Vulkan: Split Vulkan docs from README.md into doc/

This is in preparation for adding more docs and migrating internal ones.

Bug: angleproject:1944
Change-Id: I7aa4d708c9cd6134ef4ded00a82890448988ce9e
Reviewed-on: https://chromium-review.googlesource.com/c/angle/angle/+/1773907
Reviewed-by: Geoff Lang <geofflang@chromium.org>
Commit-Queue: Shahbaz Youssefi <syoussefi@chromium.org>
This commit is contained in:
Shahbaz Youssefi 2019-08-28 15:28:54 -04:00 коммит произвёл Commit Bot
Родитель dca1012960
Коммит eb68081e84
6 изменённых файлов: 225 добавлений и 223 удалений

Просмотреть файл

@ -91,8 +91,8 @@ See the below diagram for the dependency relations between Subjects and Observer
## Back-end specific Optimizations
See the [Vulkan README][VulkanREADME] for additional information for how we implement state change
optimization on the Vulkan back-end.
See [Fast OpenGL State Transitions][FastStateTransitions] in [Vulkan documents][VulkanREADME] for
additional information for how we implement state change optimization on the Vulkan back-end.
[DirtyBitType]: https://chromium.googlesource.com/angle/angle/+/5f662c0042703344eb0eef6d1c123e902e3aefbf/src/libANGLE/State.h#483
[GLSyncState]: https://chromium.googlesource.com/angle/angle/+/5f662c0042703344eb0eef6d1c123e902e3aefbf/src/libANGLE/renderer/gl/StateManagerGL.cpp#1576
@ -107,4 +107,5 @@ optimization on the Vulkan back-end.
[FBOStateChange]: https://chromium.googlesource.com/angle/angle/+/5f662c0042703344eb0eef6d1c123e902e3aefbf/src/libANGLE/Framebuffer.cpp#1811
[ContextStateChange]: https://chromium.googlesource.com/angle/angle/+/5f662c0042703344eb0eef6d1c123e902e3aefbf/src/libANGLE/Context.cpp#7981
[StateCacheUpdate]: https://chromium.googlesource.com/angle/angle/+/5f662c0042703344eb0eef6d1c123e902e3aefbf/src/libANGLE/Context.cpp#8190
[VulkanREADME]: ../src/libANGLE/renderer/vulkan/README.md#fast-opengl-state-transitions
[FastStateTransitions]: ../src/libANGLE/renderer/vulkan/doc/FastOpenGLStateTransitions.md
[VulkanREADME]: ../src/libANGLE/renderer/vulkan/README.md

