xkslang/SPIRV/SpvBuilder.cpp

2138 строки
65 KiB
C++

//
//Copyright (C) 2014 LunarG, Inc.
//
//All rights reserved.
//
//Redistribution and use in source and binary forms, with or without
//modification, are permitted provided that the following conditions
//are met:
//
// Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
//
// Neither the name of 3Dlabs Inc. Ltd. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
//THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
//"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
//LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
//FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
//COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
//INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
//BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
//LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
//CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
//LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
//ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
//POSSIBILITY OF SUCH DAMAGE.
//
// Author: John Kessenich, LunarG
//
//
// Helper for making SPIR-V IR. Generally, this is documented in the header
// SpvBuilder.h.
//
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include "SpvBuilder.h"
#ifndef _WIN32
#include <cstdio>
#endif
namespace spv {
const int SpvBuilderMagic = 0xBB;
Builder::Builder(unsigned int userNumber) :
source(SourceLanguageUnknown),
sourceVersion(0),
addressModel(AddressingModelLogical),
memoryModel(MemoryModelGLSL450),
builderNumber(userNumber << 16 | SpvBuilderMagic),
buildPoint(0),
uniqueId(0),
mainFunction(0),
stageExit(0)
{
clearAccessChain();
}
Builder::~Builder()
{
}
Id Builder::import(const char* name)
{
Instruction* import = new Instruction(getUniqueId(), NoType, OpExtInstImport);
import->addStringOperand(name);
imports.push_back(import);
return import->getResultId();
}
// For creating new groupedTypes (will return old type if the requested one was already made).
Id Builder::makeVoidType()
{
Instruction* type;
if (groupedTypes[OpTypeVoid].size() == 0) {
type = new Instruction(getUniqueId(), NoType, OpTypeVoid);
groupedTypes[OpTypeVoid].push_back(type);
constantsTypesGlobals.push_back(type);
module.mapInstruction(type);
} else
type = groupedTypes[OpTypeVoid].back();
return type->getResultId();
}
Id Builder::makeBoolType()
{
Instruction* type;
if (groupedTypes[OpTypeBool].size() == 0) {
type = new Instruction(getUniqueId(), NoType, OpTypeBool);
groupedTypes[OpTypeBool].push_back(type);
constantsTypesGlobals.push_back(type);
module.mapInstruction(type);
} else
type = groupedTypes[OpTypeBool].back();
return type->getResultId();
}
Id Builder::makePointer(StorageClass storageClass, Id pointee)
{
// try to find it
Instruction* type;
for (int t = 0; t < (int)groupedTypes[OpTypePointer].size(); ++t) {
type = groupedTypes[OpTypePointer][t];
if (type->getImmediateOperand(0) == (unsigned)storageClass &&
type->getIdOperand(1) == pointee)
return type->getResultId();
}
// not found, make it
type = new Instruction(getUniqueId(), NoType, OpTypePointer);
type->addImmediateOperand(storageClass);
type->addIdOperand(pointee);
groupedTypes[OpTypePointer].push_back(type);
constantsTypesGlobals.push_back(type);
module.mapInstruction(type);
return type->getResultId();
}
Id Builder::makeIntegerType(int width, bool hasSign)
{
// try to find it
Instruction* type;
for (int t = 0; t < (int)groupedTypes[OpTypeInt].size(); ++t) {
type = groupedTypes[OpTypeInt][t];
if (type->getImmediateOperand(0) == (unsigned)width &&
type->getImmediateOperand(1) == (hasSign ? 1u : 0u))
return type->getResultId();
}
// not found, make it
type = new Instruction(getUniqueId(), NoType, OpTypeInt);
type->addImmediateOperand(width);
type->addImmediateOperand(hasSign ? 1 : 0);
groupedTypes[OpTypeInt].push_back(type);
constantsTypesGlobals.push_back(type);
module.mapInstruction(type);
return type->getResultId();
}
Id Builder::makeFloatType(int width)
{
// try to find it
Instruction* type;
for (int t = 0; t < (int)groupedTypes[OpTypeFloat].size(); ++t) {
type = groupedTypes[OpTypeFloat][t];
if (type->getImmediateOperand(0) == (unsigned)width)
return type->getResultId();
}
// not found, make it
type = new Instruction(getUniqueId(), NoType, OpTypeFloat);
type->addImmediateOperand(width);
groupedTypes[OpTypeFloat].push_back(type);
constantsTypesGlobals.push_back(type);
module.mapInstruction(type);
return type->getResultId();
}
Id Builder::makeStructType(std::vector<Id>& members, const char* name)
{
// not found, make it
Instruction* type = new Instruction(getUniqueId(), NoType, OpTypeStruct);
for (int op = 0; op < (int)members.size(); ++op)
type->addIdOperand(members[op]);
groupedTypes[OpTypeStruct].push_back(type);
constantsTypesGlobals.push_back(type);
module.mapInstruction(type);
addName(type->getResultId(), name);
return type->getResultId();
}
Id Builder::makeVectorType(Id component, int size)
{
// try to find it
Instruction* type;
for (int t = 0; t < (int)groupedTypes[OpTypeVector].size(); ++t) {
type = groupedTypes[OpTypeVector][t];
if (type->getIdOperand(0) == component &&
type->getImmediateOperand(1) == (unsigned)size)
return type->getResultId();
}
// not found, make it
type = new Instruction(getUniqueId(), NoType, OpTypeVector);
type->addIdOperand(component);
type->addImmediateOperand(size);
groupedTypes[OpTypeVector].push_back(type);
constantsTypesGlobals.push_back(type);
module.mapInstruction(type);
return type->getResultId();
}
Id Builder::makeMatrixType(Id component, int cols, int rows)
{
assert(cols <= maxMatrixSize && rows <= maxMatrixSize);
Id column = makeVectorType(component, rows);
// try to find it
Instruction* type;
for (int t = 0; t < (int)groupedTypes[OpTypeMatrix].size(); ++t) {
type = groupedTypes[OpTypeMatrix][t];
if (type->getIdOperand(0) == column &&
type->getImmediateOperand(1) == (unsigned)cols)
return type->getResultId();
}
// not found, make it
type = new Instruction(getUniqueId(), NoType, OpTypeMatrix);
type->addIdOperand(column);
type->addImmediateOperand(cols);
groupedTypes[OpTypeMatrix].push_back(type);
constantsTypesGlobals.push_back(type);
module.mapInstruction(type);
return type->getResultId();
}
Id Builder::makeArrayType(Id element, unsigned size)
{
// First, we need a constant instruction for the size
Id sizeId = makeUintConstant(size);
// try to find existing type
Instruction* type;
for (int t = 0; t < (int)groupedTypes[OpTypeArray].size(); ++t) {
type = groupedTypes[OpTypeArray][t];
if (type->getIdOperand(0) == element &&
type->getIdOperand(1) == sizeId)
return type->getResultId();
}
// not found, make it
type = new Instruction(getUniqueId(), NoType, OpTypeArray);
type->addIdOperand(element);
type->addIdOperand(sizeId);
groupedTypes[OpTypeArray].push_back(type);
constantsTypesGlobals.push_back(type);
module.mapInstruction(type);
return type->getResultId();
}
Id Builder::makeFunctionType(Id returnType, std::vector<Id>& paramTypes)
{
// try to find it
Instruction* type;
for (int t = 0; t < (int)groupedTypes[OpTypeFunction].size(); ++t) {
type = groupedTypes[OpTypeFunction][t];
if (type->getIdOperand(0) != returnType || (int)paramTypes.size() != type->getNumOperands() - 1)
continue;
bool mismatch = false;
for (int p = 0; p < (int)paramTypes.size(); ++p) {
if (paramTypes[p] != type->getIdOperand(p + 1)) {
