrefixNone, "No errors. No code generation or linking was requested.");
else
success = intermediate.postProcess(intermediate.getTreeRoot(), parseContext.language);
} else if (! success) {
parseContext.infoSink.info.prefix(EPrefixError);
parseContext.infoSink.info << parseContext.getNumErrors() << " compilation errors. No code generated.\n\n";
}
if (messages & EShMsgAST)
intermediate.output(parseContext.infoSink, true);
return success;
}
};
// Take a single compilation unit, and run the preprocessor on it.
// Return: True if there were no issues found in preprocessing,
// False if during preprocessing any unknown version, pragmas or
// extensions were found.
bool PreprocessDeferred(
TCompiler* compiler,
const char* const shaderStrings[],
const int numStrings,
const int* inputLengths,
const char* preamble,
const EShOptimizationLevel optLevel,
const TBuiltInResource* resources,
int defaultVersion, // use 100 for ES environment, 110 for desktop
EProfile defaultProfile,
bool forceDefaultVersionAndProfile,
bool forwardCompatible, // give errors for use of deprecated features
EShMessages messages, // warnings/errors/AST; things to print out
TIntermediate& intermediate, // returned tree, etc.
std::string* outputString)
{
DoPreprocessing parser(outputString);
return ProcessDeferred(compiler, shaderStrings, numStrings, inputLengths,
preamble, optLevel, resources, defaultVersion, defaultProfile, forceDefaultVersionAndProfile,
forwardCompatible, messages, intermediate, parser, false);
}
//
// do a partial compile on the given strings for a single compilation unit
// for a potential deferred link into a single stage (and deferred full compile of that
// stage through machine-dependent compilation).
//
// all preprocessing, parsing, semantic checks, etc. for a single compilation unit
// are done here.
//
// return: the tree and other information is filled into the intermediate argument,
// and true is returned by the function for success.
//
bool CompileDeferred(
TCompiler* compiler,
const char* const shaderStrings[],
const int numStrings,
const int* inputLengths,
const char* preamble,
const EShOptimizationLevel optLevel,
const TBuiltInResource* resources,
int defaultVersion, // use 100 for ES environment, 110 for desktop
EProfile defaultProfile,
bool forceDefaultVersionAndProfile,
bool forwardCompatible, // give errors for use of deprecated features
EShMessages messages, // warnings/errors/AST; things to print out
TIntermediate& intermediate) // returned tree, etc.
{
DoFullParse parser;
return ProcessDeferred(compiler, shaderStrings, numStrings, inputLengths,
preamble, optLevel, resources, defaultVersion, defaultProfile, forceDefaultVersionAndProfile,
forwardCompatible, messages, intermediate, parser, true);
}
} // end anonymous namespace for local functions
//
// ShInitialize() should be called exactly once per process, not per thread.
//
int ShInitialize()
{
glslang::InitGlobalLock();
if (! InitProcess())
return 0;
if (! PerProcessGPA)
PerProcessGPA = new TPoolAllocator();
glslang::TScanContext::fillInKeywordMap();
return 1;
}
//
// Driver calls these to create and destroy compiler/linker
// objects.
//
ShHandle ShConstructCompiler(const EShLanguage language, int debugOptions)
{
if (!InitThread())
return 0;
TShHandleBase* base = static_cast<TShHandleBase*>(ConstructCompiler(language, debugOptions));
return reinterpret_cast<void*>(base);
}
ShHandle ShConstructLinker(const EShExecutable executable, int debugOptions)
{
if (!InitThread())
return 0;
TShHandleBase* base = static_cast<TShHandleBase*>(ConstructLinker(executable, debugOptions));
return reinterpret_cast<void*>(base);
}
ShHandle ShConstructUniformMap()
{
if (!InitThread())
return 0;
TShHandleBase* base = static_cast<TShHandleBase*>(ConstructUniformMap());
return reinterpret_cast<void*>(base);
}
void ShDestruct(ShHandle handle)
{
if (handle == 0)
return;
TShHandleBase* base = static_cast<TShHandleBase*>(handle);
if (base->getAsCompiler())
DeleteCompiler(base->getAsCompiler());
else if (base->getAsLinker())
DeleteLinker(base->getAsLinker());
else if (base->getAsUniformMap())
DeleteUniformMap(base->getAsUniformMap());
}
//
// Cleanup symbol tables
//
int __fastcall ShFinalize()
{
for (int version = 0; version < VersionCount; ++version) {
for (int p = 0; p < ProfileCount; ++p) {
for (int lang = 0; lang < EShLangCount; ++lang) {
delete SharedSymbolTables[version][p][lang];
SharedSymbolTables[version][p][lang] = 0;
}
}
}
for (int version = 0; version < VersionCount; ++version) {
for (int p = 0; p < ProfileCount; ++p) {
for (int pc = 0; pc < EPcCount; ++pc) {
delete CommonSymbolTable[version][p][pc];
CommonSymbolTable[version][p][pc] = 0;
}
}
}
if (PerProcessGPA) {
PerProcessGPA->popAll();
delete PerProcessGPA;
PerProcessGPA = 0;
}
glslang::TScanContext::deleteKeywordMap();
return 1;
}
//
// Do a full compile on the given strings for a single compilation unit
// forming a complete stage. The result of the machine dependent compilation
// is left in the provided compile object.