Просмотреть файл

@ -14,8 +14,6 @@ offer a number of significant benefits:
[D3D12 Guide]: https://docs.microsoft.com/en-us/windows/desktop/direct3d12/directx-12-programming-guide
[TOC]
## Back-end Design
The [RendererVk](RendererVk.cpp) is a singleton. RendererVk owns shared global resources like the
@ -24,222 +22,9 @@ The [RendererVk](RendererVk.cpp) is a singleton. RendererVk owns shared global r
to manage each allocated OpenGL Context. ContextVk processes state changes and handles action
commands like `glDrawArrays` and `glDrawElements`.
### Fast OpenGL State Transitions
Implementation details can be found in the `doc` directory.
Typical OpenGL programs issue a few small state change commands between draw call commands. We want
the typical app's use case to be as fast as possible so this leads to unique performance challenges.
Vulkan in quite different from OpenGL because it requires a separate compiled
[VkPipeline][VkPipeline] for each state vector. Compiling VkPipelines is multiple orders of
magnitude slower than enabling or disabling an OpenGL render state. To speed this up we use three
levels of caching when transitioning states in the Vulkan back-end.
The first level is the driver's [VkPipelineCache][VkPipelineCache]. The driver
cache reduces pipeline recompilation time significantly. But even cached
pipeline recompilations are orders of manitude slower than OpenGL state changes.
The second level cache is an ANGLE-owned hash map from OpenGL state vectors to compiled pipelines.
See [GraphicsPipelineCache][GraphicsPipelineCache] in [vk_cache_utils.h](vk_cache_utils.h). ANGLE's
[GraphicsPipelineDesc][GraphicsPipelineDesc] class is a tightly packed 256-byte description of the
current OpenGL rendering state. We also use a [xxHash](https://github.com/Cyan4973/xxHash) for the
fastest possible hash computation. The hash map speeds up state changes considerably. But it is
still significantly slower than OpenGL implementations.
To get best performance we use a transition table from each OpenGL state vector to neighbouring
state vectors. The transition table points from GraphicsPipelineCache entries directly to
neighbouring VkPipeline objects. When the application changes state the state change bits are
recorded into a compact bit mask that covers the GraphicsPipelineDesc state vector. Then on the next
draw call we scan the transition bit mask and compare the GraphicsPipelineDesc of the current state
vector and the state vector of the cached transition. With the hash map we compute a hash over the
entire state vector and then do a 256-byte `memcmp` to guard against hash collisions. With the
transition table we will only compare as many bytes as were changed in the transition bit mask. By
skipping the expensive hashing and `memcmp` we can get as good or faster performance than native
OpenGL drivers.
Note that the current design of the transition table stores transitions in an unsorted list. If
applications map from one state to many this will slow down the transition time. This could be
improved in the future using a faster look up. For instance we could keep a sorted transition table
or use a small hash map for transitions.
[VkDevice]: https://www.khronos.org/registry/vulkan/specs/1.1-extensions/man/html/VkDevice.html
[VkQueue]: https://www.khronos.org/registry/vulkan/specs/1.1-extensions/man/html/VkQueue.html
[VkPipeline]: https://www.khronos.org/registry/vulkan/specs/1.1-extensions/man/html/VkPipeline.html
[VkPipelineCache]: https://www.khronos.org/registry/vulkan/specs/1.1-extensions/man/html/VkPipelineCache.html
[GraphicsPipelineCache]: https://chromium.googlesource.com/angle/angle/+/225f08bf85a368f905362cdd1366e4795680452c/src/libANGLE/renderer/vulkan/vk_cache_utils.h#498
[GraphicsPipelineDesc]: https://chromium.googlesource.com/angle/angle/+/225f08bf85a368f905362cdd1366e4795680452c/src/libANGLE/renderer/vulkan/vk_cache_utils.h#244
### Shader Module Compilation
ANGLE converts application shaders into Vulkan [VkShaderModules][VkShaderModule] through a series
of steps:
1. **ANGLE Internal Translation**: The initial calls to `glCompileShader` are passed to the [ANGLE
shader translator][translator]. The translator compiles application shaders into Vulkan-compatible
GLSL. Vulkan-compatible GLSL matches the [GL_KHR_vulkan_glsl][GL_KHR_vulkan_glsl] extension spec
with some additional workarounds and emulation. We emulate OpenGL's different depth range, viewport
y flipping, default uniforms, and OpenGL [line segment
rasterization](#opengl-line-segment-rasterization). For more info see