mismatch = true;
break;
}
}
if (! mismatch)
return type->getResultId();
}
// not found, make it
type = new Instruction(getUniqueId(), NoType, OpTypeFunction);
type->addIdOperand(returnType);
for (int p = 0; p < (int)paramTypes.size(); ++p)
type->addIdOperand(paramTypes[p]);
groupedTypes[OpTypeFunction].push_back(type);
constantsTypesGlobals.push_back(type);
module.mapInstruction(type);
return type->getResultId();
}
Id Builder::makeSampler(Id sampledType, Dim dim, samplerContent content, bool arrayed, bool shadow, bool ms)
{
// try to find it
Instruction* type;
for (int t = 0; t < (int)groupedTypes[OpTypeSampler].size(); ++t) {
type = groupedTypes[OpTypeSampler][t];
if (type->getIdOperand(0) == sampledType &&
type->getImmediateOperand(1) == (unsigned int)dim &&
type->getImmediateOperand(2) == (unsigned int)content &&
type->getImmediateOperand(3) == (arrayed ? 1u : 0u) &&
type->getImmediateOperand(4) == ( shadow ? 1u : 0u) &&
type->getImmediateOperand(5) == ( ms ? 1u : 0u))
return type->getResultId();
}
// not found, make it
type = new Instruction(getUniqueId(), NoType, OpTypeSampler);
type->addIdOperand(sampledType);
type->addImmediateOperand( dim);
type->addImmediateOperand(content);
type->addImmediateOperand(arrayed ? 1 : 0);
type->addImmediateOperand( shadow ? 1 : 0);
type->addImmediateOperand( ms ? 1 : 0);
groupedTypes[OpTypeSampler].push_back(type);
constantsTypesGlobals.push_back(type);
module.mapInstruction(type);
return type->getResultId();
}
Id Builder::getDerefTypeId(Id resultId) const
{
Id typeId = getTypeId(resultId);
assert(isPointerType(typeId));
return module.getInstruction(typeId)->getImmediateOperand(1);
}
Op Builder::getMostBasicTypeClass(Id typeId) const
{
Instruction* instr = module.getInstruction(typeId);
Op typeClass = instr->getOpCode();
switch (typeClass)
{
case OpTypeVoid:
case OpTypeBool:
case OpTypeInt:
case OpTypeFloat:
case OpTypeStruct:
return typeClass;
case OpTypeVector:
case OpTypeMatrix:
case OpTypeArray:
case OpTypeRuntimeArray:
return getMostBasicTypeClass(instr->getIdOperand(0));
case OpTypePointer:
return getMostBasicTypeClass(instr->getIdOperand(1));
default:
MissingFunctionality("getMostBasicTypeClass");
return OpTypeFloat;
}
}
int Builder::getNumTypeComponents(Id typeId) const
{
Instruction* instr = module.getInstruction(typeId);
switch (instr->getOpCode())
{
case OpTypeBool:
case OpTypeInt:
case OpTypeFloat:
return 1;
case OpTypeVector:
case OpTypeMatrix:
return instr->getImmediateOperand(1);
default:
MissingFunctionality("getNumTypeComponents on non bool/int/float/vector/matrix");
return 1;
}
}
// Return the lowest-level type of scalar that an homogeneous composite is made out of.
// Typically, this is just to find out if something is made out of ints or floats.
// However, it includes returning a structure, if say, it is an array of structure.
Id Builder::getScalarTypeId(Id typeId) const
{
Instruction* instr = module.getInstruction(typeId);
Op typeClass = instr->getOpCode();
switch (typeClass)
{
case OpTypeVoid:
case OpTypeBool:
case OpTypeInt:
case OpTypeFloat:
case OpTypeStruct:
return instr->getResultId();
case OpTypeVector:
case OpTypeMatrix:
case OpTypeArray:
case OpTypeRuntimeArray:
case OpTypePointer:
return getScalarTypeId(getContainedTypeId(typeId));
default:
MissingFunctionality("getScalarTypeId");
return NoResult;
}
}
// Return the type of 'member' of a composite.
Id Builder::getContainedTypeId(Id typeId, int member) const
{
Instruction* instr = module.getInstruction(typeId);
Op typeClass = instr->getOpCode();
switch (typeClass)
{
case OpTypeVector:
case OpTypeMatrix:
case OpTypeArray:
case OpTypeRuntimeArray:
return instr->getIdOperand(0);
case OpTypePointer:
return instr->getIdOperand(1);
case OpTypeStruct:
return instr->getIdOperand(member);
default:
MissingFunctionality("getContainedTypeId");
return NoResult;
}
}
// Return the immediately contained type of a given composite type.
Id Builder::getContainedTypeId(Id typeId) const
{
return getContainedTypeId(typeId, 0);
}
// See if a scalar constant of this type has already been created, so it
// can be reused rather than duplicated. (Required by the specification).
Id Builder::findScalarConstant(Op typeClass, Id typeId, unsigned value) const
{
Instruction* constant;
for (int i = 0; i < (int)groupedConstants[typeClass].size(); ++i) {
constant = groupedConstants[typeClass][i];
if (constant->getNumOperands() == 1 &&
constant->getTypeId() == typeId &&
constant->getImmediateOperand(0) == value)
return constant->getResultId();
}
return 0;
}
// Version of findScalarConstant (see above) for scalars that take two operands (e.g. a 'double').
Id Builder::findScalarConstant(Op typeClass, Id typeId, unsigned v1, unsigned v2) const
{
Instruction* constant;
for (int i = 0; i < (int)groupedConstants[typeClass].size(); ++i) {
constant = groupedConstants[typeClass][i];
if (constant->getNumOperands() == 2 &&
constant->getTypeId() == typeId &&
constant->getImmediateOperand(0) == v1 &&
constant->getImmediateOperand(1) == v2)
return constant->getResultId();
}
return 0;
}
Id Builder::makeBoolConstant(bool b)
{
Id typeId = makeBoolType();
Instruction* constant;
// See if we already made it
Id existing = 0;
for (int i = 0; i < (int)groupedConstants[OpTypeBool].size(); ++i) {
constant = groupedConstants[OpTypeBool][i];
if (constant->getTypeId() == typeId &&
(b ? (constant->getOpCode() == OpConstantTrue) :
(constant->getOpCode() == OpConstantFalse)))
existing = constant->getResultId();
}
if (existing)
return existing;
// Make it
Instruction* c = new Instruction(getUniqueId(), typeId, b ? OpConstantTrue : OpConstantFalse);
constantsTypesGlobals.push_back(c);
groupedConstants[OpTypeBool].push_back(c);
module.mapInstruction(c);
return c->getResultId();
}
Id Builder::makeIntConstant(Id typeId, unsigned value)
{
Id existing = findScalarConstant(OpTypeInt, typeId, value);
if (existing)
return existing;
Instruction* c = new Instruction(getUniqueId(), typeId, OpConstant);
c->addImmediateOperand(value);
constantsTypesGlobals.push_back(c);
groupedConstants[OpTypeInt].push_back(c);
module.mapInstruction(c);
return c->getResultId();
}
Id Builder::makeFloatConstant(float f)
{
Id typeId = makeFloatType(32);
unsigned value = *(unsigned int*)&f;
Id existing = findScalarConstant(OpTypeFloat, typeId, value);
if (existing)
return existing;
Instruction* c = new Instruction(getUniqueId(), typeId, OpConstant);
c->addImmediateOperand(value);
constantsTypesGlobals.push_back(c);
groupedConstants[OpTypeFloat].push_back(c);
module.mapInstruction(c);
return c->getResultId();
}
Id Builder::makeDoubleConstant(double d)
{
Id typeId = makeFloatType(64);
unsigned long long value = *(unsigned long long*)&d;
unsigned op1 = value & 0xFFFFFFFF;
unsigned op2 = value >> 32;
Id existing = findScalarConstant(OpTypeFloat, typeId, op1, op2);
if (existing)
return existing;
Instruction* c = new Instruction(getUniqueId(), typeId, OpConstant);
c->addImmediateOperand(op1);
c->addImmediateOperand(op2);
constantsTypesGlobals.push_back(c);
groupedConstants[OpTypeFloat].push_back(c);
module.mapInstruction(c);
return c->getResultId();
}
Id Builder::findCompositeConstant(Op typeClass, std::vector<Id>& comps) const
{
Instruction* constant = 0;
bool found = false;
for (int i = 0; i < (int)groupedConstants[typeClass].size(); ++i) {
constant = groupedConstants[typeClass][i];
// same shape?