//
// Return: The return value is really boolean, indicating
// success (1) or failure (0).
//
int ShCompile(
const ShHandle handle,
const char* const shaderStrings[],
const int numStrings,
const int* inputLengths,
const EShOptimizationLevel optLevel,
const TBuiltInResource* resources,
int /*debugOptions*/,
int defaultVersion, // use 100 for ES environment, 110 for desktop
bool forwardCompatible, // give errors for use of deprecated features
EShMessages messages // warnings/errors/AST; things to print out
)
{
// Map the generic handle to the C++ object
if (handle == 0)
return 0;
TShHandleBase* base = reinterpret_cast<TShHandleBase*>(handle);
TCompiler* compiler = base->getAsCompiler();
if (compiler == 0)
return 0;
compiler->infoSink.info.erase();
compiler->infoSink.debug.erase();
TIntermediate intermediate(compiler->getLanguage());
bool success = CompileDeferred(compiler, shaderStrings, numStrings, inputLengths, "", optLevel, resources, defaultVersion, ENoProfile, false, forwardCompatible, messages, intermediate);
//
// Call the machine dependent compiler
//
if (success && intermediate.getTreeRoot() && optLevel != EShOptNoGeneration)
success = compiler->compile(intermediate.getTreeRoot(), intermediate.getVersion(), intermediate.getProfile());
intermediate.removeTree();
// Throw away all the temporary memory used by the compilation process.
// The push was done in the CompileDeferred() call above.
GetThreadPoolAllocator().pop();
return success ? 1 : 0;
}
//
// Link the given compile objects.
//
// Return: The return value of is really boolean, indicating
// success or failure.
//
int ShLinkExt(
const ShHandle linkHandle,
const ShHandle compHandles[],
const int numHandles)
{
if (linkHandle == 0 || numHandles == 0)
return 0;
THandleList cObjects;
for (int i = 0; i < numHandles; ++i) {
if (compHandles[i] == 0)
return 0;
TShHandleBase* base = reinterpret_cast<TShHandleBase*>(compHandles[i]);
if (base->getAsLinker()) {
cObjects.push_back(base->getAsLinker());
}
if (base->getAsCompiler())
cObjects.push_back(base->getAsCompiler());
if (cObjects[i] == 0)
return 0;
}
TShHandleBase* base = reinterpret_cast<TShHandleBase*>(linkHandle);
TLinker* linker = static_cast<TLinker*>(base->getAsLinker());
if (linker == 0)
return 0;
linker->infoSink.info.erase();
for (int i = 0; i < numHandles; ++i) {
if (cObjects[i]->getAsCompiler()) {
if (! cObjects[i]->getAsCompiler()->linkable()) {
linker->infoSink.info.message(EPrefixError, "Not all shaders have valid object code.");
return 0;
}
}
}
bool ret = linker->link(cObjects);
return ret ? 1 : 0;
}
//
// ShSetEncrpytionMethod is a place-holder for specifying
// how source code is encrypted.
//
void ShSetEncryptionMethod(ShHandle handle)
{
if (handle == 0)
return;
}
//
// Return any compiler/linker/uniformmap log of messages for the application.
//
const char* ShGetInfoLog(const ShHandle handle)
{
if (!InitThread())
return 0;
if (handle == 0)
return 0;
TShHandleBase* base = static_cast<TShHandleBase*>(handle);
TInfoSink* infoSink;
if (base->getAsCompiler())
infoSink = &(base->getAsCompiler()->getInfoSink());
else if (base->getAsLinker())
infoSink = &(base->getAsLinker()->getInfoSink());
else
return 0;
infoSink->info << infoSink->debug.c_str();
return infoSink->info.c_str();
}
//
// Return the resulting binary code from the link process. Structure
// is machine dependent.
//
const void* ShGetExecutable(const ShHandle handle)
{
if (!InitThread())
return 0;
if (handle == 0)
return 0;
TShHandleBase* base = reinterpret_cast<TShHandleBase*>(handle);
TLinker* linker = static_cast<TLinker*>(base->getAsLinker());
if (linker == 0)
return 0;
return linker->getObjectCode();
}
//
// Let the linker know where the application said it's attributes are bound.