[TranslatorVulkan.cpp][TranslatorVulkan.cpp]. After initial compilation the shaders are not
complete. They are templated with markers that are filled in later at link time.
1. **Link-Time Translation**: During a call to `glLinkProgram` the Vulkan back-end can know the
necessary locations and properties to write to connect the shader stage interfaces. We get the
completed shader source using ANGLE's [GlslangWrapper][GlslangWrapper.cpp] helper class. We still
cannot generate `VkShaderModules` since some ANGLE features like [OpenGL line
rasterization](#opengl-line-segment-rasterization) emulation depend on draw-time information.
1. **Draw-time SPIR-V Generation**: Once the application records a draw call we use Khronos'
[glslang][glslang] to convert the Vulkan-compatible GLSL into SPIR-V with the correct draw-time
defines. The SPIR-V is then compiled into `VkShaderModules`. For details please see
[GlslangWrapper.cpp][GlslangWrapper.cpp]. The `VkShaderModules` are then used by `VkPipelines`. Note
that we currently don't use [SPIRV-Tools][SPIRV-Tools] to perform any SPIR-V optimization. This
could be something to improve on in the future.
See the below diagram for a high-level view of the shader translation flow:
<!-- Generated from https://bramp.github.io/js-sequence-diagrams/
participant App
participant "ANGLE Front-end"
participant "Vulkan Back-end"
participant "ANGLE Translator"
participant "GlslangWrapper"
participant "Glslang"
App->"ANGLE Front-end": glCompileShader (VS)
"ANGLE Front-end"->"Vulkan Back-end": ShaderVk::compile
"Vulkan Back-end"->"ANGLE Translator": sh::Compile
"ANGLE Translator"- ->"ANGLE Front-end": return Vulkan-compatible GLSL
Note right of "ANGLE Front-end": Source is templated\nwith markers to be\nfilled at link time.
Note right of App: Same for FS, GS, etc...
App->"ANGLE Front-end": glCreateProgram (...)
App->"ANGLE Front-end": glAttachShader (...)
App->"ANGLE Front-end": glLinkProgram
"ANGLE Front-end"->"Vulkan Back-end": ProgramVk::link
Note right of "Vulkan Back-end": ProgramVk inits uniforms,\nlayouts, and descriptors.
"Vulkan Back-end"->GlslangWrapper: GlslangWrapper::GetShaderSource
GlslangWrapper- ->"Vulkan Back-end": return filled-in sources
Note right of "Vulkan Back-end": Source is templated with\ndefines to be resolved at\ndraw time.
"Vulkan Back-end"- ->"ANGLE Front-end": return success
Note right of App: App execution continues...
App->"ANGLE Front-end": glDrawArrays (any draw)
"ANGLE Front-end"->"Vulkan Back-end": ContextVk::drawArrays
"Vulkan Back-end"->GlslangWrapper: GlslangWrapper::GetShaderCode (with defines)
GlslangWrapper->Glslang: GlslangToSpv
Glslang- ->"Vulkan Back-end": Return SPIR-V
Note right of "Vulkan Back-end": We init VkShaderModules\nand VkPipeline then\nrecord the draw.
"Vulkan Back-end"- ->"ANGLE Front-end": return success
-->
![Vulkan Shader Translation Flow](https://raw.githubusercontent.com/google/angle/master/src/libANGLE/renderer/vulkan/doc/img/VulkanShaderTranslation.svg?sanitize=true)
[VkShaderModule]: https://www.khronos.org/registry/vulkan/specs/1.1-extensions/man/html/VkShaderModule.html
[translator]: https://chromium.googlesource.com/angle/angle/+/refs/heads/master/src/compiler/translator/
[GL_KHR_vulkan_glsl]: https://github.com/KhronosGroup/GLSL/blob/master/extensions/khr/GL_KHR_vulkan_glsl.txt
[TranslatorVulkan.cpp]: https://chromium.googlesource.com/angle/angle/+/refs/heads/master/src/compiler/translator/TranslatorVulkan.cpp
[glslang]: https://github.com/KhronosGroup/glslang
[GlslangWrapper.cpp]: https://chromium.googlesource.com/angle/angle/+/refs/heads/master/src/libANGLE/renderer/vulkan/GlslangWrapper.cpp
[SPIRV-Tools]: https://github.com/KhronosGroup/SPIRV-Tools
### OpenGL Line Segment Rasterization
OpenGL and Vulkan both render line segments as a series of pixels between two points. They differ in
which pixels cover the line.
For single sample rendering Vulkan uses an algorithm based on quad coverage. A small shape is
extruded around the line segment. Samples covered by the shape then represent the line segment. See
[the Vulkan spec][VulkanLineRaster] for more details.
OpenGL's algorithm is based on [Bresenham's line algorithm][Bresenham]. Bresenham's algorithm
selects pixels on the line between the two segment points. Note Bresenham's does not support
multisampling. When compared visually you can see the Vulkan line segment rasterization algorithm
always selects a superset of the line segment pixels rasterized in OpenGL. See this example:
![Vulkan vs OpenGL Line Rasterization][VulkanVsGLLineRaster]