if (constant->getNumOperands() != (int)comps.size())
continue;
// same contents?
bool mismatch = false;
for (int op = 0; op < constant->getNumOperands(); ++op) {
if (constant->getIdOperand(op) != comps[op]) {
mismatch = true;
break;
}
}
if (! mismatch) {
found = true;
break;
}
}
return found ? constant->getResultId() : NoResult;
}
// Comments in header
Id Builder::makeCompositeConstant(Id typeId, std::vector<Id>& members)
{
assert(typeId);
Op typeClass = getTypeClass(typeId);
switch (typeClass) {
case OpTypeVector:
case OpTypeArray:
case OpTypeStruct:
case OpTypeMatrix:
break;
default:
MissingFunctionality("Constant composite type in Builder");
return makeFloatConstant(0.0);
}
Id existing = findCompositeConstant(typeClass, members);
if (existing)
return existing;
Instruction* c = new Instruction(getUniqueId(), typeId, OpConstantComposite);
for (int op = 0; op < (int)members.size(); ++op)
c->addIdOperand(members[op]);
constantsTypesGlobals.push_back(c);
groupedConstants[typeClass].push_back(c);
module.mapInstruction(c);
return c->getResultId();
}
void Builder::addEntryPoint(ExecutionModel model, Function* function)
{
Instruction* entryPoint = new Instruction(OpEntryPoint);
entryPoint->addImmediateOperand(model);
entryPoint->addIdOperand(function->getId());
entryPoints.push_back(entryPoint);
}
void Builder::addExecutionMode(Function* entryPoint, ExecutionMode mode, int value)
{
// TODO: handle multiple optional arguments
Instruction* instr = new Instruction(OpExecutionMode);
instr->addIdOperand(entryPoint->getId());
instr->addImmediateOperand(mode);
if (value >= 0)
instr->addImmediateOperand(value);
executionModes.push_back(instr);
}
void Builder::addName(Id id, const char* string)
{
Instruction* name = new Instruction(OpName);
name->addIdOperand(id);
name->addStringOperand(string);
names.push_back(name);
}
void Builder::addMemberName(Id id, int memberNumber, const char* string)
{
Instruction* name = new Instruction(OpMemberName);
name->addIdOperand(id);
name->addImmediateOperand(memberNumber);
name->addStringOperand(string);
names.push_back(name);
}
void Builder::addLine(Id target, Id fileName, int lineNum, int column)
{
Instruction* line = new Instruction(OpLine);
line->addIdOperand(target);
line->addIdOperand(fileName);
line->addImmediateOperand(lineNum);
line->addImmediateOperand(column);
lines.push_back(line);
}
void Builder::addDecoration(Id id, Decoration decoration, int num)
{
Instruction* dec = new Instruction(OpDecorate);
dec->addIdOperand(id);
dec->addImmediateOperand(decoration);
if (num >= 0)
dec->addImmediateOperand(num);
decorations.push_back(dec);
}
void Builder::addMemberDecoration(Id id, unsigned int member, Decoration decoration, int num)
{
Instruction* dec = new Instruction(OpMemberDecorate);
dec->addIdOperand(id);
dec->addImmediateOperand(member);
dec->addImmediateOperand(decoration);
if (num >= 0)
dec->addImmediateOperand(num);
decorations.push_back(dec);
}
// Comments in header
Function* Builder::makeMain()
{
assert(! mainFunction);
Block* entry;
std::vector<Id> params;
mainFunction = makeFunctionEntry(makeVoidType(), "main", params, &entry);
stageExit = new Block(getUniqueId(), *mainFunction);
return mainFunction;
}
// Comments in header
void Builder::closeMain()
{
setBuildPoint(stageExit);
stageExit->addInstruction(new Instruction(NoResult, NoType, OpReturn));
mainFunction->addBlock(stageExit);
}
// Comments in header
Function* Builder::makeFunctionEntry(Id returnType, const char* name, std::vector<Id>& paramTypes, Block **entry)
{
Id typeId = makeFunctionType(returnType, paramTypes);
Id firstParamId = paramTypes.size() == 0 ? 0 : getUniqueIds(paramTypes.size());
Function* function = new Function(getUniqueId(), returnType, typeId, firstParamId, module);
if (entry) {
*entry = new Block(getUniqueId(), *function);
function->addBlock(*entry);
setBuildPoint(*entry);
}
if (name)
addName(function->getId(), name);
return function;
}
// Comments in header
void Builder::makeReturn(bool implicit, Id retVal, bool isMain)
{
if (isMain && retVal)
MissingFunctionality("return value from main()");
if (isMain)
createBranch(stageExit);
else if (retVal) {
Instruction* inst = new Instruction(NoResult, NoType, OpReturnValue);
inst->addIdOperand(retVal);
buildPoint->addInstruction(inst);
} else
buildPoint->addInstruction(new Instruction(NoResult, NoType, OpReturn));
if (! implicit)
createAndSetNoPredecessorBlock("post-return");
}
// Comments in header
void Builder::leaveFunction(bool main)
{
Block* block = buildPoint;
Function& function = buildPoint->getParent();
assert(block);
// If our function did not contain a return, add a return void now.
if (! block->isTerminated()) {
// Whether we're in an unreachable (non-entry) block.
bool unreachable = function.getEntryBlock() != block && block->getNumPredecessors() == 0;
if (unreachable) {
// Given that this block is at the end of a function, it must be right after an
// explicit return, just remove it.
function.popBlock(block);
} else if (main)
makeMainReturn(true);
else {
// We're get a return instruction at the end of the current block,
// which for a non-void function is really error recovery (?), as the source
// being translated should have had an explicit return, which would have been
// followed by an unreachable block, which was handled above.
if (function.getReturnType() == makeVoidType())
makeReturn(true);
else {
Id retStorage = createVariable(StorageClassFunction, function.getReturnType(), "dummyReturn");
Id retValue = createLoad(retStorage);
makeReturn(true, retValue);
}
}
}
if (main)
closeMain();
}
// Comments in header
void Builder::makeDiscard()
{
buildPoint->addInstruction(new Instruction(OpKill));
createAndSetNoPredecessorBlock("post-discard");
}
// Comments in header
Id Builder::createVariable(StorageClass storageClass, Id type, const char* name)
{
Id pointerType = makePointer(storageClass, type);
Instruction* inst = new Instruction(getUniqueId(), pointerType, OpVariable);
inst->addImmediateOperand(storageClass);
switch (storageClass) {
case StorageClassUniformConstant:
case StorageClassUniform:
case StorageClassInput:
case StorageClassOutput:
case StorageClassWorkgroupLocal:
case StorageClassPrivateGlobal:
case StorageClassWorkgroupGlobal:
constantsTypesGlobals.push_back(inst);
module.mapInstruction(inst);
break;
case StorageClassFunction:
// Validation rules require the declaration in the entry block
buildPoint->getParent().addLocalVariable(inst);
break;
default:
MissingFunctionality("storage class in createVariable");
break;
}
if (name)
addName(inst->getResultId(), name);
return inst->getResultId();
}
// Comments in header
void Builder::createStore(Id rValue, Id lValue)
{
Instruction* store = new Instruction(OpStore);
store->addIdOperand(lValue);
store->addIdOperand(rValue);
buildPoint->addInstruction(store);
}
// Comments in header
Id Builder::createLoad(Id lValue)
{
Instruction* load = new Instruction(getUniqueId(), getDerefTypeId(lValue), OpLoad);
load->addIdOperand(lValue);
buildPoint->addInstruction(load);
return load->getResultId();
}
// Comments in header
Id Builder::createAccessChain(StorageClass storageClass, Id base, std::vector<Id>& offsets)
{
// Figure out the final resulting type.