// The linker does not use these values, they are remapped by the ICD or
// hardware. It just needs them to know what's aliased.
//
// Return: The return value of is really boolean, indicating
// success or failure.
//
int ShSetVirtualAttributeBindings(const ShHandle handle, const ShBindingTable* table)
{
if (!InitThread())
return 0;
if (handle == 0)
return 0;
TShHandleBase* base = reinterpret_cast<TShHandleBase*>(handle);
TLinker* linker = static_cast<TLinker*>(base->getAsLinker());
if (linker == 0)
return 0;
linker->setAppAttributeBindings(table);
return 1;
}
//
// Let the linker know where the predefined attributes have to live.
//
int ShSetFixedAttributeBindings(const ShHandle handle, const ShBindingTable* table)
{
if (!InitThread())
return 0;
if (handle == 0)
return 0;
TShHandleBase* base = reinterpret_cast<TShHandleBase*>(handle);
TLinker* linker = static_cast<TLinker*>(base->getAsLinker());
if (linker == 0)
return 0;
linker->setFixedAttributeBindings(table);
return 1;
}
//
// Some attribute locations are off-limits to the linker...
//
int ShExcludeAttributes(const ShHandle handle, int *attributes, int count)
{
if (!InitThread())
return 0;
if (handle == 0)
return 0;
TShHandleBase* base = reinterpret_cast<TShHandleBase*>(handle);
TLinker* linker = static_cast<TLinker*>(base->getAsLinker());
if (linker == 0)
return 0;
linker->setExcludedAttributes(attributes, count);
return 1;
}
//
// Return the index for OpenGL to use for knowing where a uniform lives.
//
// Return: The return value of is really boolean, indicating
// success or failure.
//
int ShGetUniformLocation(const ShHandle handle, const char* name)
{
if (!InitThread())
return 0;
if (handle == 0)
return -1;
TShHandleBase* base = reinterpret_cast<TShHandleBase*>(handle);
TUniformMap* uniformMap= base->getAsUniformMap();
if (uniformMap == 0)
return -1;
return uniformMap->getLocation(name);
}
////////////////////////////////////////////////////////////////////////////////////////////
//
// Deferred-Lowering C++ Interface
// -----------------------------------
//
// Below is a new alternate C++ interface that might potentially replace the above
// opaque handle-based interface.
//
// See more detailed comment in ShaderLang.h
//
namespace glslang {
#include "../Include/revision.h"
const char* GetEsslVersionString()
{
return "OpenGL ES GLSL 3.00 glslang LunarG Khronos." GLSLANG_REVISION " " GLSLANG_DATE;
}
const char* GetGlslVersionString()
{
return "4.20 glslang LunarG Khronos." GLSLANG_REVISION " " GLSLANG_DATE;
}
bool InitializeProcess()
{
return ShInitialize() != 0;
}
void FinalizeProcess()
{
ShFinalize();
}
class TDeferredCompiler : public TCompiler {
public:
TDeferredCompiler(EShLanguage s, TInfoSink& i) : TCompiler(s, i) { }
virtual bool compile(TIntermNode*, int = 0, EProfile = ENoProfile) { return true; }
};
TShader::TShader(EShLanguage s)
: pool(0), stage(s), preamble(""), lengths(nullptr)
{
infoSink = new TInfoSink;
compiler = new TDeferredCompiler(stage, *infoSink);
intermediate = new TIntermediate(s);
}
TShader::~TShader()
{
delete infoSink;
delete compiler;
delete intermediate;
delete pool;
}
void TShader::setStrings(const char* const* s, int n)
{
strings = s;
numStrings = n;
lengths = nullptr;
}
void TShader::setStringsWithLengths(const char* const* s, const int* l, int n)
{
strings = s;
numStrings = n;
lengths = l;
}
//
// Turn the shader strings into a parse tree in the TIntermediate.
//
// Returns true for success.