The OpenGL spec defines a "diamond-exit" rule to select fragments on a line. Please refer to the 2.0
spec section 3.4.1 "Basic Line Segment Rasterization" spec for more details. To implement this rule
we inject a small computation to test if a pixel falls within the diamond in the start of the pixel
shader. If the pixel fails the diamond test we discard the fragment. Note that we only perform this
test when drawing lines. See the section on [Shader Compilation](#shader-module-compilation) for
more info. See the below diagram for an illustration of the diamond rule:
![OpenGL Diamond Rule Example][DiamondRule]
We can implement the OpenGL test by checking the intersection of the line and the medial axes of the
pixel `p`. If the length of the line segment between intersections `p` and the point center is
greater than a half-pixel for all possible `p` then the pixel is not on the segment. To solve for
`p` we use the pixel center `a` given by `gl_FragCoord` and the projection of `a` onto the line
segment `b` given by the interpolated `gl_Position`. Since `gl_Position` is not available in the
fragment shader we must add an internal position varying when drawing lines.
The full code derivation is omitted for brevity. It reduces to the following shader snippet:
```vec2 position = PositionVarying.xy / PositionVarying.w;
vec2 b = ((position * 0.5) + 0.5) * gl_Viewport.zw + gl_Viewport.xy;
vec2 ba = abs(b - gl_FragCoord.xy);
vec2 ba2 = 2.0 * (ba * ba);
vec2 bp = ba2 + ba2.yx - ba;
if (bp.x > epsilon && bp.y > epsilon)
discard;
```
Note that we must also pass the viewport size as an internal uniform. We use a small epsilon value
to correct for cases when the line segment is perfectly parallel or perpendicular to the window. For
code please see [TranslatorVulkan.cpp][TranslatorVulkan.cpp] under
`AddLineSegmentRasterizationEmulation`.
[VulkanLineRaster]: https://www.khronos.org/registry/vulkan/specs/1.1/html/chap24.html#primsrast-lines-basic
[Bresenham]: https://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm
[VulkanVsGLLineRaster]: doc/img/LineRasterComparison.gif
[DiamondRule]: doc/img/LineRasterPixelExample.png
### Format Tables and Format Emulation
#### Overrides and Fallbacks
The [required Vulkan format support][VulkanRequiredSupport] tables do not implement the full set of
formats needed for OpenGL conformance with extensions. ANGLE emulates missing formats using *format
overrides* and *format fallbacks*.
An *override* implements a missing GL format with a required format in all cases. For example, the
luminance texture format `L8_UNORM` does not exist in Vulkan. We override `L8_UNORM` with the
required image format `R8_UNORM`.
A *fallback* is one or more non-required formats ANGLE checks for support at runtime. For example,
`R8_UNORM` is not a required vertex buffer format. Some drivers do support `R8_UNORM` for vertex
buffers. So at runtime we check for sampled image support and fall back to `R32_FLOAT` if `R8_UNORM`
is not supported.
#### The Vulkan Format Table
Overrides and fallbacks are implemented in ANGLE's [Vulkan format
table][vk_format_table_autogen.cpp]. The table is auto-generated by
[`gen_vk_format_table.py`](gen_vk_format_table.py). We store the mapping from
[`angle::Format::ID`](../FormatID_autogen.h) to [VkFormat][VkFormat] in
[`vk_format_map.json`](vk_format_map.json). The format map also lists the overrides and fallbacks.
To update the tables please modify the format map JSON and then run
[`scripts/run_code_generation.py`][RunCodeGeneration].
The [`vk::Format`](vk_format_utils.h) class describes the information ANGLE needs for a particular
`VkFormat`. The 'ANGLE' format ID is a reference to the front-end format. The 'Image' or 'Buffer'
format are the native Vulkan formats that implement a particular front-end format for `VkImages` and
`VkBuffers`. For the above example of `R8_UNORM` overriding `L8_UNORM`, `L8_UNORM` is the ANGLE
format and `R8_UNORM` is the Image format.
For more information please see the source files.
[VulkanRequiredSupport]: https://renderdoc.org/vkspec_chunked/chap37.html#features-required-format-support
[VkFormat]: https://renderdoc.org/vkspec_chunked/chap37.html#VkFormat
[RunCodeGeneration]: ../../../../scripts/run_code_generation.py
- [Fast OpenGL State Transitions](doc/FastOpenGLStateTransitions.md)
- [Shader Module Compilation](doc/ShaderModuleCompilation.md)
- [OpenGL Line Segment Rasterization](doc/OpenGLLineSegmentRasterization.md)
- [Format Tables and Emulation](doc/FormatTablesAndEmulation.md)

