aztk/docs/15-plugins.md

2.0 KiB

Plugins

Plugins can either be one of the aztk supported plugins or the path to a local file.

Supported Plugins

AZTK ships with a library of default plugins that enable auxiliary services to use with your Spark cluster.

Currently the following plugins are supported:

  • JupyterLab
  • Jupyter
  • HDFS
  • RStudioServer
  • TensorflowOnSpark
  • OpenBLAS
  • mvBLAS

Enable a plugin using the CLI

If you are using the aztk CLI and wish to enable a supported plugin, you need to update you .aztk/cluster.yaml configuration file.

Add or uncomment the plugins section and set the plugins you desire to enable as follows:

plugins:
    - name: jupyterlab
    - name: jupyter
    - name: hdfs
    - name: spark_ui_proxy
    - name: rsutio_server
      args:
        version: "1.1.383"

Enable a plugin using the SDK

If you are using the aztk SDK and wish to enable a supported plugin, you need to import the necessary plugins from the aztk.spark.models.plugin module and add them to your ClusterConfiguration object's plugin list:

from aztk.spark.models.plugins import RStudioServerPlugin, HDFSPlugin
cluster_config = ClusterConfiguration(
  ...# Other config,
  plugins=[
    JupyterPlugin(),
    HDFSPlugin(),
  ]
)

Custom script plugin

This allows you to run your custom code on the cluster

Run a custom script plugin with the CLI

Example

plugins:
    - script: path/to/my/script.sh
    - name: friendly-name
      script: path/to/my-other/script.sh
      target: host
      target_role: all-nodes

Options

  • script: Required Path to the script you want to run
  • name: Optional Friendly name. By default will be the name of the script file
  • target: Optional Target on where to run the plugin(Default: spark-container). Can be spark-container or host
  • target_role: Optional What should be the role of the node where this script run(Default: master). Can be master, worker or all-nodes