spv::Id typeId = getTypeId(base);
assert(isPointerType(typeId) && offsets.size() > 0);
typeId = getContainedTypeId(typeId);
for (int i = 0; i < (int)offsets.size(); ++i) {
if (isStructType(typeId)) {
assert(isConstantScalar(offsets[i]));
typeId = getContainedTypeId(typeId, getConstantScalar(offsets[i]));
} else
typeId = getContainedTypeId(typeId, offsets[i]);
}
typeId = makePointer(storageClass, typeId);
// Make the instruction
Instruction* chain = new Instruction(getUniqueId(), typeId, OpAccessChain);
chain->addIdOperand(base);
for (int i = 0; i < (int)offsets.size(); ++i)
chain->addIdOperand(offsets[i]);
buildPoint->addInstruction(chain);
return chain->getResultId();
}
Id Builder::createCompositeExtract(Id composite, Id typeId, unsigned index)
{
Instruction* extract = new Instruction(getUniqueId(), typeId, OpCompositeExtract);
extract->addIdOperand(composite);
extract->addImmediateOperand(index);
buildPoint->addInstruction(extract);
return extract->getResultId();
}
Id Builder::createCompositeExtract(Id composite, Id typeId, std::vector<unsigned>& indexes)
{
Instruction* extract = new Instruction(getUniqueId(), typeId, OpCompositeExtract);
extract->addIdOperand(composite);
for (int i = 0; i < (int)indexes.size(); ++i)
extract->addImmediateOperand(indexes[i]);
buildPoint->addInstruction(extract);
return extract->getResultId();
}
Id Builder::createCompositeInsert(Id object, Id composite, Id typeId, unsigned index)
{
Instruction* insert = new Instruction(getUniqueId(), typeId, OpCompositeInsert);
insert->addIdOperand(object);
insert->addIdOperand(composite);
insert->addImmediateOperand(index);
buildPoint->addInstruction(insert);
return insert->getResultId();
}
Id Builder::createCompositeInsert(Id object, Id composite, Id typeId, std::vector<unsigned>& indexes)
{
Instruction* insert = new Instruction(getUniqueId(), typeId, OpCompositeInsert);
insert->addIdOperand(object);
insert->addIdOperand(composite);
for (int i = 0; i < (int)indexes.size(); ++i)
insert->addImmediateOperand(indexes[i]);
buildPoint->addInstruction(insert);
return insert->getResultId();
}
Id Builder::createVectorExtractDynamic(Id vector, Id typeId, Id componentIndex)
{
Instruction* extract = new Instruction(getUniqueId(), typeId, OpVectorExtractDynamic);
extract->addIdOperand(vector);
extract->addIdOperand(componentIndex);
buildPoint->addInstruction(extract);
return extract->getResultId();
}
Id Builder::createVectorInsertDynamic(Id vector, Id typeId, Id component, Id componentIndex)
{
Instruction* insert = new Instruction(getUniqueId(), typeId, OpVectorInsertDynamic);
insert->addIdOperand(vector);
insert->addIdOperand(component);
insert->addIdOperand(componentIndex);
buildPoint->addInstruction(insert);
return insert->getResultId();
}
// An opcode that has no operands, no result id, and no type
void Builder::createNoResultOp(Op opCode)
{
Instruction* op = new Instruction(opCode);
buildPoint->addInstruction(op);
}
// An opcode that has one operand, no result id, and no type
void Builder::createNoResultOp(Op opCode, Id operand)
{
Instruction* op = new Instruction(opCode);
op->addIdOperand(operand);
buildPoint->addInstruction(op);
}
void Builder::createControlBarrier(unsigned executionScope)
{
Instruction* op = new Instruction(OpControlBarrier);
op->addImmediateOperand(executionScope);
buildPoint->addInstruction(op);
}
void Builder::createMemoryBarrier(unsigned executionScope, unsigned memorySemantics)
{
Instruction* op = new Instruction(OpMemoryBarrier);
op->addImmediateOperand(executionScope);
op->addImmediateOperand(memorySemantics);
buildPoint->addInstruction(op);
}
// An opcode that has one operands, a result id, and a type
Id Builder::createUnaryOp(Op opCode, Id typeId, Id operand)
{
Instruction* op = new Instruction(getUniqueId(), typeId, opCode);
op->addIdOperand(operand);
buildPoint->addInstruction(op);
return op->getResultId();
}
Id Builder::createBinOp(Op opCode, Id typeId, Id left, Id right)
{
Instruction* op = new Instruction(getUniqueId(), typeId, opCode);
op->addIdOperand(left);
op->addIdOperand(right);
buildPoint->addInstruction(op);
return op->getResultId();
}
Id Builder::createTriOp(Op opCode, Id typeId, Id op1, Id op2, Id op3)
{
Instruction* op = new Instruction(getUniqueId(), typeId, opCode);
op->addIdOperand(op1);
op->addIdOperand(op2);
op->addIdOperand(op3);
buildPoint->addInstruction(op);
return op->getResultId();
}
Id Builder::createTernaryOp(Op opCode, Id typeId, Id op1, Id op2, Id op3)
{
Instruction* op = new Instruction(getUniqueId(), typeId, opCode);
op->addIdOperand(op1);
op->addIdOperand(op2);
op->addIdOperand(op3);
buildPoint->addInstruction(op);
return op->getResultId();
}
Id Builder::createFunctionCall(spv::Function* function, std::vector<spv::Id>& args)
{
Instruction* op = new Instruction(getUniqueId(), function->getReturnType(), OpFunctionCall);
op->addIdOperand(function->getId());
for (int a = 0; a < (int)args.size(); ++a)
op->addIdOperand(args[a]);
buildPoint->addInstruction(op);
return op->getResultId();
}
// Comments in header
Id Builder::createRvalueSwizzle(Id typeId, Id source, std::vector<unsigned>& channels)
{
if (channels.size() == 1)
return createCompositeExtract(source, typeId, channels.front());
Instruction* swizzle = new Instruction(getUniqueId(), typeId, OpVectorShuffle);
assert(isVector(source));
swizzle->addIdOperand(source);
swizzle->addIdOperand(source);
for (int i = 0; i < (int)channels.size(); ++i)
swizzle->addImmediateOperand(channels[i]);
buildPoint->addInstruction(swizzle);
return swizzle->getResultId();
}
// Comments in header
Id Builder::createLvalueSwizzle(Id typeId, Id target, Id source, std::vector<unsigned>& channels)
{
assert(getNumComponents(source) == channels.size());
if (channels.size() == 1 && getNumComponents(source) == 1)
return createCompositeInsert(source, target, typeId, channels.front());
Instruction* swizzle = new Instruction(getUniqueId(), typeId, OpVectorShuffle);
assert(isVector(source));
assert(isVector(target));
swizzle->addIdOperand(target);
swizzle->addIdOperand(source);
// Set up an identity shuffle from the base value to the result value
unsigned int components[4];
int numTargetComponents = getNumComponents(target);
for (int i = 0; i < numTargetComponents; ++i)
components[i] = i;
// Punch in the l-value swizzle
for (int i = 0; i < (int)channels.size(); ++i)
components[channels[i]] = numTargetComponents + i;
// finish the instruction with these components selectors
for (int i = 0; i < numTargetComponents; ++i)
swizzle->addImmediateOperand(components[i]);
buildPoint->addInstruction(swizzle);
return swizzle->getResultId();
}
// Comments in header
void Builder::promoteScalar(Decoration precision, Id& left, Id& right)
{
int direction = getNumComponents(right) - getNumComponents(left);
if (direction > 0)
left = smearScalar(precision, left, getTypeId(right));
else if (direction < 0)
right = smearScalar(precision, right, getTypeId(left));
return;
}
// Comments in header
Id Builder::smearScalar(Decoration /*precision*/, Id scalar, Id vectorType)
{
assert(getNumComponents(scalar) == 1);
int numComponents = getNumTypeComponents(vectorType);
if (numComponents == 1)
return scalar;
Instruction* smear = new Instruction(getUniqueId(), vectorType, OpCompositeConstruct);
for (int c = 0; c < numComponents; ++c)
smear->addIdOperand(scalar);
buildPoint->addInstruction(smear);
return smear->getResultId();
}
// Comments in header
Id Builder::createBuiltinCall(Decoration /*precision*/, Id resultType, Id builtins, int entryPoint, std::vector<Id>& args)
{
Instruction* inst = new Instruction(getUniqueId(), resultType, OpExtInst);
inst->addIdOperand(builtins);
inst->addImmediateOperand(entryPoint);
for (int arg = 0; arg < (int)args.size(); ++arg)
inst->addIdOperand(args[arg]);
buildPoint->addInstruction(inst);
return inst->getResultId();
}
// Accept all parameters needed to create a texture instruction.