Просмотреть файл

@ -0,0 +1,43 @@
# Fast OpenGL State Transitions
Typical OpenGL programs issue a few small state change commands between draw call commands. We want
the typical app's use case to be as fast as possible so this leads to unique performance challenges.
Vulkan in quite different from OpenGL because it requires a separate compiled
[VkPipeline][VkPipeline] for each state vector. Compiling VkPipelines is multiple orders of
magnitude slower than enabling or disabling an OpenGL render state. To speed this up we use three
levels of caching when transitioning states in the Vulkan back-end.
The first level is the driver's [VkPipelineCache][VkPipelineCache]. The driver
cache reduces pipeline recompilation time significantly. But even cached
pipeline recompilations are orders of manitude slower than OpenGL state changes.
The second level cache is an ANGLE-owned hash map from OpenGL state vectors to compiled pipelines.
See [GraphicsPipelineCache][GraphicsPipelineCache] in [vk_cache_utils.h](vk_cache_utils.h). ANGLE's
[GraphicsPipelineDesc][GraphicsPipelineDesc] class is a tightly packed 256-byte description of the
current OpenGL rendering state. We also use a [xxHash](https://github.com/Cyan4973/xxHash) for the
fastest possible hash computation. The hash map speeds up state changes considerably. But it is
still significantly slower than OpenGL implementations.
To get best performance we use a transition table from each OpenGL state vector to neighbouring
state vectors. The transition table points from GraphicsPipelineCache entries directly to
neighbouring VkPipeline objects. When the application changes state the state change bits are
recorded into a compact bit mask that covers the GraphicsPipelineDesc state vector. Then on the next
draw call we scan the transition bit mask and compare the GraphicsPipelineDesc of the current state
vector and the state vector of the cached transition. With the hash map we compute a hash over the
entire state vector and then do a 256-byte `memcmp` to guard against hash collisions. With the
transition table we will only compare as many bytes as were changed in the transition bit mask. By
skipping the expensive hashing and `memcmp` we can get as good or faster performance than native
OpenGL drivers.
Note that the current design of the transition table stores transitions in an unsorted list. If
applications map from one state to many this will slow down the transition time. This could be
improved in the future using a faster look up. For instance we could keep a sorted transition table
or use a small hash map for transitions.
[VkDevice]: https://www.khronos.org/registry/vulkan/specs/1.1-extensions/man/html/VkDevice.html
[VkQueue]: https://www.khronos.org/registry/vulkan/specs/1.1-extensions/man/html/VkQueue.html
[VkPipeline]: https://www.khronos.org/registry/vulkan/specs/1.1-extensions/man/html/VkPipeline.html
[VkPipelineCache]: https://www.khronos.org/registry/vulkan/specs/1.1-extensions/man/html/VkPipelineCache.html
[GraphicsPipelineCache]: https://chromium.googlesource.com/angle/angle/+/225f08bf85a368f905362cdd1366e4795680452c/src/libANGLE/renderer/vulkan/vk_cache_utils.h#498
[GraphicsPipelineDesc]: https://chromium.googlesource.com/angle/angle/+/225f08bf85a368f905362cdd1366e4795680452c/src/libANGLE/renderer/vulkan/vk_cache_utils.h#244

Просмотреть файл

@ -0,0 +1,38 @@
# Format Tables and Format Emulation
## Overrides and Fallbacks
The [required Vulkan format support][VulkanRequiredSupport] tables do not implement the full set of
formats needed for OpenGL conformance with extensions. ANGLE emulates missing formats using *format
overrides* and *format fallbacks*.
An *override* implements a missing GL format with a required format in all cases. For example, the
luminance texture format `L8_UNORM` does not exist in Vulkan. We override `L8_UNORM` with the
required image format `R8_UNORM`.
A *fallback* is one or more non-required formats ANGLE checks for support at runtime. For example,
`R8_UNORM` is not a required vertex buffer format. Some drivers do support `R8_UNORM` for vertex
buffers. So at runtime we check for sampled image support and fall back to `R32_FLOAT` if `R8_UNORM`
is not supported.
## The Vulkan Format Table
Overrides and fallbacks are implemented in ANGLE's [Vulkan format
table][vk_format_table_autogen.cpp]. The table is auto-generated by
[`gen_vk_format_table.py`](gen_vk_format_table.py). We store the mapping from
[`angle::Format::ID`](../FormatID_autogen.h) to [VkFormat][VkFormat] in
[`vk_format_map.json`](vk_format_map.json). The format map also lists the overrides and fallbacks.
To update the tables please modify the format map JSON and then run
[`scripts/run_code_generation.py`][RunCodeGeneration].
The [`vk::Format`](vk_format_utils.h) class describes the information ANGLE needs for a particular
`VkFormat`. The 'ANGLE' format ID is a reference to the front-end format. The 'Image' or 'Buffer'
format are the native Vulkan formats that implement a particular front-end format for `VkImages` and
`VkBuffers`. For the above example of `R8_UNORM` overriding `L8_UNORM`, `L8_UNORM` is the ANGLE
format and `R8_UNORM` is the Image format.
For more information please see the source files.
[VulkanRequiredSupport]: https://renderdoc.org/vkspec_chunked/chap37.html#features-required-format-support
[VkFormat]: https://renderdoc.org/vkspec_chunked/chap37.html#VkFormat
[RunCodeGeneration]: ../../../../scripts/run_code_generation.py

