aztk/docs/sdk-examples.md

122 строки
3.2 KiB
Markdown

# SDK samples
## Create the Spark client
You can get the values for this by either running the [Getting Started script](getting-started) or using [Batch Labs](https://github.com/Azure/BatchLabs)
```python
import os
import sys
import time
import aztk.spark
from aztk.error import AztkError
# set your secrets
secrets_configuration = aztk.spark.models.SecretsConfiguration(
service_principal=aztk.spark.models.ServicePrincipalConfiguration(
tenant_id="<org>.onmicrosoft.com",
client_id="",
credential="",
batch_account_resource_id="",
storage_account_resource_id="",
),
ssh_pub_key="")
# create a client
client = aztk.spark.Client(secrets_configuration)
```
## List available clusters
```python
# list available clusters
clusters = client.cluster.list()
```
## Create a new cluster
```python
configuration_file_path = "/path/to/spark/configuration/files"
spark_configuration = aztk.spark.models.SparkConfiguration(
spark_defaults_conf=os.path.join(configuration_file_path, 'spark-defaults.conf'),
spark_env_sh=os.path.join(configuration_file_path, 'spark-env.sh'),
core_site_xml=os.path.join(configuration_file_path, 'core-site.xml'),
jars=[
os.path.join(configuration_file_path, 'jars', jar)
for jar in os.listdir(os.path.join(configuration_file_path, 'jars'))
])
# configure my cluster
cluster_configuration = aztk.spark.models.ClusterConfiguration(
cluster_id="sdk-test",
toolkit=aztk.spark.models.SparkToolkit(version="2.3.0"),
size=2,
vm_size="standard_f2",
spark_configuration=spark_configuration)
# create a cluster, and wait until it is ready
try:
cluster = client.cluster.create(cluster_configuration, wait=True)
except AztkError as e:
raise e
```
## Get an exiting cluster
```python
# get details of the cluster
cluster = client.cluster.get(cluster.id)
```
## Run an application on the cluster
```python
# define a Spark application to run
app1 = aztk.spark.models.ApplicationConfiguration(
name="pipy1",
application=os.path.join(ROOT_PATH, 'examples', 'src', 'main', 'python', 'pi.py'),
application_args="10")
# submit the application and wait until it is finished running
client.cluster.submit(cluster.id, app1)
```
## Get the logs of an application
```python
# get logs for app, print to console
app1_logs = client.get_application_log(cluster_id=cluster_config.cluster_id, application_name=app1.name)
print(app1_logs.log)
```
## Get status of app
```python
# get status of application
status = client.cluster.get_application_state(cluster_configuration.cluster_id, app1.name)
```
## Stream logs of app, print to console as it runs
```python
# stream logs of app, print to console as it runs
current_bytes = 0
while True:
app1_logs = client.cluster.get_application_log(
id=cluster_configuration.cluster_id, application_name=app1.name, tail=True, current_bytes=current_bytes)
print(app1_logs.log, end="")
if app1_logs.application_state == 'completed':
break
current_bytes = app1_logs.total_bytes
time.sleep(1)
```
## Stream logs of app, print to console as it runs
```python
# delete the cluster
client.cluster.delete(cluster.id)
```