// Create the correct instruction based on the inputs, and make the call.
Id Builder::createTextureCall(Decoration precision, Id resultType, bool proj, const TextureParameters& parameters)
{
static const int maxTextureArgs = 5;
Id texArgs[maxTextureArgs] = {};
//
// Set up the arguments
//
int numArgs = 0;
texArgs[numArgs++] = parameters.sampler;
texArgs[numArgs++] = parameters.coords;
if (parameters.gradX) {
texArgs[numArgs++] = parameters.gradX;
texArgs[numArgs++] = parameters.gradY;
}
if (parameters.lod)
texArgs[numArgs++] = parameters.lod;
if (parameters.offset)
texArgs[numArgs++] = parameters.offset;
if (parameters.bias)
texArgs[numArgs++] = parameters.bias;
if (parameters.Dref)
texArgs[numArgs++] = parameters.Dref;
//
// Set up the instruction
//
Op opCode;
if (proj && parameters.gradX && parameters.offset)
opCode = OpTextureSampleProjGradOffset;
else if (proj && parameters.lod && parameters.offset)
opCode = OpTextureSampleProjLodOffset;
else if (parameters.gradX && parameters.offset)
opCode = OpTextureSampleGradOffset;
else if (proj && parameters.offset)
opCode = OpTextureSampleProjOffset;
else if (parameters.lod && parameters.offset)
opCode = OpTextureSampleLodOffset;
else if (proj && parameters.gradX)
opCode = OpTextureSampleProjGrad;
else if (proj && parameters.lod)
opCode = OpTextureSampleProjLod;
else if (parameters.offset)
opCode = OpTextureSampleOffset;
else if (parameters.gradX)
opCode = OpTextureSampleGrad;
else if (proj)
opCode = OpTextureSampleProj;
else if (parameters.lod)
opCode = OpTextureSampleLod;
else if (parameters.Dref)
opCode = OpTextureSampleDref;
else
opCode = OpTextureSample;
Instruction* textureInst = new Instruction(getUniqueId(), resultType, opCode);
for (int op = 0; op < numArgs; ++op)
textureInst->addIdOperand(texArgs[op]);
setPrecision(textureInst->getResultId(), precision);
buildPoint->addInstruction(textureInst);
return textureInst->getResultId();
}
// Comments in header
Id Builder::createTextureQueryCall(Op opCode, const TextureParameters& parameters)
{
// Figure out the result type
Id resultType;
switch (opCode) {
case OpTextureQuerySize:
case OpTextureQuerySizeLod:
{
int numComponents;
switch (getDimensionality(parameters.sampler)) {
case Dim1D:
case DimBuffer:
numComponents = 1;
break;
case Dim2D:
case DimCube:
case DimRect:
numComponents = 2;
break;
case Dim3D:
numComponents = 3;
break;
default:
MissingFunctionality("texture query dimensionality");
break;
}
if (isArrayedSampler(parameters.sampler))
++numComponents;
if (numComponents == 1)
resultType = makeIntType(32);
else
resultType = makeVectorType(makeIntType(32), numComponents);
break;
}
case OpTextureQueryLod:
resultType = makeVectorType(makeFloatType(32), 2);
break;
case OpTextureQueryLevels:
case OpTextureQuerySamples:
resultType = makeIntType(32);
break;
default:
MissingFunctionality("Texture query op code");
}
Instruction* query = new Instruction(getUniqueId(), resultType, opCode);
query->addIdOperand(parameters.sampler);
if (parameters.coords)
query->addIdOperand(parameters.coords);
if (parameters.lod)
query->addIdOperand(parameters.lod);
buildPoint->addInstruction(query);
return query->getResultId();
}
// Comments in header
//Id Builder::createSamplePositionCall(Decoration precision, Id returnType, Id sampleIdx)
//{
// // Return type is only flexible type
// Function* opCode = (fSamplePosition, returnType);
//
// Instruction* instr = (opCode, sampleIdx);
// setPrecision(instr, precision);
//
// return instr;
//}
// Comments in header
//Id Builder::createBitFieldExtractCall(Decoration precision, Id id, Id offset, Id bits, bool isSigned)
//{
// Op opCode = isSigned ? sBitFieldExtract
// : uBitFieldExtract;
//
// if (isScalar(offset) == false || isScalar(bits) == false)
// MissingFunctionality("bitFieldExtract operand types");
//
// // Dest and value are matching flexible types
// Function* opCode = (opCode, id->getType(), id->getType());
//
// assert(opCode);
//
// Instruction* instr = (opCode, id, offset, bits);
// setPrecision(instr, precision);
//
// return instr;
//}
// Comments in header
//Id Builder::createBitFieldInsertCall(Decoration precision, Id base, Id insert, Id offset, Id bits)
//{
// Op opCode = bitFieldInsert;
//
// if (isScalar(offset) == false || isScalar(bits) == false)
// MissingFunctionality("bitFieldInsert operand types");
//
// // Dest, base, and insert are matching flexible types
// Function* opCode = (opCode, base->getType(), base->getType(), base->getType());
//
// assert(opCode);
//
// Instruction* instr = (opCode, base, insert, offset, bits);
// setPrecision(instr, precision);
//
// return instr;
//}
// Comments in header
Id Builder::createCompare(Decoration precision, Id value1, Id value2, bool equal)
{
Id boolType = makeBoolType();
Id valueType = getTypeId(value1);
assert(valueType == getTypeId(value2));
assert(! isScalar(value1));
// Vectors
if (isVectorType(valueType)) {
Id boolVectorType = makeVectorType(boolType, getNumTypeComponents(valueType));
Id boolVector;
Op op;
if (getMostBasicTypeClass(valueType) == OpTypeFloat)
op = equal ? OpFOrdEqual : OpFOrdNotEqual;
else
op = equal ? OpIEqual : OpINotEqual;
boolVector = createBinOp(op, boolVectorType, value1, value2);
setPrecision(boolVector, precision);
// Reduce vector compares with any() and all().
op = equal ? OpAll : OpAny;
return createUnaryOp(op, boolType, boolVector);
}
spv::MissingFunctionality("Composite comparison of non-vectors");
return NoResult;
// Recursively handle aggregates, which include matrices, arrays, and structures
// and accumulate the results.
