azcv/faces.py

78 строки
2.2 KiB
Python
Исходник Постоянная ссылка Обычный вид История

2019-10-20 03:29:07 +03:00
# -*- coding: utf-8 -*-
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
# Author: Graham.Williams@togaware.com
#
# A script to detect faces in an image.
#
# ml faces azcv <path>
from msrest.authentication import CognitiveServicesCredentials
from azure.cognitiveservices.vision.computervision import ComputerVisionClient
import os
import argparse
from textwrap import fill
from mlhub.pkg import azkey, is_url
from mlhub.utils import get_cmd_cwd
# ----------------------------------------------------------------------
# Parse command line arguments
# ----------------------------------------------------------------------
option_parser = argparse.ArgumentParser(add_help=False)
option_parser.add_argument(
'path',
help='path or url to image')
args = option_parser.parse_args()
# ----------------------------------------------------------------------
SERVICE = "Computer Vision"
KEY_FILE = os.path.join(os.getcwd(), "private.txt")
# Request subscription key and endpoint from user.
subscription_key, endpoint = azkey(KEY_FILE, SERVICE, verbose=False)
# Set credentials.
credentials = CognitiveServicesCredentials(subscription_key)
# Create client.
client = ComputerVisionClient(endpoint, credentials)
# ----------------------------------------------------------------------
# URL or path
# ----------------------------------------------------------------------
path = args.path
# Check the URL supplied or path exists and is an image.
# ----------------------------------------------------------------------
# Analyze
# ----------------------------------------------------------------------
image_features = ["faces"]
# Send provided image (url or path) to azure to analyse.
if is_url(path):
analysis = client.analyze_image(path, image_features)
else:
path = os.path.join(get_cmd_cwd(), path)
with open(path, 'rb') as fstream:
analysis = client.analyze_image_in_stream(fstream, image_features)
for face in analysis.faces:
2019-10-20 04:47:23 +03:00
print(f"{face.face_rectangle.left} {face.face_rectangle.top} " +
f"{face.face_rectangle.left + face.face_rectangle.width} " +
f"{face.face_rectangle.top + face.face_rectangle.height}," +
f"{face.gender},{face.age}")