//
bool TShader::parse(const TBuiltInResource* builtInResources, int defaultVersion, EProfile defaultProfile, bool forceDefaultVersionAndProfile,
bool forwardCompatible, EShMessages messages)
{
if (! InitThread())
return false;
pool = new TPoolAllocator();
SetThreadPoolAllocator(*pool);
if (! preamble)
preamble = "";
return CompileDeferred(compiler, strings, numStrings, lengths, preamble, EShOptNone, builtInResources, defaultVersion, defaultProfile, forceDefaultVersionAndProfile, forwardCompatible, messages, *intermediate);
}
bool TShader::parse(const TBuiltInResource* builtInResources, int defaultVersion, bool forwardCompatible, EShMessages messages)
{
return parse(builtInResources, defaultVersion, ENoProfile, false, forwardCompatible, messages);
}
// Fill in a string with the result of preprocessing ShaderStrings
// Returns true if all extensions, pragmas and version strings were valid.
bool TShader::preprocess(const TBuiltInResource* builtInResources,
int defaultVersion, EProfile defaultProfile, bool forceDefaultVersionAndProfile,
bool forwardCompatible,
EShMessages message, std::string* output_string)
{
if (! InitThread())
return false;
pool = new TPoolAllocator();
SetThreadPoolAllocator(*pool);
if (! preamble)
preamble = "";
return PreprocessDeferred(compiler, strings, numStrings,
lengths, preamble, EShOptNone, builtInResources,
defaultVersion, defaultProfile, forceDefaultVersionAndProfile, forwardCompatible, message,
*intermediate, output_string);
}
const char* TShader::getInfoLog()
{
return infoSink->info.c_str();
}
const char* TShader::getInfoDebugLog()
{
return infoSink->debug.c_str();
}
TProgram::TProgram() : pool(0), reflection(0), linked(false)
{
infoSink = new TInfoSink;
for (int s = 0; s < EShLangCount; ++s) {
intermediate[s] = 0;
newedIntermediate[s] = false;
}
}
TProgram::~TProgram()
{
delete infoSink;
delete reflection;
for (int s = 0; s < EShLangCount; ++s)
if (newedIntermediate[s])
delete intermediate[s];
delete pool;
}
//
// Merge the compilation units within each stage into a single TIntermediate.
// All starting compilation units need to be the result of calling TShader::parse().
//
// Return true for success.
//
bool TProgram::link(EShMessages messages)
{
if (linked)
return false;
linked = true;
bool error = false;
pool = new TPoolAllocator();
SetThreadPoolAllocator(*pool);
for (int s = 0; s < EShLangCount; ++s) {
if (! linkStage((EShLanguage)s, messages))
error = true;
}
// TODO: Link: cross-stage error checking
return ! error;
}
//
// Merge the compilation units within the given stage into a single TIntermediate.
//
// Return true for success.
//
bool TProgram::linkStage(EShLanguage stage, EShMessages messages)
{
if (stages[stage].size() == 0)
return true;
//
// Be efficient for the common single compilation unit per stage case,
// reusing it's TIntermediate instead of merging into a new one.
//
if (stages[stage].size() == 1)
intermediate[stage] = stages[stage].front()->intermediate;
else {
intermediate[stage] = new TIntermediate(stage);
newedIntermediate[stage] = true;
}
infoSink->info << "\nLinked " << StageName(stage) << " stage:\n\n";
if (stages[stage].size() > 1) {
std::list<TShader*>::const_iterator it;
for (it = stages[stage].begin(); it != stages[stage].end(); ++it)
intermediate[stage]->merge(*infoSink, *(*it)->intermediate);
}
intermediate[stage]->finalCheck(*infoSink);
if (messages & EShMsgAST)
intermediate[stage]->output(*infoSink, true);
return intermediate[stage]->getNumErrors() == 0;
}
const char* TProgram::getInfoLog()
{
return infoSink->info.c_str();
}
const char* TProgram::getInfoDebugLog()
{
return infoSink->debug.c_str();
}
//
// Reflection implementation.
//
bool TProgram::buildReflection()
{
if (! linked || reflection)
return false;
reflection = new TReflection;
for (int s = 0; s < EShLangCount; ++s) {
if (intermediate[s]) {
if (! reflection->addStage((EShLanguage)s, *intermediate[s]))
return false;
}
}
return true;
}
int TProgram::getNumLiveUniformVariables() { return reflection->getNumUniforms(); }
int TProgram::getNumLiveUniformBlocks() { return reflection->getNumUniformBlocks(); }
const char* TProgram::getUniformName(int index) { return reflection->getUniform(index).name.c_str(); }
const char* TProgram::getUniformBlockName(int index) { return reflection->getUniformBlock(index).name.c_str(); }
int TProgram::getUniformBlockSize(int index) { return reflection->getUniformBlock(index).size; }
int TProgram::getUniformIndex(const char* name) { return reflection->getIndex(name); }
int TProgram::getUniformBlockIndex(int index) { return reflection->getUniform(index).index; }
int TProgram::getUniformType(int index) { return reflection->getUniform(index).glDefineType; }
int TProgram::getUniformBufferOffset(int index) { return reflection->getUniform(index).offset; }
int TProgram::getUniformArraySize(int index) { return reflection->getUniform(index).size; }
void TProgram::dumpReflection() { reflection->dump(); }
} // end namespace glslang