angle/scripts/perf_test_runner.py

186 строки
6.0 KiB
Python
Executable File

#!/usr/bin/python3
#
# Copyright 2015 The ANGLE Project Authors. All rights reserved.
# Use of this source code is governed by a BSD-style license that can be
# found in the LICENSE file.
#
# perf_test_runner.py:
# Helper script for running and analyzing perftest results. Runs the
# tests in an infinite batch, printing out the mean and coefficient of
# variation of the population continuously.
#
import argparse
import glob
import logging
import os
import re
import subprocess
import sys
base_path = os.path.abspath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..'))
# We look in this path for a recent build.
TEST_SUITE_SEARCH_PATH = glob.glob('out/*')
DEFAULT_METRIC = 'wall_time'
DEFAULT_EXPERIMENTS = 10
DEFAULT_TEST_SUITE = 'angle_perftests'
if sys.platform == 'win32':
DEFAULT_TEST_NAME = 'DrawCallPerfBenchmark.Run/d3d11_null'
else:
DEFAULT_TEST_NAME = 'DrawCallPerfBenchmark.Run/gl'
EXIT_SUCCESS = 0
EXIT_FAILURE = 1
scores = []
# Danke to http://stackoverflow.com/a/27758326
def mean(data):
"""Return the sample arithmetic mean of data."""
n = len(data)
if n < 1:
raise ValueError('mean requires at least one data point')
return float(sum(data)) / float(n) # in Python 2 use sum(data)/float(n)
def sum_of_square_deviations(data, c):
"""Return sum of square deviations of sequence data."""
ss = sum((float(x) - c)**2 for x in data)
return ss
def coefficient_of_variation(data):
"""Calculates the population coefficient of variation."""
n = len(data)
if n < 2:
raise ValueError('variance requires at least two data points')
c = mean(data)
ss = sum_of_square_deviations(data, c)
pvar = ss / n # the population variance
stddev = (pvar**0.5) # population standard deviation
return stddev / c
def truncated_list(data, n):
"""Compute a truncated list, n is truncation size"""
if len(data) < n * 2:
raise ValueError('list not large enough to truncate')
return sorted(data)[n:-n]
def truncated_mean(data, n):
"""Compute a truncated mean, n is truncation size"""
return mean(truncated_list(data, n))
def truncated_cov(data, n):
"""Compute a truncated coefficient of variation, n is truncation size"""
return coefficient_of_variation(truncated_list(data, n))
def main(raw_args):
parser = argparse.ArgumentParser()
parser.add_argument(
'--suite',
help='Test suite binary. Default is "%s".' % DEFAULT_TEST_SUITE,
default=DEFAULT_TEST_SUITE)
parser.add_argument(
'-m',
'--metric',
help='Test metric. Default is "%s".' % DEFAULT_METRIC,
default=DEFAULT_METRIC)
parser.add_argument(
'--experiments',
help='Number of experiments to run. Default is %d.' % DEFAULT_EXPERIMENTS,
default=DEFAULT_EXPERIMENTS,
type=int)
parser.add_argument('-v', '--verbose', help='Extra verbose logging.', action='store_true')
parser.add_argument('test_name', help='Test to run', default=DEFAULT_TEST_NAME)
args, extra_args = parser.parse_known_args(raw_args)
if args.verbose:
logging.basicConfig(level='DEBUG')
if sys.platform == 'win32':
args.suite += '.exe'
# Find most recent binary
newest_binary = None
newest_mtime = None
for path in TEST_SUITE_SEARCH_PATH:
binary_path = os.path.join(base_path, path, args.suite)
if os.path.exists(binary_path):
binary_mtime = os.path.getmtime(binary_path)
if (newest_binary is None) or (binary_mtime > newest_mtime):
newest_binary = binary_path
newest_mtime = binary_mtime
perftests_path = newest_binary
if perftests_path == None or not os.path.exists(perftests_path):
print('Cannot find %s in %s!' % (args.suite, TEST_SUITE_SEARCH_PATH))
return EXIT_FAILURE
print('Using test executable: %s' % perftests_path)
print('Test name: %s' % args.test_name)
def get_results(metric, extra_args=[]):
run = [perftests_path, '--gtest_filter=%s' % args.test_name] + extra_args
logging.info('running %s' % str(run))
process = subprocess.Popen(
run, stdout=subprocess.PIPE, stderr=subprocess.PIPE, encoding='utf8')
output, err = process.communicate()
m = re.search(r'Running (\d+) tests', output)
if m and int(m.group(1)) > 1:
print(output)
raise Exception('Found more than one test result in output')
# Results are reported in the format:
# name_backend.metric: story= value units.
pattern = r'\.' + metric + r':.*= ([0-9.]+)'
logging.debug('searching for %s in output' % pattern)
m = re.findall(pattern, output)
if not m:
print(output)
raise Exception('Did not find the metric "%s" in the test output' % metric)
return [float(value) for value in m]
# Calibrate the number of steps
steps = get_results("steps_to_run", ["--calibration"] + extra_args)[0]
print("running with %d steps." % steps)
# Loop 'args.experiments' times, running the tests.
for experiment in range(args.experiments):
experiment_scores = get_results(args.metric,
["--steps-per-trial", str(steps)] + extra_args)
for score in experiment_scores:
sys.stdout.write("%s: %.2f" % (args.metric, score))
scores.append(score)
if (len(scores) > 1):
sys.stdout.write(", mean: %.2f" % mean(scores))
sys.stdout.write(", variation: %.2f%%" %
(coefficient_of_variation(scores) * 100.0))
if (len(scores) > 7):
truncation_n = len(scores) >> 3
sys.stdout.write(", truncated mean: %.2f" % truncated_mean(scores, truncation_n))
sys.stdout.write(", variation: %.2f%%" %
(truncated_cov(scores, truncation_n) * 100.0))
print("")
return EXIT_SUCCESS
if __name__ == "__main__":
sys.exit(main(sys.argv[1:]))