// Matrices
// Arrays
//int numElements;
//const llvm::ArrayType* arrayType = llvm::dyn_cast<llvm::ArrayType>(value1->getType());
//if (arrayType)
// numElements = (int)arrayType->getNumElements();
//else {
// // better be structure
// const llvm::StructType* structType = llvm::dyn_cast<llvm::StructType>(value1->getType());
// assert(structType);
// numElements = structType->getNumElements();
//}
//assert(numElements > 0);
//for (int element = 0; element < numElements; ++element) {
// // Get intermediate comparison values
// llvm::Value* element1 = builder.CreateExtractValue(value1, element, "element1");
// setInstructionPrecision(element1, precision);
// llvm::Value* element2 = builder.CreateExtractValue(value2, element, "element2");
// setInstructionPrecision(element2, precision);
// llvm::Value* subResult = createCompare(precision, element1, element2, equal, "comp");
// // Accumulate intermediate comparison
// if (element == 0)
// result = subResult;
// else {
// if (equal)
// result = builder.CreateAnd(result, subResult);
// else
// result = builder.CreateOr(result, subResult);
// setInstructionPrecision(result, precision);
// }
//}
//return result;
}
// Comments in header
//Id Builder::createOperation(Decoration precision, Op opCode, Id operand)
//{
// Op* opCode = 0;
//
// // Handle special return types here. Things that don't have same result type as parameter
// switch (opCode) {
// case fIsNan:
// case fIsInf:
// break;
// case fFloatBitsToInt:
// break;
// case fIntBitsTofloat:
// break;
// case fPackSnorm2x16:
// case fPackUnorm2x16:
// case fPackHalf2x16:
// break;
// case fUnpackUnorm2x16:
// case fUnpackSnorm2x16:
// case fUnpackHalf2x16:
// break;
//
// case fFrexp:
// case fLdexp:
// case fPackUnorm4x8:
// case fPackSnorm4x8:
// case fUnpackUnorm4x8:
// case fUnpackSnorm4x8:
// case fPackDouble2x32:
// case fUnpackDouble2x32:
// break;
// case fLength:
// // scalar result type
// break;
// case any:
// case all:
// // fixed result type
// break;
// case fModF:
// // modf() will return a struct that the caller must decode
// break;
// default:
// // Unary operations that have operand and dest with same flexible type
// break;
// }
//
// assert(opCode);
//
// Instruction* instr = (opCode, operand);
// setPrecision(instr, precision);
//
// return instr;
//}
//
//// Comments in header
//Id Builder::createOperation(Decoration precision, Op opCode, Id operand0, Id operand1)
//{
// Function* opCode = 0;
//
// // Handle special return types here. Things that don't have same result type as parameter
// switch (opCode) {
// case fDistance:
// case fDot2:
// case fDot3:
// case fDot4:
// // scalar result type
// break;
// case fStep:
// // first argument can be scalar, return and second argument match
// break;
// case fSmoothStep:
// // first argument can be scalar, return and second argument match
// break;
// default:
// // Binary operations that have operand and dest with same flexible type
// break;
// }
//
// assert(opCode);
//
// Instruction* instr = (opCode, operand0, operand1);
// setPrecision(instr, precision);
//
// return instr;
//}
//
//Id Builder::createOperation(Decoration precision, Op opCode, Id operand0, Id operand1, Id operand2)
//{
// Function* opCode;
//
// // Handle special return types here. Things that don't have same result type as parameter
// switch (opCode) {
// case fSmoothStep:
// // first argument can be scalar, return and second argument match
// break;
// default:
// // Use operand0 type as result type
// break;
// }
//
// assert(opCode);
//
// Instruction* instr = (opCode, operand0, operand1, operand2);
// setPrecision(instr, precision);
//
// return instr;
//}
// OpCompositeConstruct
Id Builder::createCompositeConstruct(Id typeId, std::vector<Id>& constituents)
{
assert(isAggregateType(typeId) || getNumTypeComponents(typeId) > 1 && getNumTypeComponents(typeId) == constituents.size());
Instruction* op = new Instruction(getUniqueId(), typeId, OpCompositeConstruct);
for (int c = 0; c < (int)constituents.size(); ++c)
op->addIdOperand(constituents[c]);
buildPoint->addInstruction(op);
return op->getResultId();
}
// Vector or scalar constructor
Id Builder::createConstructor(Decoration precision, const std::vector<Id>& sources, Id resultTypeId)
{
Id result = 0;
unsigned int numTargetComponents = getNumTypeComponents(resultTypeId);
unsigned int targetComponent = 0;
// Special case: when calling a vector constructor with a single scalar
// argument, smear the scalar
if (sources.size() == 1 && isScalar(sources[0]) && numTargetComponents > 1)
return smearScalar(precision, sources[0], resultTypeId);
Id scalarTypeId = getScalarTypeId(resultTypeId);
std::vector<Id> constituents; // accumulate the arguments for OpCompositeConstruct
for (unsigned int i = 0; i < sources.size(); ++i) {
if (isAggregate(sources[i]))
MissingFunctionality("aggregate in vector constructor");
unsigned int sourceSize = getNumComponents(sources[i]);
unsigned int sourcesToUse = sourceSize;
if (sourcesToUse + targetComponent > numTargetComponents)
sourcesToUse = numTargetComponents - targetComponent;
for (unsigned int s = 0; s < sourcesToUse; ++s) {
Id arg = sources[i];
if (sourceSize > 1) {
std::vector<unsigned> swiz;
swiz.push_back(s);
arg = createRvalueSwizzle(scalarTypeId, arg, swiz);
}
if (numTargetComponents > 1)
constituents.push_back(arg);
else
result = arg;
++targetComponent;
}
if (targetComponent >= numTargetComponents)
break;
}
if (constituents.size() > 0)
result = createCompositeConstruct(resultTypeId, constituents);
setPrecision(result, precision);
return result;
}
// Comments in header
Id Builder::createMatrixConstructor(Decoration precision, const std::vector<Id>& sources, Id resultTypeId)
{
Id componentTypeId = getScalarTypeId(resultTypeId);
int numCols = getTypeNumColumns(resultTypeId);
int numRows = getTypeNumRows(resultTypeId);
// Will use a two step process
// 1. make a compile-time 2D array of values
// 2. construct a matrix from that array
// Step 1.
// initialize the array to the identity matrix
Id ids[maxMatrixSize][maxMatrixSize];
Id one = makeFloatConstant(1.0);
Id zero = makeFloatConstant(0.0);
for (int col = 0; col < 4; ++col) {
for (int row = 0; row < 4; ++row) {
if (col == row)
ids[col][row] = one;
else
ids[col][row] = zero;
}
}
// modify components as dictated by the arguments
if (sources.size() == 1 && isScalar(sources[0])) {
// a single scalar; resets the diagonals
for (int col = 0; col < 4; ++col)
ids[col][col] = sources[0];
} else if (isMatrix(sources[0])) {
// constructing from another matrix; copy over the parts that exist in both the argument and constructee
Id matrix = sources[0];
int minCols = std::min(numCols, getNumColumns(matrix));
int minRows = std::min(numRows, getNumRows(matrix));
for (int col = 0; col < minCols; ++col) {
std::vector<unsigned> indexes;
indexes.push_back(col);
for (int row = 0; row < minRows; ++row) {
indexes.push_back(row);
ids[col][row] = createCompositeExtract(matrix, componentTypeId, indexes);
indexes.pop_back();
setPrecision(ids[col][row], precision);
}
}
} else {
// fill in the matrix in column-major order with whatever argument components are available
int row = 0;
int col = 0;
for (int arg = 0; arg < (int)sources.size(); ++arg) {
Id argComp = sources[arg];
for (int comp = 0; comp < getNumComponents(sources[arg]); ++comp) {
if (getNumComponents(sources[arg]) > 1) {
argComp = createCompositeExtract(sources[arg], componentTypeId, comp);
setPrecision(argComp, precision);
}
ids[col][row++] = argComp;
if (row == numRows) {
row = 0;
col++;
}
}
}
}
// Step 2: Construct a matrix from that array.
// First make the column vectors, then make the matrix.