Просмотреть файл

@ -0,0 +1,52 @@
# OpenGL Line Segment Rasterization
OpenGL and Vulkan both render line segments as a series of pixels between two points. They differ in
which pixels cover the line.
For single sample rendering Vulkan uses an algorithm based on quad coverage. A small shape is
extruded around the line segment. Samples covered by the shape then represent the line segment. See
[the Vulkan spec][VulkanLineRaster] for more details.
OpenGL's algorithm is based on [Bresenham's line algorithm][Bresenham]. Bresenham's algorithm
selects pixels on the line between the two segment points. Note Bresenham's does not support
multisampling. When compared visually you can see the Vulkan line segment rasterization algorithm
always selects a superset of the line segment pixels rasterized in OpenGL. See this example:
![Vulkan vs OpenGL Line Rasterization][VulkanVsGLLineRaster]
The OpenGL spec defines a "diamond-exit" rule to select fragments on a line. Please refer to the 2.0
spec section 3.4.1 "Basic Line Segment Rasterization" spec for more details. To implement this rule
we inject a small computation to test if a pixel falls within the diamond in the start of the pixel
shader. If the pixel fails the diamond test we discard the fragment. Note that we only perform this
test when drawing lines. See the section on [Shader Compilation](#shader-module-compilation) for
more info. See the below diagram for an illustration of the diamond rule:
![OpenGL Diamond Rule Example][DiamondRule]
We can implement the OpenGL test by checking the intersection of the line and the medial axes of the
pixel `p`. If the length of the line segment between intersections `p` and the point center is
greater than a half-pixel for all possible `p` then the pixel is not on the segment. To solve for
`p` we use the pixel center `a` given by `gl_FragCoord` and the projection of `a` onto the line
segment `b` given by the interpolated `gl_Position`. Since `gl_Position` is not available in the
fragment shader we must add an internal position varying when drawing lines.
The full code derivation is omitted for brevity. It reduces to the following shader snippet:
```vec2 position = PositionVarying.xy / PositionVarying.w;
vec2 b = ((position * 0.5) + 0.5) * gl_Viewport.zw + gl_Viewport.xy;
vec2 ba = abs(b - gl_FragCoord.xy);
vec2 ba2 = 2.0 * (ba * ba);
vec2 bp = ba2 + ba2.yx - ba;
if (bp.x > epsilon && bp.y > epsilon)
discard;
```
Note that we must also pass the viewport size as an internal uniform. We use a small epsilon value
to correct for cases when the line segment is perfectly parallel or perpendicular to the window. For
code please see [TranslatorVulkan.cpp][TranslatorVulkan.cpp] under
`AddLineSegmentRasterizationEmulation`.
[VulkanLineRaster]: https://www.khronos.org/registry/vulkan/specs/1.1/html/chap24.html#primsrast-lines-basic
[Bresenham]: https://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm
[VulkanVsGLLineRaster]: img/LineRasterComparison.gif
[DiamondRule]: img/LineRasterPixelExample.png