// make the column vectors
Id columnTypeId = getContainedTypeId(resultTypeId);
std::vector<Id> matrixColumns;
for (int col = 0; col < numCols; ++col) {
std::vector<Id> vectorComponents;
for (int row = 0; row < numRows; ++row)
vectorComponents.push_back(ids[col][row]);
matrixColumns.push_back(createCompositeConstruct(columnTypeId, vectorComponents));
}
// make the matrix
return createCompositeConstruct(resultTypeId, matrixColumns);
}
// Comments in header
Builder::If::If(Id cond, Builder& gb) :
builder(gb),
condition(cond),
elseBlock(0)
{
function = &builder.getBuildPoint()->getParent();
// make the blocks, but only put the then-block into the function,
// the else-block and merge-block will be added later, in order, after
// earlier code is emitted
thenBlock = new Block(builder.getUniqueId(), *function);
mergeBlock = new Block(builder.getUniqueId(), *function);
// Save the current block, so that we can add in the flow control split when
// makeEndIf is called.
headerBlock = builder.getBuildPoint();
function->addBlock(thenBlock);
builder.setBuildPoint(thenBlock);
}
// Comments in header
void Builder::If::makeBeginElse()
{
// Close out the "then" by having it jump to the mergeBlock
builder.createBranch(mergeBlock);
// Make the first else block and add it to the function
elseBlock = new Block(builder.getUniqueId(), *function);
function->addBlock(elseBlock);
// Start building the else block
builder.setBuildPoint(elseBlock);
}
// Comments in header
void Builder::If::makeEndIf()
{
// jump to the merge block
builder.createBranch(mergeBlock);
// Go back to the headerBlock and make the flow control split
builder.setBuildPoint(headerBlock);
builder.createMerge(OpSelectionMerge, mergeBlock, SelectionControlMaskNone);
if (elseBlock)
builder.createConditionalBranch(condition, thenBlock, elseBlock);
else
builder.createConditionalBranch(condition, thenBlock, mergeBlock);
// add the merge block to the function
function->addBlock(mergeBlock);
builder.setBuildPoint(mergeBlock);
}
// Comments in header
void Builder::makeSwitch(Id selector, int numSegments, std::vector<int>& caseValues, std::vector<int>& valueIndexToSegment, int defaultSegment,
std::vector<Block*>& segmentBlocks)
{
Function& function = buildPoint->getParent();
// make all the blocks
for (int s = 0; s < numSegments; ++s)
segmentBlocks.push_back(new Block(getUniqueId(), function));
Block* mergeBlock = new Block(getUniqueId(), function);
// make and insert the switch's selection-merge instruction
createMerge(OpSelectionMerge, mergeBlock, SelectionControlMaskNone);
// make the switch instruction
Instruction* switchInst = new Instruction(NoResult, NoType, OpSwitch);
switchInst->addIdOperand(selector);
switchInst->addIdOperand(defaultSegment >= 0 ? segmentBlocks[defaultSegment]->getId() : mergeBlock->getId());
for (int i = 0; i < (int)caseValues.size(); ++i) {
switchInst->addImmediateOperand(caseValues[i]);
switchInst->addIdOperand(segmentBlocks[valueIndexToSegment[i]]->getId());
}
buildPoint->addInstruction(switchInst);
// push the merge block
switchMerges.push(mergeBlock);
}
// Comments in header
void Builder::addSwitchBreak()
{
// branch to the top of the merge block stack
createBranch(switchMerges.top());
createAndSetNoPredecessorBlock("post-switch-break");
}
// Comments in header
void Builder::nextSwitchSegment(std::vector<Block*>& segmentBlock, int nextSegment)
{
int lastSegment = nextSegment - 1;
if (lastSegment >= 0) {
// Close out previous segment by jumping, if necessary, to next segment
if (! buildPoint->isTerminated())
createBranch(segmentBlock[nextSegment]);
}
Block* block = segmentBlock[nextSegment];
block->getParent().addBlock(block);
setBuildPoint(block);
}
// Comments in header
void Builder::endSwitch(std::vector<Block*>& /*segmentBlock*/)
{
// Close out previous segment by jumping, if necessary, to next segment
if (! buildPoint->isTerminated())
addSwitchBreak();
switchMerges.top()->getParent().addBlock(switchMerges.top());
setBuildPoint(switchMerges.top());
switchMerges.pop();
}
// Comments in header
void Builder::makeNewLoop()
{
Loop loop = { };
loop.function = &getBuildPoint()->getParent();
loop.header = new Block(getUniqueId(), *loop.function);
loop.merge = new Block(getUniqueId(), *loop.function);
loop.test = NULL;
loops.push(loop);
// Branch into the loop
createBranch(loop.header);
// Set ourselves inside the loop
loop.function->addBlock(loop.header);
setBuildPoint(loop.header);
}
void Builder::createLoopTestBranch(Id condition)
{
Loop& loop = loops.top();
// If loop.test exists, then we've already generated the LoopMerge
// for this loop.
if (!loop.test)
createMerge(OpLoopMerge, loop.merge, LoopControlMaskNone);
// Branching to the "body" block will keep control inside
// the loop.
Block* body = new Block(getUniqueId(), *loop.function);
createConditionalBranch(condition, body, loop.merge);
loop.function->addBlock(body);
setBuildPoint(body);
}
void Builder::endLoopHeaderWithoutTest()
{
Loop& loop = loops.top();
createMerge(OpLoopMerge, loop.merge, LoopControlMaskNone);
Block* body = new Block(getUniqueId(), *loop.function);
createBranch(body);
loop.function->addBlock(body);
setBuildPoint(body);
assert(!loop.test);
loop.test = new Block(getUniqueId(), *loop.function);
}
void Builder::createBranchToLoopTest()
{
Loop& loop = loops.top();
Block* testBlock = loop.test;
assert(testBlock);
createBranch(testBlock);
loop.function->addBlock(testBlock);
setBuildPoint(testBlock);
}
void Builder::createLoopContinue()
{
Loop& loop = loops.top();
if (loop.test)
createBranch(loop.test);
else
createBranch(loop.header);
// Set up a block for dead code.
createAndSetNoPredecessorBlock("post-loop-continue");
}
// Add an exit (e.g. "break") for the innermost loop that you're in
void Builder::createLoopExit()
{
createBranch(loops.top().merge);
// Set up a block for dead code.
createAndSetNoPredecessorBlock("post-loop-break");
}
// Close the innermost loop
void Builder::closeLoop()
{
Loop& loop = loops.top();
// Branch back to the top
createBranch(loop.header);
// Add the merge block and set the build point to it
loop.function->addBlock(loop.merge);
setBuildPoint(loop.merge);
loops.pop();
}
void Builder::clearAccessChain()
{
accessChain.base = 0;
accessChain.indexChain.clear();
accessChain.instr = 0;
accessChain.swizzle.clear();
accessChain.component = 0;
accessChain.resultType = NoType;
accessChain.isRValue = false;
}
// Comments in header
void Builder::accessChainPushSwizzle(std::vector<unsigned>& swizzle)
{
// if needed, propagate the swizzle for the current access chain
if (accessChain.swizzle.size()) {
std::vector<unsigned> oldSwizzle = accessChain.swizzle;
accessChain.swizzle.resize(0);
for (unsigned int i = 0; i < swizzle.size(); ++i) {
accessChain.swizzle.push_back(oldSwizzle[swizzle[i]]);
}
} else
accessChain.swizzle = swizzle;
// determine if we need to track this swizzle anymore
simplifyAccessChainSwizzle();
}
// Comments in header
void Builder::accessChainStore(Id rvalue)
{
assert(accessChain.isRValue == false);
Id base = collapseAccessChain();
if (accessChain.swizzle.size() && accessChain.component)
MissingFunctionality("simultaneous l-value swizzle and dynamic component selection");
// If swizzle exists, it is out-of-order or not full, we must load the target vector,
// extract and insert elements to perform writeMask and/or swizzle.