Просмотреть файл

@ -0,0 +1,83 @@
# Shader Module Compilation
ANGLE converts application shaders into Vulkan [VkShaderModules][VkShaderModule] through a series
of steps:
1. **ANGLE Internal Translation**: The initial calls to `glCompileShader` are passed to the [ANGLE
shader translator][translator]. The translator compiles application shaders into Vulkan-compatible
GLSL. Vulkan-compatible GLSL matches the [GL_KHR_vulkan_glsl][GL_KHR_vulkan_glsl] extension spec
with some additional workarounds and emulation. We emulate OpenGL's different depth range, viewport
y flipping, default uniforms, and OpenGL [line segment
rasterization](#opengl-line-segment-rasterization). For more info see
[TranslatorVulkan.cpp][TranslatorVulkan.cpp]. After initial compilation the shaders are not
complete. They are templated with markers that are filled in later at link time.
1. **Link-Time Translation**: During a call to `glLinkProgram` the Vulkan back-end can know the
necessary locations and properties to write to connect the shader stage interfaces. We get the
completed shader source using ANGLE's [GlslangWrapper][GlslangWrapper.cpp] helper class. We still
cannot generate `VkShaderModules` since some ANGLE features like [OpenGL line
rasterization](#opengl-line-segment-rasterization) emulation depend on draw-time information.
1. **Draw-time SPIR-V Generation**: Once the application records a draw call we use Khronos'
[glslang][glslang] to convert the Vulkan-compatible GLSL into SPIR-V with the correct draw-time
defines. The SPIR-V is then compiled into `VkShaderModules`. For details please see
[GlslangWrapper.cpp][GlslangWrapper.cpp]. The `VkShaderModules` are then used by `VkPipelines`. Note
that we currently don't use [SPIRV-Tools][SPIRV-Tools] to perform any SPIR-V optimization. This
could be something to improve on in the future.
See the below diagram for a high-level view of the shader translation flow:
<!-- Generated from https://bramp.github.io/js-sequence-diagrams/
participant App
participant "ANGLE Front-end"
participant "Vulkan Back-end"
participant "ANGLE Translator"
participant "GlslangWrapper"
participant "Glslang"
App->"ANGLE Front-end": glCompileShader (VS)
"ANGLE Front-end"->"Vulkan Back-end": ShaderVk::compile
"Vulkan Back-end"->"ANGLE Translator": sh::Compile
"ANGLE Translator"- ->"ANGLE Front-end": return Vulkan-compatible GLSL
Note right of "ANGLE Front-end": Source is templated\nwith markers to be\nfilled at link time.
Note right of App: Same for FS, GS, etc...
App->"ANGLE Front-end": glCreateProgram (...)
App->"ANGLE Front-end": glAttachShader (...)
App->"ANGLE Front-end": glLinkProgram
"ANGLE Front-end"->"Vulkan Back-end": ProgramVk::link
Note right of "Vulkan Back-end": ProgramVk inits uniforms,\nlayouts, and descriptors.
"Vulkan Back-end"->GlslangWrapper: GlslangWrapper::GetShaderSource
GlslangWrapper- ->"Vulkan Back-end": return filled-in sources
Note right of "Vulkan Back-end": Source is templated with\ndefines to be resolved at\ndraw time.
"Vulkan Back-end"- ->"ANGLE Front-end": return success
Note right of App: App execution continues...
App->"ANGLE Front-end": glDrawArrays (any draw)
"ANGLE Front-end"->"Vulkan Back-end": ContextVk::drawArrays
"Vulkan Back-end"->GlslangWrapper: GlslangWrapper::GetShaderCode (with defines)
GlslangWrapper->Glslang: GlslangToSpv
Glslang- ->"Vulkan Back-end": Return SPIR-V
Note right of "Vulkan Back-end": We init VkShaderModules\nand VkPipeline then\nrecord the draw.
"Vulkan Back-end"- ->"ANGLE Front-end": return success
-->
![Vulkan Shader Translation Flow](https://raw.githubusercontent.com/google/angle/master/src/libANGLE/renderer/vulkan/doc/img/VulkanShaderTranslation.svg?sanitize=true)
[VkShaderModule]: https://www.khronos.org/registry/vulkan/specs/1.1-extensions/man/html/VkShaderModule.html
[translator]: https://chromium.googlesource.com/angle/angle/+/refs/heads/master/src/compiler/translator/
[GL_KHR_vulkan_glsl]: https://github.com/KhronosGroup/GLSL/blob/master/extensions/khr/GL_KHR_vulkan_glsl.txt
[TranslatorVulkan.cpp]: https://chromium.googlesource.com/angle/angle/+/refs/heads/master/src/compiler/translator/TranslatorVulkan.cpp
[glslang]: https://github.com/KhronosGroup/glslang
[GlslangWrapper.cpp]: https://chromium.googlesource.com/angle/angle/+/refs/heads/master/src/libANGLE/renderer/vulkan/GlslangWrapper.cpp
[SPIRV-Tools]: https://github.com/KhronosGroup/SPIRV-Tools