Id source = NoResult;
if (accessChain.swizzle.size()) {
Id tempBaseId = createLoad(base);
source = createLvalueSwizzle(getTypeId(tempBaseId), tempBaseId, rvalue, accessChain.swizzle);
}
// dynamic component selection
if (accessChain.component) {
Id tempBaseId = (source == NoResult) ? createLoad(base) : source;
source = createVectorInsertDynamic(tempBaseId, getTypeId(tempBaseId), rvalue, accessChain.component);
}
if (source == NoResult)
source = rvalue;
createStore(source, base);
}
// Comments in header
Id Builder::accessChainLoad(Decoration /*precision*/)
{
Id id;
if (accessChain.isRValue) {
if (accessChain.indexChain.size() > 0) {
mergeAccessChainSwizzle(); // TODO: optimization: look at applying this optimization more widely
// if all the accesses are constants, we can use OpCompositeExtract
std::vector<unsigned> indexes;
bool constant = true;
for (int i = 0; i < (int)accessChain.indexChain.size(); ++i) {
if (isConstantScalar(accessChain.indexChain[i]))
indexes.push_back(getConstantScalar(accessChain.indexChain[i]));
else {
constant = false;
break;
}
}
if (constant)
id = createCompositeExtract(accessChain.base, accessChain.resultType, indexes);
else {
// make a new function variable for this r-value
Id lValue = createVariable(StorageClassFunction, getTypeId(accessChain.base), "indexable");
// store into it
createStore(accessChain.base, lValue);
// move base to the new variable
accessChain.base = lValue;
accessChain.isRValue = false;
// load through the access chain
id = createLoad(collapseAccessChain());
}
} else
id = accessChain.base;
} else {
// load through the access chain
id = createLoad(collapseAccessChain());
}
// Done, unless there are swizzles to do
if (accessChain.swizzle.size() == 0 && accessChain.component == 0)
return id;
Id componentType = getScalarTypeId(accessChain.resultType);
// Do remaining swizzling
// First, static swizzling
if (accessChain.swizzle.size()) {
// static swizzle
Id resultType = componentType;
if (accessChain.swizzle.size() > 1)
resultType = makeVectorType(componentType, accessChain.swizzle.size());
id = createRvalueSwizzle(resultType, id, accessChain.swizzle);
}
// dynamic single-component selection
if (accessChain.component)
id = createVectorExtractDynamic(id, componentType, accessChain.component);
return id;
}
Id Builder::accessChainGetLValue()
{
assert(accessChain.isRValue == false);
Id lvalue = collapseAccessChain();
// If swizzle exists, it is out-of-order or not full, we must load the target vector,
// extract and insert elements to perform writeMask and/or swizzle. This does not
// go with getting a direct l-value pointer.
assert(accessChain.swizzle.size() == 0);
assert(accessChain.component == spv::NoResult);
return lvalue;
}
void Builder::dump(std::vector<unsigned int>& out) const
{
// Header, before first instructions:
out.push_back(MagicNumber);
out.push_back(Version);
out.push_back(builderNumber);
out.push_back(uniqueId + 1);
out.push_back(0);
// First instructions, some created on the spot here:
if (source != SourceLanguageUnknown) {
Instruction sourceInst(0, 0, OpSource);
sourceInst.addImmediateOperand(source);
sourceInst.addImmediateOperand(sourceVersion);
sourceInst.dump(out);
}
for (int e = 0; e < (int)extensions.size(); ++e) {
Instruction extInst(0, 0, OpSourceExtension);
extInst.addStringOperand(extensions[e]);
extInst.dump(out);
}
// TBD: OpExtension ...
dumpInstructions(out, imports);
Instruction memInst(0, 0, OpMemoryModel);
memInst.addImmediateOperand(addressModel);
memInst.addImmediateOperand(memoryModel);
memInst.dump(out);
// Instructions saved up while building:
dumpInstructions(out, entryPoints);
dumpInstructions(out, executionModes);
dumpInstructions(out, names);
dumpInstructions(out, lines);
dumpInstructions(out, decorations);
dumpInstructions(out, constantsTypesGlobals);
dumpInstructions(out, externals);
// The functions
module.dump(out);
}
//
// Protected methods.
//
Id Builder::collapseAccessChain()
{
// TODO: bring in an individual component swizzle here, so that a pointer
// all the way to the component level can be created.
assert(accessChain.isRValue == false);
if (accessChain.indexChain.size() > 0) {
if (accessChain.instr == 0) {
StorageClass storageClass = (StorageClass)module.getStorageClass(getTypeId(accessChain.base));
accessChain.instr = createAccessChain(storageClass, accessChain.base, accessChain.indexChain);
}
return accessChain.instr;
} else
return accessChain.base;
}
// clear out swizzle if it is redundant
void Builder::simplifyAccessChainSwizzle()
{
// If the swizzle has fewer components than the vector, it is subsetting, and must stay
// to preserve that fact.
if (getNumTypeComponents(accessChain.resultType) > (int)accessChain.swizzle.size())
return;
// if components are out of order, it is a swizzle
for (unsigned int i = 0; i < accessChain.swizzle.size(); ++i) {
if (i != accessChain.swizzle[i])
return;
}
// otherwise, there is no need to track this swizzle
accessChain.swizzle.clear();
}
// clear out swizzle if it can become part of the indexes
void Builder::mergeAccessChainSwizzle()
{
// is there even a chance of doing something? Need a single-component swizzle
if ((accessChain.swizzle.size() > 1) ||
(accessChain.swizzle.size() == 0 && accessChain.component == 0))
return;
// TODO: optimization: remove this, but for now confine this to non-dynamic accesses
// (the above test is correct when this is removed.)
if (accessChain.component)
return;
// move the swizzle over to the indexes
if (accessChain.swizzle.size() == 1)
accessChain.indexChain.push_back(makeUintConstant(accessChain.swizzle.front()));
else
accessChain.indexChain.push_back(accessChain.component);
accessChain.resultType = getScalarTypeId(accessChain.resultType);
// now there is no need to track this swizzle
accessChain.component = NoResult;
accessChain.swizzle.clear();
}
// Utility method for creating a new block and setting the insert point to
// be in it. This is useful for flow-control operations that need a "dummy"
// block proceeding them (e.g. instructions after a discard, etc).
void Builder::createAndSetNoPredecessorBlock(const char* /*name*/)
{
Block* block = new Block(getUniqueId(), buildPoint->getParent());
block->setUnreachable();
buildPoint->getParent().addBlock(block);
setBuildPoint(block);
//if (name)
// addName(block->getId(), name);
}
// Comments in header
void Builder::createBranch(Block* block)
{
Instruction* branch = new Instruction(OpBranch);
branch->addIdOperand(block->getId());
buildPoint->addInstruction(branch);
block->addPredecessor(buildPoint);
}
void Builder::createMerge(Op mergeCode, Block* mergeBlock, unsigned int control)
{
Instruction* merge = new Instruction(mergeCode);
merge->addIdOperand(mergeBlock->getId());
merge->addImmediateOperand(control);
buildPoint->addInstruction(merge);
}
void Builder::createConditionalBranch(Id condition, Block* thenBlock, Block* elseBlock)
{
Instruction* branch = new Instruction(OpBranchConditional);
branch->addIdOperand(condition);
branch->addIdOperand(thenBlock->getId());
branch->addIdOperand(elseBlock->getId());
buildPoint->addInstruction(branch);
thenBlock->addPredecessor(buildPoint);
elseBlock->addPredecessor(buildPoint);
}
void Builder::dumpInstructions(std::vector<unsigned int>& out, const std::vector<Instruction*>& instructions) const
{
for (int i = 0; i < (int)instructions.size(); ++i) {
instructions[i]->dump(out);
}
}
void MissingFunctionality(const char* fun)
{
printf("Missing functionality: %s\n", fun);
exit(1);
}
void ValidationError(const char* error)
{
printf("Validation Error: %s\n", error);
}
}; // end spv namespace